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Preface

‘This monograph is about a technique of time series analysis which is often called
“singular-spectrum analysis’ (SSA). The basic SSA algorithm looks simple, but
understanding of what it does and how it fits among the other time series analysis
techniques is by no means simple. At least, it was difficult for us: we have spent
a few years on this. This book is an account of what we have learned.

Spending so much time on just one technique should be somehow justified.
IFor us, the justification is our belief in the capabilities of SSA: we are absolutely
convinced that for a wide range of time series SSA can be extremely useful. More
than that, we firmly believe that in the near future no statistical package will be
sold without incorporating SSA facilities, and every time series analysis textbook
will contain an SSA-related section.

Although not widely known among statisticians and econometrists, SSA has
hecome a standard tool in meteorology and climatology; it is also a well-known
technique in nonlinear physics and signal processing. We think that the lack of
popularity of SSA among statisticians was mostly due to tradition and the lack of
theory of SSA. We should also accept that the main methodological principle of
SSA is not really statistical; SSA is more a technique of multivariate geometry
than of statistics. In addition to statistics and multivariate geometry, the theory
of SSA comprises the elements of signal processing, linear algebra, nonlinear
dynamical systems, the theory of ordinary differential and finite-difference equa-
tions, and functional analysis. It is thus not surprising that it took a long time for
us to achieve some level of understanding of what SSA is.

Despite the fact that the material of the book touches many different fields, a
large part of the book is oriented towards a wide circle of readers who need or
have an interest in time series analysis.

SSA is essentially a model-free technique; it is more an exploratory, model-
building tool than a confirmatory procedure. It aims at a decomposition of the
original series into a sum of a small number of interpretable components such as
a slowly varying trend, oscillatory components and a ‘structureless’ noise. The
main concept in studying the SSA properties is ‘separability,” which characterizes
how well different components can be separated from each other.

An important feature of SSA is that it can be used for analyzing relatively short
series. On the other hand, asymptotic separation plays a very important role in
the theory of SSA. There is no contradiction here because the asymptotic features
{(which hold as the length of the series N tends to infinity) are found to be met
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for relatively small N. In practical applications, we typically deal with series of
length varying from a few dozen to a few thousand.

Possible application areas of SSA are diverse: from mathematics and physics to
economics and financial mathematics, from meteorology and oceanology to so-
cial science and market research. Any seemingly complex series with a potential
structure could provide another example of a successful application of SSA.

There are a large number of examples in the book. Many of these examples are
real-life series from different areas including medicine, physics, astronomy, eco-
nomics, and finance. These examples are not the most exciting examples of appli-
cation of SSA; they were not selected to impress the reader. The purpose of the
selection was different: the examples serve only for illustrating the methodolog-
ical and theoretical aspects discussed in the book. Also, each example illustrates
a different feature of the method, so that the number of examples can hardly be
reduced.

This book could not have been written had we not acquired a particular compu-
ter routine realizing SSA (see the Web site http://vega.math.spbu.ru/caterpillar).
We were very lucky to have had in our team Kirill Braulov from St. Petersburg
University who developed the software. We are very grateful to Kirill for his ex-
cellent work. We are also very grateful to our other collaborators and colleagues
from the Faculty of Mathematics, St. Petersburg University, and especiaily to
Sergei Ermakov, Vladislav Solntsev, Dmitrii Danilov and Alexander Bart, who
have participated in a large number of seminars and discussions on the topic.
These seminars and discussions were most useful, especially during the initial
stage of the work. Also we are grateful to Dmitry Belov (Institute of Physiol-
ogy, St. Petersburg University) for permission to use his EEG data for one of the
examples in the book.

Our Cardiff University colleague, Gerald Gould, has carefully gone through the
manuscript and improved the English where necessary; we are much obliged to
him for a very important job. Comments from the Chapman & Hall editors have
also helped very much in improving the manuscript; we are really thankful to
them.

A part of this work has been done in accordance with the grant GR/M21713,
“Multivariate methods in change-point detection problems” from the EPSRC. We
are very grateful for this support. However, our main gratitude undoubtedly goes
to the Procter & Gamble Company, which for many years has been extremely
supportive of us. We have worked with a number of very bright and clever people
from the company, but first of all we wish to acknowledge Phil Parker and Luigi
Ciutti. Their interest in and support for our work have helped us tremendously.

Last but not least, we are very grateful to our families for their patience and
understanding during the long period taken to write this book.

Nina Golyandina, Vladimir Nekrutkin, Anatoly Zhigljavsky

St. Petersburg — Cardiff, October 2000
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Introduction

SSA (singular-spectrum analysis) is a novel technique of time series analysis in-
corporating the elements of classical time series analysis, multivariate statistics,
multivariate geometry, dynamical systems, and signal processing. Despite the fact
that a lot of probabilistic and statistical elements are employed in the SSA-based
methods (they relate to stationarity, ergodicity, principal component and bootstrap
techniques), SSA is not a statistical method in terms of classical statistics. In par-
ticular, we typically do not make any statistical assumptions concerning either
signal or noise while performing the analysis and investigating the properties of
the algorithms.

The present book is fully devoted to the methodology and theory of SSA. The
main topics are SSA analysis, SSA forecasting, and SSA detection of structural
changes. Let us briefly consider these topics.

SSA analysis of time series

T'he birth of SSA is usually associated with publication of the papers by Broom-
head and King (1986a, 1986b) and Broomhead et al. (1987). Since then, the
technique has attracted a lot of attention. At present, the papers dealing with
methodological aspects and applications of SSA number several hundred; see, for
cxample, Vautard ez al. (1992), Ghil and Taricco (1997), Allen and Smith (1996),
Danilov and Zhigljavsky (1997), Yiou et al. (2000) and the references therein. An
clementary introduction to the subject can be found in the recent book by Elsner
and Tsonis (1996).

SSA has proved to be very successful, and has already become a standard tool
in the analysis of climatic, meteorological and geophysical time series; see, for ex-
ample, Vautard and Ghil (1989), Ghil and Vautard (1991), and Yiou er al. (1996).
[tis thus not surprising that among the main journals publishing SSA-related re-
scarch papers are Journal of Climate, Journal of the Atmospheric Sciences, and
lournal of Geophysical Research.

Let us turn to the description of SSA. The basic version of SSA consists of four
steps, which are performed as follows. Let F = (fo, f1,..., fv—1) be a time
series of length V, and L be an integer, which will be called the ‘window length’.
We set K = N~L+1 and define the L-lagged vectors Xi=(fi=1,-- s Fj+1-2)7T,
J=1,2,..., K, and the trajectory matrix

X = (fi-f-j—'Z)ﬁ}};)l = [‘Y] FE XK] .
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Note that the trajectory matrix X is a Hankel matrix, which means that all the ele-
ments along the diagonal :+j = const are equal. The construction of the trajectory
matrix constitutes the first step of the algorithm.

The second step is the singular value decomposition (SVD) of the matrix X,
which can be obtained via eigenvalues and eigenvectors of the matrix S = XX T
of size L x L. This provides us with a collection of L singular values, which
are the square roots of the eigenvalues of the matrix S, and the corresponding
left and right singular vectors. (The left singular vectors of X are the orthonor-
mal eigenvectors of S; in SSA literature, they are often called ‘empirical orthog-
onal functions’ or simply EOFs. The right singular vectors can be regarded as the
eigenvectors of the matrix XTX.) We thus obtain a representation of X as a sum
of rank-one biorthogonal matrices X; (i = 1,...,d), where d (d < L) is the
number of nonzero singular values of X.

At the third step, we split the set of indices I = {1, ..., d} into several groups
I, ..., I, and sum the matrices X; within each group. The result of the step is
the representation

X =Y X, whereX; =) X;.
k=1 i€}

At the fourth step, averaging over the diagonals ¢ + j = const of the matrices
X, is performed. This gives us an SSA decomposition; that is, a decomposition
of the original series F' into a sum of series

m
fa=> f%, n=0,...,N-1, (L.1)
k=1

where for each k the series f,(lk) is the result of diagonal averaging of the matrix
Xr,-

The basic scheme of SSA for analysis of time series and some modifications of
this scheme are known in the SSA literature cited above. Note that SSA is usually
regarded as a method of identifying and extracting oscillatory components from
the original series; see, for example, Yiou et al. (1996), Ghil and Taricco (1997),
Fowler and Kember (1998). The standard SSA literature, however, does not pay
enough attention to theoretical aspects which are very important for understand-
ing how to select the SSA parameters and, first of all, the window length L for the
different classes of time series. The concept of separability and related method-
ological aspects and theoretical results provide us with this understanding. It is the
study of separability which makes the biggest distinction between our research on
SSA analysis and the standard approach to SSA.

The choice of parameters in performing the SSA decomposition (they are the
window length L and the way of grouping the matrices X;) must depend on the
properties of the original series and the purpose of the analysis.

The general purpose of the SSA analysis is the decomposition (I.1) with addi-

tive components f,(lk) that are ‘independent’ and ‘identifiable’ time series; this is
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what we mean when we talk about analyzing the structure of time series by SSA.
Sometimes, one can also be interested in particular tasks, such as ‘extraction of
signal from noise,’” ‘extraction of oscillatory components’ and ‘smoothing’.

For a properly made SSA decomposition, a component fr(lk) in (I.1) can be iden-
tified as a trend of the original series, an oscillatory series (for example, season-
ality) or noise. An oscillatory series is a periodic or quasi-periodic series which
can be either pure or amplitude-modulated. Noise is any aperiodic series. The
trend of the series is, roughly speaking, a slowly varying additive component of
the series with all the oscillations removed.

Note that no parametric model for the components in (1.1) is fixed and these
components are produced by the series itself. Thus, when analyzing real-life se-
ries with the help of SSA one can hardly hope to obtain the components in the
decomposition (1.1) as exact harmonics or linear trend, for example, even if these
harmonics or linear trend are indeed present in the series (by a harmonic we mean
any sine series with some amplitude, frequency and phase). This is an influence
of noise and a consequence of the non-parametric nature of the method. In many
cases, however, we can get a good approximation to these series.

In the ideal situation the components in (1.1) must be ‘independent’. Achieving
"independence’ (or ‘separability’) of the components in the SSA decomposition
(1.1) is of prime importance in SSA. From the authors’ viewpoint, separability
of components in this decomposition is the main theoretical problem in SSA re-
search and the main target in the selection of SSA parameters. Separability of
components is the central problem in the book; it is touched upon in virtually
every section.

There are different notions of separability (more precisely, L-separability, since
the fact of separability depends on the window length L). The most important
is weak separability, defined as follows. Provided that the original time series
fn is a sum of m series f,(lk) (k = 1,...,m), for a fixed window length L,
weak L-separability means that any subseries of length L of the kth series f,(,k)
is orthogonal to any subseries of length L of the lth series f,(ql) with [ # k, and
the same holds for their subseries of length K’ = N — L + 1. This is equivalent
to the fact that there is a way of constructing the SVD of the trajectory matrix X
and grouping the matrices X; so that for each k the matrix Xy, is the trajectory
matrix of the series fu'.

The demand of exact separability of components is a strict requirement which
rarely holds in practice. The notion of approximate separability is more impor-
tant (and much less restrictive) than the exact one. For a relatively long series,
approximate separability of the components is often achieved due to the theo-
retical concept of asymptotic separability which holds for a rather wide class of
components.

To measure the degree of ‘separability’ of the components in (1.1) we use a
number of different characteristics, such as ‘spectral correlation coefficient’ or
‘weighted correlation coefficient’.
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Weak separability may not be sufficient to guarantee that a particular SSA de-
composition properly reflects the structure of the original time series. Indeed, in
the case when two or more of the singular values of the trajectory matrices X (%)

and X corresponding to two different components f,(tk) and f,(f) of the original
series are equal (in practice, if the singular values are close), then the SVD is not

uniquely defined and the two series f,gk) and f,(f) are mixed up, so that an addi-
tional analysis (such as rotations in the L-dimensional space of the lagged vectors)
is required to separate the two series. If there is (approximate) weak separability
and all eigenvalues corresponding to different components in (1.1) are sufficiently
isolated from each other, then we have (approximate) strong separability, which
means that for a proper grouping the SSA decomposition (approximately) coin-
cides with the one assumed.

The absence of approximate strong separability is often observed for series with
complex structure. For these series and series of special structure, there are dif-
ferent ways of modifying SSA. Several modifications of the basic SSA technique
can be of interest, such as SSA with single and double centring, Toeplitz SSA,
and sequential SSA (when the basic scheme is applied several times with differ-
ent parameters to the residuals from the previous analysis). SSA with centring and
Toeplitz SSA are based on particular non-optimal decompositions of the trajec-
tory matrices; they may be useful in analysis of time series of special structure,
such as series with linear-like tendencies and stationary-like series.

Toeplitz SSA was suggested in Vautard and Ghill (1989); it is a well known
modification of the basic SSA method. By contrast, SSA with double centring of
the trajectory matrix is a new version of SSA.

SSA forecasting of time series

The principles of SSA forecasting developed in this book are new with respect to
the main-stream SSA approach. Let us now briefly consider the methodological
aspects of SSA forecasting.

An important property of the SSA decomposition is the fact that, if the original
series f, satisfies a linear recurrent formula (LRF)

fn:alfn—1+~-+adfn—d 12)

of some dimension d with some coefficients ay, ..., aq, then for any N and L
there are at most d nonzero singular values in the SVD of the trajectory matrix X;
therefore, even if the window length L and K = N — L + 1 are larger than d, we
only need at most d matrices X; to reconstruct the series.

The fact that the series f,, satisfies an LRF (1.2) is equivalent to its representabi-
lity as a sum of products of exponentials, polynomials and harmonics, that is as

q
fn= Z ar(n)e!* " sin(2rwrn + @r) - (1.3)
k=1
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Here a; (n) are polynomials, uy,, wy and ¢y, are arbitrary parameters. The number
of linearly independent terms ¢ in (1.3) is smaller than or equal to d.

SSA forecasting is based on a fact which, roughly speaking, states the follow-
ing: if the number of terms r in the SVD of the trajectory matrix X is smaller than
the window length L, then the series satisfies some LRF of some dimensiond < r.
Certainly, this assertion must not be understood ad lirteram. However, for infinite
series a similar fact can be found in Gantmacher (1998, Chapter X VI, Section 10,
Theorem 7). The theorem due to Buchstaber (1994) amplifies these considerations
for finite time series; this theorem says that under the above-mentioned conditions
the series (with the possible exception of the last few terms) satisfies some LRF.
This assertion, however, does not directly lead to a forecasting algorithm, since
the last terms of the series are very important for forecasting.

An essential result for SSA forecasting was obtained in Danilov (1997a, 1997b).
It can be formulated as follows: if the dimension r of the linear space £, spanned
by the columns of the trajectory matrix is less than the window length L and this
space is not a vertical space, then the series satisfies a natural LRF of dimension
L-1.(fey ¢ £,, wheree; = (0,0,...,0,1)T € RY, then we say that £, is a
‘non-vertical’ space.)

If we have a series satisfying an LRF (1.2), then we can obviously continue
it for an arbitrary number of steps using the same LRF. It is important that any
LRF governing a given series provides the same continuation, and thus we do
not necessarily need the LRF with the minimal value of d. Thus, we now know
how to continue time series with non-vertical spaces and small ranks of trajectory
matrices.

Of course, when we are dealing with real-life time series we can hardly hope
to have a time series that is governed by an LRF of small dimension (in terms of
SVD, a ‘real-life’ trajectory matrix with L < K has, as a rule, rank L). However,
the class of series that can be approximated by the series governed by the LRFs of
the form (I.2) or, equivalently, by the (deterministic) time series of the form (1.3)
with a small number of terms, is very broad and we can attempt forecasting of
these series using an SSA-based forecasting method. We may also be interested
in continuing (forecasting) some periodic (perhaps, amplitude-modulated) com-
ponents of the original series and in forecasting the trend. ignoring noise and all
oscillatory components of the series.

The idea of SSA forecasting of a certain time series component is as follows.
The selection of a group of r < rank X rank-one matrices X; on the third step of
the basic SSA algorithm implies the selection of an r-dimensional space £, C R*
spanned by the corresponding ieft singular vectors.

If the space £, is non-vertical, then, as was mentioned previously, this space
produces the appropriate LRF, which can be used for forecasting (called recur-
rent forecasting) of the series component, corresponding to the chosen rank-one
matrices.

As in the basic SSA, the separability characteristics help in selection of both
the window length L and the space £,. Moreover, separability is directly related
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to LRFs: roughly speaking, if two series are separable, then they satisfy certain
LRFs.

The SSA recurrent forecasting algorithm can be modified in several ways. For
example, we can base our forecast on the Toeplitz SSA or SSA with centring
rather than on the basic SSA (the £, is then spanned by the corresponding ver-
sions of left singular vectors); in some cases, we can also base the forecast on the
LRF of minimal order. Perhaps the most important modification is the so-called
SSA vector forecasting algorithm developed in Nekrutkin (1999). The idea of this
method is as follows.

For any group of indices I selected at the grouping stage, the application of
SSA givesus K = N — L + 1 vectors X, ..., X that lie in an r-dimensional
subspace £, of RE. Here r is the number of elements in I , for each j the X is the
projection of the L-lagged vector X; onto the subspace £, and the subspace £,
is spanned by the r left eigenvectors of the trajectory matrix X with the indices

in the group /. We then continue the vectors X, ..., Xy for M steps in such a
way that (i) the continuation vectors Z,,, (K < m < K + M) belong to the space
£, and (ii) the matrix [X; : ... Xk : Zx41 ¢ ... Zkym) is approximately

a Hankel matrix. The forecasting series is then obtained by means of diagonal
averaging of this matrix.

While the recurrent forecasting algorithm performs the straightforward recur-
rent continuation of a one-dimensional series (with the help of the LRF so con-
structed), the vector forecasting method makes the continuation of the vectors in
an r-dimensional space and only then returns to the time-series representation.
Examples show that vector forecasting appears to be more stable than the recur-
rent one, especially for long-term forecasting.

Confidence intervals for the forecasts can be very useful in assessing the quality
of the forecasts. However, unlike the SSA forecasts themselves (their construction
does not formally require any preliminary information about the time series), for
» constructing confidence bounds we need some assumptions to be imposed on the
\ series and the residual component, which we associate with noise.

‘ We consider two types of confidence bounds; the first one is for the values of

the series itself at some future point N + M, and the second one is for the values

| of the signal at this future point (under the assumption that the original series

; consists of a signal and additive noise). These two types of confidence intervals
are constructed in different ways: in the first case, we use the information about
forecast errors obtained during the analysis of the series; the second one uses the
bootstrap technology.

To build the confidence intervals for the forecast of the entire initial series, we
construct the forecasting LRF of dimension L — 1 (in the case of the recurrent
forecast) and repeatedly apply it to all subseries of the same dimension within the
observation period [0, N —1]. Then we compare the results with the corresponding
values of the series. Under the assumption that the residual series is stationary and
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ergodic, we can estimate the quantiles of the related marginal distribution, and
therefore build the confidence bounds.

The bootstrap technique is useful for constructing confidence intervals for the
signal F(!) at some future time N + A7 under the assumption that the series

En = (fo,...,fn—1) is asum of a signal FJ(\,I) and noise F](\,z) =Fyn — E(M”. To
do that, we first obtain the SSA decomposition Fiy = 17“,(\,1) + ]3,(5), where f(})
(the reconstructed series) approximates F’ ](\,1), and ﬁ](vz Vis the residual series. As-
suming that we have a (stochasfic) model for the residuals 17“1(\,‘7) we then simulate
some number S of independent copies IT“](\? 1 of the series F,(\,2 ) obtain S series
}F](\,l) + 1:;1(\,')1 and get S forecasting results fxl]\,_l.i. Having obtained the sample

ﬁ}iM_M (1 <4 £ 5) of the forecasting resuits, we use it to calculate the em-
pirical lower and upper quantiles of fixed level ~ and construct the corresponding
confidence interval for the forecast.

Note that the bootstrap confidence bounds can be constructed not only for the
SSA forecasts but also for the terms of the SSA decomposition when we are
dealing with separation of a signal from noise.

SSA detection of structural changes in time series

We call a time series Fiy homogeneous if it is governed by an LRF of order d that
is small relative to the length of the series V.

Assume now that the series is homogeneous until some time () < N but then
it stops following the original LRF (this may be caused by a perturbation of the
series). However, after a certain time period, it again becomes governed by an
LRFE. In this case, we have a structural change (heterogeneity) in the series. We
may have either a permanent heterogeneity (in this case the new LRF is different
from the original one) or a temporary heterogeneity, when both LRFs coincide.
Note that even in the latter case, the behaviour of the series after the change is dif-
ferent from the behaviour of the homogeneous (unperturbed) series: for example,
the initial conditions for the LRF after the perturbation can be different from the
unperturbed initial conditions.

The main idea of employing SSA for detecting different types of heterogeneity
is as follows. The results of Section 5.2 imply that for sufficiently large values
of the window length L the L-lagged vectors of a homogeneous series span the
same linear space S independently of N, as soon as N is sufficiently large.
Therefore, violations in homogeneity of the series can be described in terms of
the corresponding lagged vectors: the perturbations force the lagged vectors to
leave the space £'F ) The corresponding discrepancies are defined in terms of the
distances between the lagged vectors and the space 29 which can be determined
for different subseries of the original series.

Since, in practice, the series are described by LRFs only approximately, the
problem of approximate construction of the spaces £(X ) arises again. Analogous
to the problems of forecasting, the SVD of the trajectory matrices is used for
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this purpose. As everywhere in the book, the concept of separability plays a very
important role when we are interested in detecting changes in components of the
series (for example, in the signal, under the presence of additive noise). Unlike the
forecasting problems, for studying structural changes in time series, the properties
of the SVDs of subseries of the initial series /' become of prime importance.

We consider two subseries (say F' and F"') of the series F'; we call them ‘base
subseries’ and ‘test subseries’. Assume that the lengths of these subseries are fixed
and equal to B and T, respectively. Suppose that B > L and T' > L, where L is
the window length. Let us make an SVD of the trajectory matrix of the base sub-
series, select a group of r < L left singular vectors, consider the linear space £,
spanned by these vectors and compute the sum of the squared distances between
the space £, and the L-lagged vectors corresponding to the test subseries. If we
normalize this sum by the sum of the squared norms of the L-lagged vectors of
the test subseries, then we obtain the so-called heterogeneity index g = g(F', F"')
formally defined in Section 3.1. The heterogeneity index g(F’, F"'} measures the
discrepancy between F' and F" by computing the relative error of the optimal
approximation of the L-lagged vectors of the time series F"’ by vectors from the
space £;.

The main tool used to study structural changes (heterogeneities) in time series
is the ‘heterogeneity matrix’ of size (N — B+1) x (N —T +1). The entries of
this matrix are the values of the heterogeneity index g = g(F”', F"'), where F'
and F"' run over all possible subseries of the series F of fixed lengths B and T,
respectively.

The columns, rows and some diagonals of the heterogeneity matrix constitute
the ‘heterogeneity functions’. Change in the indexation system gives us the ‘de-
tection functions’; they are more convenient for the purpose of change detection.

We also consider three groups of supplementary detection characteristics. The
first group is obtained when we use a different normalization in the expression
for the heterogeneity index (rather than using the sum of the squared norms of the
L-lagged vectors of the test subseries, we use the sum of the squared terms of the
whole series). This renormalization of the heterogeneity index often helps when
we monitor changes in monotone series and their components.

The second group of characteristics relates to the series of the roots of the
characteristic polynomials of the LRFs that correspond to the SSA decomposition
of the base subseries F’. The roots of the characteristic polynomials monitor the
dynamics of the linear spaces £;.. In particular, this monitoring can be very useful
for distinguishing the changes that actually happen in the series from spurious
changes that are caused by the fact that abrupt changes in the dynamics of the
linear spaces £, may be related to the changes in the order of the singular values.

The third group of characteristics is basically the moving periodograms of the
original series; this group is used to monitor the spectral structure of the original
series.
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Composition of the book

The book has two parts; they are devoted to the methodology and theory of SSA,
respectively. The methodological principles of SSA are thoroughly considered
in Part I of the book. This part consists of three chapters, which deal with SSA
analysis, SSA forecasting and SSA detection of structural changes, respectively.

SSA analysis of time series is dealt with in Chapter 1. In Section 1.1, the basic
algorithm is described. In Section 1.2, the steps of this algorithm are explained
and commented on. In Section 1.3, the main capabilities of the basic algorithm
are illustrated by a number of real-life examples. In Section 1.4, the major tasks
that can be attempted by SSA are formulated and discussed. In Section 1.5, the
concept of separability is considered in detail. These considerations play a very
important role in the selection of the parameters of SSA, the problem which is
dealt with in Section 1.6. In Section 1.7, supplementary SSA techniques, such as
SSA with centring and Toeplitz SSA, are considered.

Chapter 2 is devoted to SSA forecasting methodology. In Section 2.1, we for-
mally describe the SSA recurrent forecasting algorithm. In Section 2.2, the princi-
ples of SSA forecasting and links with LRFs are discussed. Several modifications
of the basic SSA recurrent forecasting algorithm are formulated and discussed
in Section 2.3. The construction of confidence intervals for the forecasts is made
in Section 2.4. In Section 2.5, we summarize the material of the chapter, and
in Section 2.6 we provide several examples illustrating different aspects of SSA
forecasting.

The methodology of SSA detection of structural changes in time series is con-
sidered in Chapter 3. In Section 3.1, we introduce and discuss the main concepts.
In Section 3.2, we consider various violations of homogeneity in time series and
the resulting shapes of the heterogeneity matrices and detection functions. In Sec-
tion 3.3, we generalize the results of Section 3.2 to the case when we are detecting
heterogeneities in one of the components of the original series rather than in the
series itself (this includes the case when the series of interest is observed with
noise). The problem of the choice of detection parameters is dealt with in Section
3.4. In Section 3.5, we consider several additional detection characteristics, and
in Section 3.6 we provide a number of examples.

Chapters 4, 5 and 6 constitute the second (theoretical) part of the book, where
all the statements of Part I are properly formulated and proved (with the exception
of some well-known results where the appropriate references are given).

Chapter 4 considers the singular value decomposition (SVD) of real matri-
ces, which is the main mathematical tool in the SSA method. The existence and
uniqueness of SVDs is dealt with in Section 4.1. In Section 4.2, we discuss the
structure and properties of the SVD matrices with special attention paid to such
features of SVD as orthogonality, biorthogonality, and minimality. In Section 4.3,
we consider optimal features of the SVD from the viewpoints of multivariate ge-
ometry and approximation of matrices by matrices of lower rank. A number of
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results on optimality of the standard SVD are generalized in Section 4.4 to the
SVD with single and double centring.

Chapter 5 provides a formal mathematical treatment of time series of finite
rank; the L-trajectory matrices of these series have rank less than min(L, K) for
all sufficiently large L and K. General properties of such series are considered
in Section 5.1. As discussed above, the series of finite rank are related to the
series governed by the LRFs; these relations are studied in Section 5.2. The results
concerning the continuation procedures are derived in Section 5.3.

In Chapter 6, we make a formal mathematical study of four topics that are
highly important for the SSA methodology. Specifically, in Section 6.1 we study
weak separability of time series, in Section 6.2 diagonal averaging (Hankeliza-
tion) of matrices is considered, while centring in SSA is studied in Section 6.3,
and specific features of SSA for deterministic stationary sequences are discussed
in Section 6.4.

Other SSA and SSA-related topics

On the whole, this book considers many important issues relating to the imple-
mentation, analysis and practical application of SSA. There are, however, several
other topics which are not covered here. Let us mention some of them.

1. Multichannel SSA. Multichannel SSA is an extension of the standard SSA to
the case of multivariate time series (see Broomhead and King, 1986b). It can
be described as follows. Assume that we have an [-variate time series f, =
( Do ,(ll)), where n = 0,1,..., N — 1 (for simplicity we assume that the
time domain is the same for all the components of the series). Then for a fixed
window length L we can define the trajectory matrices X(9) (i =1,...,1) of the

one-dimensional time series f,(f). The trajectory matrix X can then be defined as

X (1)
X=1 - ~£” . (1.4)
X

The other stages of the multichannel SSA procedure are identical to the one-
dimensional procedure discussed above with obvious modification that the diag-
onal averaging should be applied to each of the | components separately. (Multi-
channel SSA can be generalized even further, for analyzing discrete time random
fields and image processing problems; see Danilov and Zhigljavsky, 1997.)

There are numerous examples of successful application of the multichannel
SSA (see, for example, Plaut and Vautard, 1994; Danilov and Zhigljavsky, 1997),
but the theory of multichannel SSA is yet to be developed. The absence of a
theory is the reason why, in the present book, we have confined ourselves to the
univariate case only. This case is already difficult enough, and multichannel SSA
has additional peculiarities.

Construction of the trajectory matrix in multichannel SSA is not obvious; there
are several alternatives to (1.4). The matrix (1.4) seems to be the natural candidate
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for the trajectory matrix of a multivariate series, but its advantages are not clear.
Note also that there is a version of SSA that deals with complex-valued series; it
can be considered as a version of multichannel SSA as well. It is, however, not
clear how to compare the two-channel SSA with the one-channel complex SSA.

2. Continuous time SSA. The basic SSA scheme and most of its variations can
be modified for the case of continuous time. There are many significant changes
{with respect to the material of the book) that would to be made if one were to try
to analyze the corresponding procedure: instead of sums we get integrals, instead
of matrices we have linear operators, the SVD becomes the Schmidt decomposi-
tion in the corresponding Hilbert space, LRFs become ordinary differential equa-
tions, and so on. Note that the theory of generalized continuous time SSA includes
the standard discrete time SSA as a particular case. In addition, such a general-
ization allows us to consider not only embeddings of Hankel type but also many
other mappings which transfer functions of one variable to the functions of two
variables. Those interested in this approach can find a lot of related material in
Nekrutkin (1997). '

3. Use of different window lengths. The use of different values of the window
length is discussed in Section 1.7 in relation to the so-called ‘Sequential SSA’.
There are some other suggestions in the literature, such as selecting the window
length at random (see Varadi et al., 1999) or keeping the ratio L' /N’ fixed, where
L’ is the window length for the subseries of the original series of length N' =
N/k which is obtained by sieving the original series (see Yiou et al., 2000). Both
methods are suggested for analyzing long series; the latter one is shown to have
some similarity with the wavelet analysis of time series.

4. SSA for sequential detection of structural changes. The methodology of
Chapter 3 aims at a nonsequential (posterior) detection of structural changes in
time series. Some of these algorithms can be modified for the more standard
change-point problem of sequential detection of change-points. This approach
is implemented in Moskvina and Zhigljavsky (2000), where some of the de-
tection algorithms are analyzed as proper statistical procedures. The Web site
http:/fwww.cf.ac.uk/maths/stats/changepoint/ contains more information on the
subject and a link to the software that can be downloaded.

Let us mention some other areas related to SSA.

During the last forty years, a variety of techniques of time series analysis and
signal processing have been suggested that use SVDs of certain matrices; for sur-
veys see, for example, Marple (1987) or Bouvet and Clergeot (1988). Most of
these techniques are based on the assumption that the original series is random
and stationary; they include some techniques that are famous in signal process-
ing, such as Karhunen-Loéve decomposition and the MUSIC algorithm (for the
signal processing references, see, for example, Madisetti and Witliams, 1998).
Some statistical aspects of the SVD-based methodology for stationary series are
considered, for example, in Brillinger (1975, Chapter 9), Subba Rao (1976) and
Subba Rao and Gabr (1984).



12 INTRODUCTION

The analysis of periodograms is an important part of the process of identify-
ing the components in the SSA decomposition (I.1). For example, noise is mod-
eled by aperiodic (chaotic) series whose spectral measures do not have atoms
(white noise has constant spectral density). A comparison of the observed spec-
trum of the residual component in the SSA decomposition with the spectrum of
some common time series (these can be found, for example, in Priestley, 1991
and Wei, 1990, Chapter 11) can help in understanding the nature of the residuals
and formulation of a proper statistical hypothesis concerning the noise. However,
a single realization of a noise series can have a spectrum that significantly differs
from the theoretical one. Several simulation-based tests for testing the white noise
zero hypothesis against the ‘red noise’ alternative (i.e., an autoregressive process
of the first order) have been devised; the approach is called ‘Monte Carlo SSA’,
see Allen and Smith (1996). This approach has attracted a lot of attention of re-
searchers; for its extension and enhancement see, for example, Palu§ and Novotna
(1998).

Another area which SSA is related to is nonlinear (deterministic) time se-
ries analysis. It is a fashionable area of rapidly growing popularity; see the re-
cent books by Cutler and Kaplan (1997), Kantz and Schreiber (1997), Abarbanel
(1996), Tong (1993), and Weigend and Gershenfeld (1993). Note that the spe-
cialists in nonlinear time series analysis (as well as statisticians) do not always
consider SSA as a technique that could compete with more standard methods;
see, for example, Kantz and Schreiber (1997, Section 9.3.2).

It is impossible to discuss all the fields related to SSA. In a certain wide sense,
one can consider SSA as a method of approximating the original series (or its
component) with the other series governed by an LRF. Then we can consider a
long list of publications on the theme, starting with Prony (1795).

On the other hand, the essential feature of SSA is the choice of the optimal basis
consisting of the left singular vectors. If we do not restrict ourselves to strong
optimality (see the discussion on Toeplitz and centring SSA), then we arrive at a
wide class of methods dealing with different bases (including, for example, the
wavelet bases) that can be used for the decomposition of the lagged vectors.

i As has already been mentioned, in signal processing, nonlinear physics and

i some other fields, a number of methods are in use that are based on SVDs of the

3 trajectory matrices (as well as other matrices calculated through the terms of time
series); these methods are used for different purposes.

Thus, the area of SSA-related methods is very wide. This is one of the reasons
why we are confident that the ideas and methodology of SSA described in this
book will be useful for a wide circle of scientists in different fields for many years
to come.




PART I

SSA: Methodology







CHAPTER 1

Basic SSA

This chapter deals with the basic scheme of SSA and several modifications of it. '
Only the problem of analysis of the structure of a one-dimensional real-valued
time series is considered. Some refined generalizations of the basic scheme adap-
ted to the problems of time series forecasting and homogeneity analysis (including
the change-point detection problem) are considered in the subsequent chapters.

Briefly, in this chapter we consider Basic SSA as a model-free tool for time se-
ries structure recognition and identification. We do not want to specify the notion
‘structure’ at the moment but mention that the goal of Basic SSA is a decomposi-
tion of the series of interest into several additive components that typically can be
interpreted as ‘trend’ components (that is, smooth and slowly varying parts of the
series), various ‘oscillatory’ components (perhaps with varying amplitudes), and
‘noise’ components.

In this chapter we do not assign any stochastic meaning to the term ‘noise’: the
concept of a deterministic stationary ‘noise’ series is generally more convenient
for SSA since it deals with a single trajectory of a time series rather than with
a sample of such trajectories. Also, it may occur that we are not interested in
certain components of the series and can therefore subsume them under the noise
components.

Basic SSA performs four steps. At the first step (called the embedding step), the
one-dimensional series is represented as a multidimensional series whose dimen-
sion is called the window length. The multidimensional time series (which is a
sequence of vectors) forms the trajectory matrix. The sole (and very important)
parameter of this step is the window length.

The second step, SVD step, is the singular value decomposition of the trajectory
matrix into a sum of rank-one bi-orthogonal matrices. The first two steps together
are considered as the decomposition stage of Basic SSA.

The next two steps form the reconstruction stage. The grouping step corre-
sponds to splitting the matrices, computed at the SVD step, into several groups
and summing the matrices within each group. The result of the step is a represen-
tation of the trajectory matrix as a sum of several resultant matrices.

The last step transfers each resultant matrix into a time series, which is an
additive component of the initial series. The corresponding operation is called
diagonal averaging. It is a linear operation and maps the trajectory matrix of the
initial series into the initial series itself. In this way we obtain a decomposition of
the initial series into several additive components.
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Let us describe these steps formally and discuss their meaning and features.

1.1 Basic SSA: description

Let N > 2. Consider a real-valued time series ' = (fo,..., fy_1) of length
N. Assume that F is a nonzero series; that is, there exists at least one i such that
fi # 0. Though one can usually assume that f; = f(iA) for a certain function of
time f(¢) and a certain time interval A, this does not play any specific role in our
considerations.

Moreover, the numbers 0, . .., N — 1 can be interpreted not only as discrete time
moments but also as labels of any other linearly ordered structure. The numbering
of the time series values starts at ¢ = 0 rather than at the more standard i = 1; this
is only for convenience of notation.

As was already mentioned, Basic SSA consists of two complementary stages:
decomposition and reconstruction.

1.1.1 First stage: decomposition

: Ist step: Embedding
|1 The embedding procedure maps the original time series to a sequence of multidi-
mensional lagged vectors.

Let L be an integer (window length), 1 < L < N. The embedding procedure
forms K = N — L + 1 lagged vectors

X'i:(f'i—la~"7fi+L—2)Ta 1SZSK;

which have dimension L. If we need to emphasize the dimension of the X;, then
we shall call them L-lagged vectors.
The L-trajectory matrix (or simply trajectory matrix) of the series F':

X-_—[Xlt...ZXK]

has lagged vectors as its columns. In other words, the trajectory matrix is

Jo i fa oo fr-1
N 2 fs R 1%
X = (:c,-j)f,}.’z‘l = f fs fa coo fr41 | a.n

fov foo frer oo fNa
Obviously z;; = fi1 ;> and the matrix X has equal elements on the ‘diagonals’
¢+ j = const. (Thus, the trajectory matrix is a Hankel matrix.) Certainly if N

and L are fixed, then there is a one-to-one correspondence between the trajectory
matrices and the time series.
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2nd step: Singular value decomposition
The result of this step is the singular value decomposition (SVD) of the trajectory
matrix. Let S = XXT. Denote by \;,..., Ay the eigenvalues of S taken in the
decreasing order of magnitude (A\; > ... > Ay > 0)and by Uy,..., U the
orthonormal system of the eigenvectors of the matrix S corresponding to these
eigenvalues. Let d = max{4, such that A; > 0}.

If we denote V; = XTU;/v/X; (i = 1,...,d), then the SVD of the trajectory
matrix X can be written as

X=X;+...+Xq, (1.2)

where X; = v/A\;U;V,T. The matrices X; have rank 1; therefore they are elemen-
tary matrices. The collection (v/A;,U;, V;) will be called ith eigentriple of the
SVD (1.2).

1.1.2 Second stage: reconstruction

3rd step. Grouping
Once the expansion (1.2) has been obtained, the grouping procedure partitions the
set of indices {1, ..., d} into m disjoint subsets I, . .., I,.

Let I = {iy,...,ip}. Then the resultant matrix X corresponding to the group
lisdefinedas X; = X;, +... + Xip. These matrices are computed for I =
It,..., Im and the expansion (1.2) leads to the decomposition

X=X, +...+X;,.. © (1.3

‘The procedure of choosing the sets Iy, .. ., I, is called the eigentriple grouping.

4th step: Diagonal averaging
The last step in Basic SSA transforms each matrix of the grouped decomposition
(1.3) into a new series of length V.

Let Y be an L x K matrix with elements y;;, 1 < i < L,1 < j < K. We
set L* = min(L,K), K* = max(L,K)and N = L + K — 1. Let Yi; = yij if
L. < K and y;; = y;; otherwise.

Diagonal averaging transfers the matrix Y to the series go,...,gn_1 by the
formula:
( 1 k!
1 Z Ym k-m+2 for0 <k <L*-1,
m=1
] 1§
G =9 Tr D Ymkomi2 for [*~1< k < K*, (1.4)
=1
lm N—K*41
N_F Z Ym k—mya for K* <k <N.
\ m=k—K*+2

The expression (1.4) corresponds to averaging of the matrix elements over the
‘diagonals’ i + j = k + 2: the choice k = 0 gives gy = y11, for k = 1 we have
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g1 = (y12 + ¥21)/2, and so on. Note that if the matrix Y is the trajectory matrix
of some series (hg,...,hy_1) (in other words, if Y is the Hankel matrix), then
g: = h; for all 4.

Diagonal averaging (1.4) applied to a resultant matrix X;, produces the series
F) = (f(()k), ey 7&1) and therefore the initial series fg, ..., fxy—1 is decom-
posed into the sum of m series:

m —~
fa=d_ FH. (1.5)

k=1

1.2 Steps in Basic SSA: comments

The formal description of the steps in Basic SSA requires some elucidation. In
this section we briefly discuss the meaning of the procedures involved.

1.2.1 Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional time
series F' = (fo,..., f;v—1) to the multidimensional series X1, . .., X 5 with vec-
tors X; = (fic1,-.., fixr—2)T € RZ, where K = N — L + 1. Vectors X, are
called L-lagged vectors (or, simply, lagged vectors).

The single parameter of the embedding is the window length L, an integer such
that2< L< N —1.

Embedding is a standard procedure in time series analysis. With the embedding
being performed, further development depends on the purpose of the investiga-
tion.

For specialists in dynamical systems, a common technique is to obtain the em-
pirical distribution of all the pairwise distances between the lagged vectors X;
and X; and then calculate the so-called correlation dimension of the series. This
dimension is related to the fractal dimension of the attractor of the dynamical sys-
tem that generates the time series. (See Takens, 1981; Sauer, Yorke and Casdagli,
1991, for the theory and Nicolis and Prigogine, 1989, Appendix IV, for the cor-
responding algorithm.) Note that in this approach, L must be relatively small and
K must be very large (formally, K — oo).

If L is sufficiently large, then one can consider each L-lagged vector X; as
a separate series and investigate the dynamics of certain characteristics for this
collection of series. The simplest example of this approach is the well-known
‘moving average’ method, where the averages of the lagged vectors are computed.
There are also much more sophisticated algorithms.

For example, if the initial series can be considered as a locally stationary pro-
cess, then we can expand each lagged vector X; with respect to any fixed basis
(for instance, the Fourier basis or a certain wavelet basis) and study the dynamics
of such an expansion. These ideas correspond to the dynamical Fourier analysis.
Evidently, other bases can be applied as well.
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The approximation of a stationary series with the help of the autoregression
models can also be expressed in terms of embedding: if we deal with the model

fivr-1=ar_1fisr—2+arfi+eipr—1, 120, (1.6)

then we search for a vector A = (a1, ...,ar_1, —1)T such that the inner products
(X, A) are described in terms of a certain noise series.

Note that these (and many other) techniques that use the embedding can be
divided into two large parts, which may be called ‘global’ and ‘dynamical’. The
global methods treat the X; as L-dimensional vectors and do not use their order-
ing.

For instance, if we calculate the empirical distribution of the pairwise distances
between the lagged vectors, then the result does not depend on the order in which
these vectors appear. A similar situation occurs for the autoregression model (1.6)
if the coefficients a; are calculated through the whole collection of the lagged
vectors (for example, by the least squares method).

This invariance under permutation of the lagged vectors is not surprising since
both models deal with stationary-like series and are intended for finding global
characteristics of the whole series. The number of lagged vectors K plays the role
of the ‘sample size’ in these considerations, and therefore it has to be rather large.
Theoretically, in these approaches L must be fixed and KX — oo.

The situation is different when we deal with the dynamical Fourier analysis
and similar methods, and even with the moving averages. Here the order of the
lagged vectors is important and describes the dynamics of interest. Therefore, the
nonstationary scenario is the main application area for these approaches. As for
L and K, their relationship can generally be arbitrary and should depend on the
concrete data and the concrete problem.

At any rate, the window length L should be sufficiently large. The value of L
has to be large enough so that each L-lagged vector incorporates an essential part
of the behaviour of the initial series F = (fo,..., fn—1).

In accordance with the formal description of the embedding step (see Section
1.1.1), the result of this step is a trajectory matrix

X=[X1:...: Xg]

rather than just a collection of the lagged vectors X;. This means that generally
we are interested in the dynamical effects (though some characteristics that are
invariant under permutations of the lagged vectors will be important as well).

The trajectory matrix (1.1) possesses an obvious symmetry property: the trans-
posed matrix X7 is the trajectory matrix of the same series fo, ..., fn—1 With
window length equal to K rather than L.

1.2.2 Singular value decomposition

Singular value decomposition (SVD) of the trajectory matrix (1.1) is the second
step in Basic SSA. SVD can be described in different terms and be used for dif-
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ferent purposes. (See Chapter 4 for the mathematical results.) Most SVD features
are valid for general L x K matrices, but the Hankel structure of the trajectory
matrix adds a number of specific features. Let us start with general properties of
the SVD important for the SSA.

As was already mentioned, the SVD of an arbitrary nonzero L x K matrix
X =[X; :...: Xk] is a decomposition of X in the form

d
X =3 VAUV, (17
i=1

where A; (i = 1,..., L) are eigenvalues of the matrix § = XXT arranged in
decreasing order of magnitudes,

d = max{i, such that A; > 0} = rank X,

{U1,...,Uyg} is the corresponding orthonormal system of the eigenvectors of the
matrix S, and V; = XTU, /V/X;.

Standard SVD terminology calls 1/}; the singular values; the U; and V; are
the left and right singular vectors of the matrix X, respectively. The collec-
tion (v, U;, V;) is called ith eigentriple of the matrix X. If we define X; =
VAU; ViT, then the representation (1.7) can be rewritten in the form (1.2),1.e. as
the representation of X as a sum of the elementary matrices X;.

If all the eigenvalues have multiplicity one, then the expansion (1.2) is uniquely
defined. Otherwise, if there is at least one eigenvalue with multiplicity larger
than 1, then there is a freedom in the choice of the corresponding eigenvectors. We
shall assume that the eigenvectors are somehow chosen and the choice is fixed.

Since SVD deals with the whole matrix X, it is not invariant under permuta-
tion of its columns X, ..., X . Moreover, the equality (1.7) shows that the SVD
possesses the following property of symmetry: Vi, ..., V, form an orthonormal
system of eigenvectors for the matrix XTX corresponding to the same eigenval-
ues ;. Note that the rows and columns of the trajectory matrix are subseries of
the original time series. Therefore, the left and right singular vectors also have a
temporal structure and hence can also be regarded as time series.

SVD (1.2) possesses a number of optimal features. One of these properties
is as follows: among all the matrices X (") of rank r < d, the matrix Y X
provides the best approximation to the trajectory matrix X, so that [1X = XM{| g
is minimum.

Here and below the (Frobenius) norm of a matrix Y is VYY) > Where the

inner product of two matrices Y = (y; $)ij=1 and Z = (z; {71 is defined as

q.8

(Y,Z),, = Z Yij2iz.
i,5=1

Note that || X[, = 3% A and \; = [1Xi][3, fori = 1,...,d. Thus, we
shall consider the ratio A;/||X||%, as the characteristic of the contribution of the
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matrix X; in the expansion (1.2) to the whole trajectory matrix X. Consequently,
i1 Ai/|IX| |5, the sum of the first r ratios, is the characteristic of the optimal
approximation of the trajectory matrix by the matrices of rank r.

Let us now consider the trajectory matrix X as a sequence of L-lagged vectors.
Denote by £ ¢ RL the linear space spanned by the vectors X3, ..., Xx. We
shall call this space the L-trajectory space (or, simply, trajectory space) of the
series F'. To emphasize the role of the series F', we use notation il )(F ) rather
than €0, The equality (1.7) shows that Y = (Us,...,Uy) is an orthonormal
basis in the d-dimensional trajectory space @),

Setting Z; = v/A;V;,i = 1,...,d, we can rewrite the expansion (1.7) in the
form

d
X =Y Uz], (1.8)
i=1

and for the lagged vectors X; we have
d
Xj = ZZj,'Ui, (19)
i=1

where the z;; are the components of the vector Z;.

By (1.9), zj; is the ith component of the vector X;, represented in the basis U.
In other words, the vector Z; is composed of the ith components of lagged vectors
represented in the basis .

Let us now consider the transposed trajectory matrix XT. Introducing ¥; =
VA;U; we obtain the expansion

d
XT - Z V'iy'iT’
i=1

which corresponds to the representation of the sequence of K-lagged vectors in
the orthonormal basis V1, ..., V,. Thus, the SVD gives rise to two dual geomet-
rical descriptions of the trajectory matrix X.

The optimal feature of the SVD considered above may be reformulated in the

language of multivariate geometry for the L-lagged vectors as follows. Let r <

d. Then among all r-dimensional subspaces £, of R”, the subspace S(TO) o

£(U,...,U;), spanned by Ui,...,U,, approximates these vectors in the best
way; that is, the minimum of Zfil dist?(X;, £,) is attained at £{®). The ratio
Sim1 A/ Zle A; is the characteristic of the best r-dimensional approximation
of the lagged vectors.

Another optimal feature relates to the properties of the directions determined
by the eigenvectors Uy, . .., Uy. Specifically, the first eigenvector U; determines
the direction such that the variation of the projections of the lagged vectors onto
this direction is maximum.
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Every subsequent eigenvector determines a direction that is orthogonal to all
previous directions, and the variation of the projections of the lagged vectors onto
this direction is also maximum. Therefore, it is natural to call the direction of
ith eigenvector U; the ith principal direction. Note that the elementary matrices
X; = U;ZT are built up from the projections of the lagged vectors onto ith
directions.

This view on the SVD of the trajectory matrix composed of L-lagged vectors
and an appeal to associations with principal component analysis lead to the fol-
lowing terminology. We shall call the vector U; the ith (principal) eigenvector,
the vector V; will be called the ith factor vector, and the vector Z; the vector of
ith principal components.

1.2.3 Grouping

Let us now comment on the grouping step, which is the procedure of arranging
the matrix terms X; in (1.2). Assume thatm = 2, I, = | = {i1...,i,} and
I ={1,...,d}\I,where1 <i; <...<i, <d.

The purpose of the grouping step is separation of the additive components of
time series. Let us discuss the very important concept of separability in detail.
Suppose that the time series F is a sum of two time series F(Y) and F {2); that is,
fi= fi(l) + fi(z) fori =0,..., N — 1. Let us fix the window length L and denote
by X, X1 and X® the L-trajectory matrices of the series F, F(1) and F(2),
respectively.

Consider an SVD (1.2) of the trajectory matrix X. (Recall that if all the eigen-
values have multiplicity one, then this expansion is unique.) We shall say that the
series F(1) and F'® are (weakly) separable by the decomposition (1.2), if there
exists a collection of indices I C {1,...,d} such that X! = 3~, /X, and
consequently X = 37 X;.

In the case of separability, the contribution of X{1), the first component in the
expansion X = X 4+ X(2)_is naturally to measure by the share of the corres-
ponding eigenvalues: >, ; A; /Zle i

The separation of the series by the decomposition (1.2) can be looked at from
different perspectives. Let us fix the set of indices I = I, and consider the corres-
ponding resultant matrix X, . If this matrix, and therefore X;, = X — Xj,, are
Hankel matrices, then they are necessarily the trajectory matrices of certain time
series that are separable by the expansion (1.2).

Moreover, if the matrices X, and X, are close to some Hankel matrices, then
there exist series F(1) and F(®) such that F = F(!) 4+ F(2) and the trajectory
matrices of these series are close to X;, and X;,, respectively (the problem of
finding these series is discussed below). In this case we shall say that the series
are approximately separable.
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Therefore, the purpose of the grouping step (that is the procedure of arranging
the indices 1, . . ., d into groups) is to find several groups I, . . ., I,;, such that the
matrices Xy, , ..., X7, satisfy (1.3) and are close to certain Hankel matrices.

Let us now look at the grouping step from the viewpoint of multivariate ge-
ometry. Let X = [X; : ... : Xg] be the trajectory matrix of a time series F,
F = F1 4 F) and the series F!) and F'?) are separable by the decompo-
sition (1.2), which corresponds to splitting the index set {1,...,d} into I and
{1,...,d}\ 1.

The expansion (1.3) with m = 2 means that Uy, .. ., Uy, the basis in the trajec-
lory space ot splits into two groups of basis vectors. This corresponds to the
representation of e asa product of two orthogonal subspaces (eigenspaces)
e = Ui € 1) and £5Y = 2(U;,i & I) spanned by U;,i € I, and
l7;,1€ I, respectively.

Separability of two series F'!) and F(?) means that the matrix X;, whose
columns are the projections of the lagged vectors X, ..., X i onto the eigenspace
2L is exactly the trajectory matrix of the series F(1).

Despite the fact that several formal criteria for separability will be introduced,
the whole procedure of splitting the terms into groups (i.e., the grouping step) is
difficult to formalize completely. This procedure is based on the analysis of the
singular vectors U;, V; and the eigenvalues A; in the SVD expansions (1.2) and
(1.7). The principles and methods of identifying the SVD components for their
inclusion into different groups are described in Section 1.6.

Since each matrix component of the SVD is completely determined by the
corresponding eigentriple, we shall talk about grouping of the eigentriples rather
than grouping of the elementary matrices X;.

Note also that the case of two series components (m = 2) considered above is
often more sensibly regarded as the problem of separating out a single component
(for example, as a noise reduction) rather than the problem of separation of two
terms. In this case, we are interested in only one group of indices, namely 1.

1.2.4 Diagonal averaging

If the components of the series are separable and the indices are being split up
accordingly, then all the matrices in the expansion (1.3) are Hankel matrices. We
thus immediately obtain the decomposition (1.5) of the original series: for every

k) (k)

kandn, f,’ is equal to all the entries z;; along the secondary diagonal

{(4,5), such that i + j = n+ 2}

of the matrix X, .

In practice, however, this situation is not realistic. In the general case, no sec-
ondary diagonal consists of equal elements. We thus need a formal procedure of
transforming an arbitrary matrix into a Hankel matrix and therefore into a series.
As such, we shall consider the procedure of diagonal averaging, which defines
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the values of the time series £(¥) as averages of the corresponding diagonals of
the matrices X, .

It is convenient to represent the diagonal averaging step with the help of the
Hankelization operator H.

The operator  acts on an arbitrary (L x K )-matrix Y = (i) in the following
way (assume for definiteness that L < K):fori+j =sand N = L+ K — 1 the
element ¥;; of the matrix HY is

(

s_lzyl,s—l for2<s<L-1,
=1
1
ij = < ZZy:,s—z for L<s<K+1, (1.10)
- 1 i
—_— -1 for K+2<s<K+1L.
i K+L_—s+1 Z Yis—1 Oor K+2<s< K+

I=s—K

For L > K the expression for the elements of the matrix HY is analogous, the
changes are the substitution L < K and the use of the transposition of the original
matrix Y.

Note that the Hankelization is an optimal procedure in the sense that the matrix
HY is closest to Y (with respect to the matrix norm) among all Hankel matrices
of the corresponding size (see Section 6.2). In its turn, the Hankel matrix HY
defines the series uniquely by relating the values in the diagonals to the values in
the series.

By applying the Hankelization procedure to all matrix components of (1.3), we
obtain another expansion:

X=X,+...+X;_, (1.11)

where )~(1, =HXy,.

A sensible grouping leads to the decomposition (1.3) where the resultant ma-
trices X, are almost Hankel ones. This corresponds to approx1mate separability
and implies that the pairwise inner products of different matrices X 1. in (1.11)
are small.

Since all the matrices on the right-hand side of the expansion (1.11) are Hankel
matrices, each matrix uniquely determines the time series F(¥) and we thus obtain
(1.5), the decomposition of the original time series.

The procedure of computing the time series F'(¥) (that is, building up the group
I;. plus diagonal averaging of the matrix X, ) will be called reconstruction of a
series component F’ F(k) by the eigentriples with indices in 1.

1.3 Basic SSA: basic capabilities

In this section we start discussing examples that illustrate basic capabilities of
Basic SSA. Note that terms such as ‘trend’, ‘smoothing’, ‘signal’, and ‘noise’ are
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used here in their informal, common-sense meaning and will be commented on
later.

1.3.1 Trends of different resolution

The example ‘Production’ (crude oil, lease condensate, and natural gas plant lig-
uids production, monthly data from January 1973 to September 1999) shows the
capabilities of SSA in extraction of trends that have different resolutions. Though
the series has a seasonal component (and the corresponding component can be
cxtracted together with the trend component), for the moment we do not pay at-
tention to periodicities.

Taking the window length L = 120 we see that the eigentriples 1-3 correspond
to the trend. Choosing these eigentriples in different combinations we can find
different trend components.
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Figure 1.1 Production: general tendency (rough trend).

Figs. 1.1 and 1.2 demonstrate two alternatives in the trend resolution. The lead-
ing eigentriple gives a general tendency of the series (Fig. 1.1). The three leading
cigentriples describe the behaviour of the data more accurately (Fig. 1.2) and show
not only the general decrease of production, but also its growth from the middle
70s to the middle 80s.

1.3.2 Smoothing

The series “Tree rings’ (tree ring indices, Douglas fir, Snake river basin, U.S., an-
nual, from 1282 to 1950), is described in Hipel and McLeod (1994, Chapter 10)
with the help of a (3,0)-order ARIMA model. If the ARIMA-type model is ac-
cepted, then it is generally meaningless to look for any trend or periodicities.
However, we can smooth the series with the help of Basic SSA.
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Figure 1.2 Production: accurate trend.

Fig. 1.3 shows the initial series and the result of its SSA smoothing, which is
obtained by the leading 7 eigentriples with window length 120. Fig. 1.4 depicts
the residuals.
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Figure 1.3 Tree rings: smoothing result.

1290 1400 1510 1620 1736 1840 1950

Figure 1.4 Tree rings: residuals.

Another example demonstrating SSA as a smoothing technique uses the “White
dwarf’ data, which contains 618 point measurements of the time variation of the
intensity of the white dwarf star PG1159-035 during March 1989. The data is
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discussed in Clemens (1994). The whole series can be described as a smooth
quasi-periodic curve with a noise component.

Using Basic SSA with window length L = 100 and choosing the leading 11
eigentriples for the reconstruction, we obtain the smooth curve of Fig. 1.5 (thick
line). The residuals (Fig. 1.6) seem to have no evident structure (to simplify the
visualization of the results; these figures present only a part of the series).

Further analysis shows that the residual series can be regarded as a Gaussian
white noise, though it does not contain very low frequencies (see the discussion
in Section 1.6.1).

Thus, we can assume that in this case the smoothing procedure leads to noise
reduction and the smooth curve in Fig. 1.5 describes the signal.
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Figure 1.5 White dwarf: smoothed series.
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Figure 1.6 White dwarf: residuals.

1.3.3 Extraction of seasonality components

The ‘Eggs’ data (eggs for a laying hen, monthly, U.S., from January 1938 to De-
cember 1940, Kendall and Stuart, 1976, Chapter 45) has a rather simple structure:
it is the sum of an explicit annual oscillation (though not a harmonic one) and the
trend, which is almost constant.

The choice L = 12 allows us to extract simultaneously all seasonal components
(12, 6, 4, 3, 2.4, and 2-months harmonics) as well as the trend.

The graph in Fig. 1.7 depicts the initial series and its trend (thick line), which
is reconstructed from the first eigentriple.
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Figure 1.7 Eggs: initial series and its trend.
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Figure 1.8 Eggs: four leading seasonal harmonics.

The four leading seasonal harmonic components (briefly, harmonics) of the
series are depicted in Fig. 1.8; they are: 12-months, 6-months (presented in the
same scale), 4-months and 2.4-months harmonics (also in the same scale). The
corresponding pairs of the eigentriples are 2-3; 4-5; 6-7, and 8-9. The two weakest
harmonics, 3-months and 2-months (10-11 and 12 eigentriples, respectively), are
not shown.

1.3.4 Extraction of cycles with small and large periods

The series ‘Births’ (number of daily births, Quebec, Canada, from January 1, 1977
to December 31, 1990) is discussed in Hipel and McLeod (1994). It shows, in
addition to a smooth trend, two cycles of different ranges: the one-year periodicity
and the one-week periodicity.

Both periodicities (as well as the trend) can be simultaneously extracted by
Basic SSA with window length L = 365. Fig. 1.9 shows the one-year cycle of
the series added to the trend (white line) on the background of the ‘Births’ series
from 1981 to 1990. Note that the form of this cycle varies in time, though the
main two peaks (spring and autumn) remain stable. The trend corresponds to the
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Figure 1.9 Births: initial time series and its annual periodicity.

320

1 Jan 1 Feb 1 Mar 1 Apr
Figure 1.10 Births: one-week periodicity.

leading eigentriple, while the one-year periodic component is reconstructed from
the eigentriples 6-9 and 12-19.

Fig. 1.10 demonstrates the one-week cycle on the background of the initial
series for approximately the first three months of 1977. This cycle corresponds to
the eigentriples 2-5 and 10-11.

1.3.5 Extraction of periodicities with varying amplitudes

The capability of SSA in extracting an oscillating signal with a varying amplitude
can be illustrated by the example of the ‘Drunkenness’ series (monthly public
drunkenness intakes, Minneapolis, U.S., from January 1966 to July 1978, Mc-
Cleary and Hay, 1980). The initial series is depicted in Fig. 1.11 (thin line).

Taking L = 60 in Basic SSA and reconstructing the series from the fourth and
fifth eigentriples, we see (bottom line in Fig. 1.11) an almost pure 12-months peri-
odic component. The amplitude of this annual periodic component approximately
equals 120 at the beginning of the observation time. The amplitude then gradually
decreases and almost disappears at the end. The amplitude is reduced by a factor
of about 10, but the trend in the data is diminished only by a factor of three to
four.

1.3.6 Complex trends and periodicities

The ‘Unemployment’ series (West Germany, monthly, from April 1950 to De-
cember 1980, Rao and Gabr, 1984) serves as an example of SSA capability of
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Figure 1.11 Drunkenness: varving amplitudes.

extracting complex trends simultaneously with the amplitude-modulated period-
icities.

The result of extraction is presented in Fig. 1.12 (the initial series and the re-
constructed trend) and in Fig. 1.13 (seasonality).
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Figure 1.12 Unemployment: trend.

The window length was taken as L = 180. Since both the trend and the season-
ality are complex, many eigentriples are required to reconstruct them. The trend
is reconstructed from the eigentriples 1, 2, 5-7, 10, 11, 14, 15, 20, 21, 24, 27, 30,
and 33, while the eigentriples with numbers 3, 4, 8, 9, 12, 13, 16-19, 22, 23, 25,
26, 34, 35,43, 44, 71, and 72 describe the seasonality.
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Figure 1.13 Unemployment: seasonality.

If we were to take a smaller number of eigentriples for the trend, then we would
obtain a less refined description of a smooth, slowly varying component of the
series corresponding to a more general tendency in the series.

1.3.7 Finding structure in short time series

The series ‘War’ (U.S. combat deaths in the Indochina war, monthly, from 1966
to 1971, Janowitz and Schweizer, 1989, Table 10) is chosen to demonstrate the
capabilities of SSA in finding a structure in short time series.
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Figure 1.14 War: trend and annual periodiciry.

Selecting a window length L = 18, we can see (Fig. 1.14) that the two leading
eigentriples perfectly describe the trend of the series (thick line on the background
of the initial data). This trend relates to the overall involvement of U.S. troops in
the war.

The third (bottom) plot of Fig. 1.14 shows the component of the initial series
reconstructed from the eigentriples 3 and 4. There is little doubt that this is an
annual oscillation modulated by the war intensity. This oscillation has its origin
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Figure 1.15 War: quarter periodicity and series approximation.

in the climatic conditions of South-East Asia: the summer season is much more
difficult for any activity than the winter one.

Two other series components, namely that of the quarterly cycle corresponding
to the eigentriples 5 and 6 (depicted at the bottom of Fig. 1.15) and the omitted
4-months cycle, which can be reconstructed from the eigentriples 7 and 8, are
both modulated by the war intensity and both are less clear for interpretation.
Nevertheless, if we add all these effects together (that is, reconstruct the series
component corresponding to the eight leading eigentriples), a perfect agreement
between the result and the initial series becomes apparent: see Fig. 1.15, top two
plots, with the thick line corresponding to the reconstruction.

1.4 Time series and SSA tasks

In the previous section the terms ‘trend’, ‘smoothing’, ‘amplitude modulation’
and ‘noise’ were used without any explanation of their meaning. In this section
we shall provide the related definitions and corresponding discussions. We shall
also describe the major tasks that can be attempted by Basic SSA. Examples of
application of Basic SSA for solving these tasks have been considered in Sec-
tion 1.3.

1.4.1 Models of time series and the periodograms

Formally, SSA can be applied to an arbitrary time series. However, a theoret-
ical study of its properties requires specific considerations for different classes
of series. Moreover, different classes assume different choices of parameters and
expected results. We thus start this section with a description of several classes
of time series, which are natural for the SSA treatment, and use these classes
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to discuss the important concept of (approximate) separability defined earlier in
Section 1.2.3. (For the theoretical aspects of separability see Section 6.1.)

Since the main purpose of SSA is a decomposition of the series into additive
components, we always implicitly assume that this series is a sum of several sim-
pler series. These ‘simple’ series are the objects of the discussion below. Note
also that here we only consider deterministic time series, including those that can
be regarded as 'noise’. Stochastic models of the noise series, in their relation to
the separability problem, are discussed in Sections 6.1.3 and 6.3.

(a) Stationary series

The concept of a deterministic stationary time series is asymptotic (rigorous defi-
nitions and results on the subject are given in Section 6.4, here we stick to a looser
style). Specifically, an infinite series F' = (fo, f1,.- ., fn,- . .) is called stationary
if for all nonnegative integers k, m the following convergence takes place:

N-1

1

N Z fivkSiam ;= Rk — m), (1.12)
=0

where the (even) function Ry (n) is called the covariance function of the series F.
The covariance function can be represented as

Ry(n) = / M (d),
(—1/211/2]

where m; is a measure called the spectral measure of the series F.

The form of the spectral measure determines properties of the corresponding
stationary series in many respects. For example, the convergence (1.12) implies,
loosely speaking, the convergence of the averages

1 N-1
¥ J_X; fivh o= 0 (1.13)

for any k if and only if m does not have an atom at zero.

Thus, the definition of stationarity is related to the ergodicity not only of the
second order, but also of the first order as well. Below, when discussing station-
arity, we shall always assume that (1.13) holds, which is the zero-mean assump-
tion for the original series.

If the measure my is discrete, then, roughly speaking, we can assume that the
stationary series F' has the form

fn~ Z ax cos(2nwin) + Z by, sin(2mwgn), wi € (0,1/2], (1.14)
k k

where a, = a(wy), by = b(wg), b(1/2) = 0 and the sum ", (a2 +b?) converges.
{(Note that a(1/2) # 0 if one of the wy, is exactly 1/2.)





