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C H A P T E R 9
Applications
in Solid Mechanics

9.1 INTRODUCTION
The bar and beam elements discussed in Chapters 2–4 are line elements, as only
a single coordinate axis is required to define the element reference frame, hence,
the stiffness matrices. As shown, these elements can be successfully used to
model truss and frame structures in two and three dimensions. For application
of the finite element method to more general solid structures, the line elements
are of little use, however. Instead, elements are needed that can be used to
model complex geometries subjected to various types of loading and constraint
conditions.

In this chapter, we develop the finite element equations for both two- and
three-dimensional elements for use in stress analysis of linearly elastic solids.
The principle of minimum potential energy is used for the developments, as
that principle is somewhat easier to apply to solid mechanics problems than
Galerkin’s method. It must be emphasized, however, that Galerkin’s method is
the more general procedure and applicable to a wider range of problems.

The constant strain triangle for plane stress is considered first, as the CST is
the simplest element to develop mathematically. The procedure is shown to be
common to other elements as well; a rectangular element formulated for plane
strain is used to illustrate this commonality. Plane quadrilateral, axisymmetric,
and general three-dimensional elements are also examined. An approach for
application of the finite element method to solving torsion problems of noncir-
cular sections is also presented.
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9.2 PLANE STRESS
A commonly occurring situation in solid mechanics, known as plane stress, is
defined by the following assumptions in conjunction with Figure 9.1:

1. The body is small in one coordinate direction (the z direction by
convention) in comparison to the other dimensions; the dimension in the
z direction (hereafter, the thickness) is either uniform or symmetric about
the xy plane; thickness t, if in general, is less than one-tenth of the smallest
dimension in the xy plane, would qualify for “small.”

2. The body is subjected to loading only in the xy plane.
3. The material of the body is linearly elastic, isotropic, and homogeneous.

The last assumption is not required for plane stress but is utilized in this text as
we consider only elastic deformations.

Given a situation that satisfies the plane stress assumptions, the only nonzero
stress components are �x , �y , and �xy . Note that the nominal stresses perpendic-
ular to the xy plane (�z , �xz , �yz) are zero as a result of the plane stress assump-
tions. Therefore, the equilibrium equations (Appendix B) for plane stress are

∂�x

∂x
+ ∂�xy

∂x
= 0

∂�y

∂y
+ ∂�xy

∂y
= 0

(9.1)

where we implicitly assume that �xy = �yx . Utilizing the elastic stress-strain
relations from Appendix B, Equation B.12 with �z = �xz = �yz = 0, the nonzero
stress components can be expressed as (Problem 9.1)

�x = E

1 − �2
(εx + �εy)

�y = E

1 − �2
(εy + �εx )

�xy = E

2(1 + �)
�xy = G�xy

(9.2)

where E is the modulus of elasticity and � is Poisson’s ratio for the material.
In the shear stress-strain relation, the shear modulus G = E/2(1 + �) has been
introduced.

The stress-strain relations given by Equation 9.2 can be conveniently written
in matrix form:






�x

�y

�xy





= E

1 − �2







1 � 0
� 1 0

0 0
1 − �

2












εx

εy

�xy





(9.3)
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Figure 9.1 An illustration of plane stress
conditions.
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or

{�} = [D]{ε} (9.4)

where

{�} =





�x

�y

�xy





(9.5)

is the column matrix of stress components,

[D] = E

1 − �2







1 � 0
� 1 0

0 0
1 − �

2





 (9.6)

is the elastic material property matrix for plane stress, and

{ε} =





εx

εy

�xy





(9.7)

is the column matrix of strain components.
For a state of plane stress, the strain energy per unit volume, Equation 2.43,

becomes

ue = 1

2
(�x εx + �yεy + �xy�xy) (9.8)

or, using the matrix notation,

ue = 1

2
{ε}T {�} = 1

2
{ε}T [D]{ε} (9.9)

Use of {ε}T allows the matrix operation to reproduce the quadratic form of the
strain energy. Note that a quadratic relation in any variable z can be expressed
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Figure 9.2
(a) Nodal displacement notation for a plane
stress element. (b) Nodal forces.
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as {z}T [A]{z}, where [A] is a coefficient matrix. This is the subject of an end-of-
chapter problem.

The total strain energy of a body subjected to plane stress is then

Ue = 1

2

∫∫∫

V

{ε}T [D]{ε} dV (9.10)

where V is total volume of the body and dV = t dx dy . The form of Equation 9.10
will in fact be found to apply in general and is not restricted to the case of plane
stress. In other situations, the strain components and material property matrix
may be defined differently, but the form of the strain energy expression does not
change. We use this result extensively in applying the principle of minimum
potential energy in following developments.

9.2.1 Finite Element Formulation: Constant Strain Triangle

Figure 9.2a depicts a three-node triangular element assumed to represent a sub-
domain of a body subjected to plane stress. Element nodes are numbered as
shown, and nodal displacements in the x-coordinate direction are u1, u2, and u3,
while displacements in the y direction are v1, v2, and v3. (For plane stress, dis-
placement in the z direction is neglected). As noted in the introduction, the dis-
placement field in structural problems is a vector field and must be discretized
accordingly. For the triangular element in plane stress, we write the discretized
displacement field as

u(x , y) = N1(x , y)u1 + N2(x , y)u2 + N3(x , y)u3 = [N ]{u}
v(x , y) = N1(x , y)v1 + N2(x , y)v2 + N3(x , y)v3 = [N ]{v} (9.11)

where N1, N2, and N3 are the interpolation functions as defined in Equation 6.37.
Using the discretized representation of the displacement field, the element strain
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components are then

εx = ∂u

∂x
= ∂ N1

∂x
u1 + ∂ N2

∂x
u2 + ∂ N3

∂x
u3

εy = ∂v

∂y
= ∂ N1

∂y
v1 + ∂ N2

∂y
v2 + ∂ N3

∂y
v3 (9.12)

�xy = ∂u

∂y
+ ∂v

∂x
= ∂ N1

∂y
u1 + ∂ N2

∂y
u2 + ∂ N3

∂y
u3 + ∂ N1

∂x
v1 + ∂ N2

∂x
v2 + ∂ N3

∂x
v3

Defining the element displacement column matrix (vector) as

{
�(e)} =






u1

u2

u3

v1

v2

v3






(9.13)

the element strain matrix can be expressed as

{ε} =












∂N1

∂x

∂N2

∂x

∂N3

∂x
0 0 0

0 0 0
∂N1

∂y

∂N2

∂y

∂N3

∂y
∂N1

∂y

∂N2

∂y

∂N3

∂y

∂N1

∂x

∂N2

∂x

∂N3

∂x

















u1

u2

u3

v1

v2

v3






= [B]
{
�(e)} (9.14)

where [B] is the 3 × 6 matrix of partial derivatives of the interpolation functions
as indicated, also known as the strain-displacement matrix. Referring to Equa-
tion 6.37, we observe that the partial derivatives appearing in Equation 9.14 are
constants, since the interpolation functions are linear in the spatial variables.
Hence, the strain components are constant throughout the volume of the element.
Consequently, the three-node, triangular element for plane stress is known as a
constant strain triangle.

By direct analogy with Equation 9.10, the elastic strain energy of the ele-
ment is

U (e)
e = 1

2

∫∫∫

V (e)

{ε}T [D]{ε} dV (e) = 1

2

∫∫∫

V (e)

{
�(e)
}

T [B]T [D][B]
{
�(e)
}

dV (e)

(9.15)

As shall be seen in subsequent examples, Equation 9.15 is a generally applicable
relation for the elastic strain energy of structural elements. For the constant strain
triangle, we already observed that the strains are constant over the element vol-
ume. Assuming that the elastic properties similarly do not vary, Equation 9.15
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becomes simply

U (e)
e = 1

2

{
�(e)
}T

[B]T [D][B]
{
�(e)
}
∫ ∫∫

V (e)

dV (e)

= 1

2

{
�(e)
}T (

V (e)[B]T [D][B]
){

�(e)
}

(9.16)

where V (e) is the total volume of the element.
Considering the element forces to be as in Figure 9.2b (for this element for-

mulation, we require that forces be applied only at nodes; distributed loads are
considered subsequently), the work done by the applied forces can be expressed
as

W = f1x u1 + f2x u2 + f3x u3 + f1yv1 + f2yv2 + f3yv3 (9.17)

and we note that the subscript notation becomes unwieldy rather quickly in the
case of 2-D stress analysis. To simplify the notation, we use the force notation

{ f } =






f1x

f2x

f3x

f1y

f2y

f3y






(9.18)

so that we can express the work of the external forces (using Equation 9.13) as

W = {�}T { f } (9.19)

Per Equation 2.53, the total potential energy for an element is then

� = Ue − W = V e

2
{�}T [B]T [D][B]{�} − {�}T { f } (9.20)

If the element is a portion of a larger structure that is in equilibrium, then the
element must be in equilibrium. Consequently, the total potential energy of the
element must be minimum (we consider only stable equilibrium), and for this
minimum, we must have mathematically

∂�

∂�i
= 0 i = 1, 6 (9.21)

If the indicated mathematical operations of Equation 9.21 are carried out on
Equation 9.20, the result is the matrix relation

V e[B]T [D][B]{�} = { f } (9.22)

and this matrix equation is of the form

[k]{�} = { f } (9.23)
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where [k] is the element stiffness matrix defined by

[k] = V e[B]T [D][B] (9.24)

and we must keep in mind that we are dealing with only a constant strain trian-
gle at this point.

This theoretical development may not be obvious to the reader. To make the
process more clear, especially the application of Equation 9.21, we examine the
element stiffness matrix in more detail. First, we represent Equation 9.20 as

� = 1

2
{�}T [k]{�} − {�}T { f } (9.25)

and expand the relation formally to obtain the quadratic function

� = 1

2

(
k11�2

1 + 2k12�1�2 + 2k13�1�3 + 2k14�1�4 + · · · + 2k56�5�6 + k66�2
6

)

− f1x �1 − f2x �2 − f3x �3 − f1y�4 − f2y�5 − f3y�6 (9.26)

The quadratic function representation of total potential energy is characteristic of
linearly elastic systems. (Recall the energy expressions for the strain energy of
spring and bar elements of Chapter 2.)

The partial derivatives of Equation 9.21 are then in the form

∂�

∂�1
= k11�1 + k12�2 + k13�3 + k14�4 + k15�5 + k16�6 − f1x = 0

∂�

∂�2
= k21�1 + k22�2 + k23�3 + k24�4 + k25�5 + k26�6 − f2x = 0

(9.27)

for example. Equations 9.27 are the scalar equations representing equilibrium
of nodes 1 and 2 in the x-coordinate direction. The remaining four equations
similarly represent nodal equilibrium conditions in the respective coordinate
directions.

As we are dealing with an elastic element, the stiffness matrix should be
symmetric. Examining Equation 9.27, we should have k12 = k21, for example.
Whether this is the case may not be obvious in consideration of Equation 9.24,
since [D] is a symmetric matrix but [B] is not symmetric. A fundamental prop-
erty of matrix multiplication (Appendix A) is as follows: If [G ] is a real, sym-
metric N × N matrix and [F ] is a real N × M matrix, the matrix triple product
[F ]T [G ][F ] is a real, symmetric M × M matrix. Thus, the stiffness matrix as
given by Equation 9.24 is a symmetric 6 × 6 matrix, since [D] is 3 × 3 and sym-
metric and [B] is a 6 × 3 real matrix.

9.2.2 Stiffness Matrix Evaluation

The stiffness matrix for the constant strain triangle element given by
Equation 9.24 is now evaluated in detail. The interpolation functions per
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Equation 6.37 are

N1(x , y) = 1

2 A
[(x2 y3 − x3 y2) + (y2 − y3)x + (x3 − x2)y]

= 1

2 A
(�1 + �1x + �1 y)

N2(x , y) = 1

2 A
[(x3 y1 − x1 y3) + (y3 − y1)x + (x1 − x3)y]

= 1

2 A
(�2 + �2x + �2 y) (9.28)

N3(x , y) = 1

2 A
[(x1 y2 − x2 y1) + (y1 − y2)x + (x2 − x1)y]

= 1

2 A
(�3 + �2x + �3 y)

so the required partial derivatives are

∂ N1

∂x
= 1

2 A
(y2 − y3) = �1

2 A

∂ N2

∂x
= 1

2 A
(y3 − y1) = �2

2 A

∂ N3

∂x
= 1

2 A
(y1 − y2) = �3

2 A
(9.29)

∂ N1

∂y
= 1

2 A
(x3 − x2) = �1

2 A

∂ N2

∂y
= 1

2 A
(x1 − x3) = �2

2 A

∂ N3

∂y
= 1

2 A
(x2 − x1) = �3

2 A

The [B] (strain-displacement) matrix is then

[B] = 1

2A




y2 − y3 y3 − y1 y1 − y2 0 0 0

0 0 0 x3 − x2 x1 − x3 x2 − x1

x3 − x2 x1 − x3 x2 − x1 y2 − y3 y3 − y1 y1 − y2





= 1

2A




�1 �2 �3 0 0 0
0 0 0 �1 �2 �3

�1 �2 �3 �1 �2 �3



 (9.30)

Noting that, for constant thickness, element volume is tA, substitution into Equa-
tion 9.24 results in

[k] = Et

4A(1 − �2)











�1 0 �1

�2 0 �2

�3 0 �3

0 �1 �1

0 �2 �2

0 �3 �3

















1 � 0
� 1 0

0 0
1 − �

2










�1 �2 �3 0 0 0
0 0 0 �1 �2 �3

�1 �2 �3 �1 �2 �3





(9.31)
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Performing the matrix multiplications of Equation 9.31 gives the element stiff-
ness matrix as

[k] = Et

4A(1 − �2)



















�2
1 + C� 2

1 �1�2 + C�1�2 �1�3 + C�1�3
1 + �

2
�1�1 ��1�2 + C�2�1 ��1�3 + C�3�1

�2
2 + C� 2

2 �2�3 + C�2�3 ��2�1 + C�1�2
1 + �

2
�2�2 ��2�3 + C�3�2

�2
3 + C� 2

3 ��3�1 + C�1�3 ��3�2 + C�2�3
1 + �

2
�3�3

SY M � 2
1 + C�2

1 �1�2 + C�1�2 �1�3 + C�1�3

� 2
2 + C�2

2 �2�3 + C�2�3

� 2
3 + C�2

3



















(9.32)

where C = (1 − �)/2. Equation 9.32 is the explicit representation of the stiff-
ness matrix for a constant strain triangular element in plane stress, presented for
illustrative purposes. In finite element software, such explicit representation is
not often used; instead, the matrix triple product of Equation 9.24 is applied
directly to obtain the stiffness matrix.

9.2.3 Distributed Loads and Body Force

Frequently, the boundary conditions for structural problems involve distributed
loading on some portion of the geometric boundary. Such loadings may arise
from applied pressure (normal stress) or shearing loads. In plane stress, these dis-
tributed loads act on element edges that lie on the global boundary. As a general
example, Figure 9.3a depicts a CST element having normal and tangential loads
pn and pt acting along the edge defined by element nodes 2 and 3. Element thick-
ness is denoted t, and the loads are assumed to be expressed in terms of force per
unit area. We seek to replace the distributed loads with equivalent forces acting
at nodes 2 and 3. In keeping with the minimum potential energy approach, the
concentrated nodal loads are determined such that the mechanical work is the
same as that of the distributed loads.

Figure 9.3 Conversion of distributed loading to work-equivalent
nodal forces.
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First, the distributed loads are converted to equivalent loadings in the global
coordinate directions, as in Figure 9.3b, via

px = pnnx − pt n y

py = pnn y + pt nx
(9.33)

with nx and ny corresponding to the components of the unit outward normal vec-
tor to edge 2-3. Here, we use the notation p for such loadings, as the units are
those of pressure. The mechanical work done by the distributed loads is

Wp = t

3∫

2

px u(x , y) dS + t

3∫

2

pyv(x , y) dS (9.34)

where the integrations are performed along the edge defined by nodes 2 and 3.
Recalling that interpolation function N1(x , y) is zero along edge 2-3, the finite
element representations of the displacements along the edge are

u(x , y) = N2(x , y)u2 + N3(x , y)u3

v(x , y) = N2(x , y)v2 + N3(x , y)v3
(9.35)

The work expression becomes

Wp = t

3∫

2

px [N2(x , y)u2 + N3(x , y)u3] dS

+ t

3∫

2

py[N2(x , y)v2 + N3(x , y)v3] dS (9.36)

and is of the form

Wp = f ( p)
2x u2 + f ( p)

3x u3 + f ( p)
2y v2 + f ( p)

3y v3 (9.37)

Comparison of the last two equations yields the equivalent nodal forces as

f ( p)
2x = t

3∫

2

px N2(x , y) dS

f ( p)
3x = t

3∫

2

px N3(x , y) dS

f ( p)
2y = t

3∫

2

py N2(x , y) dS

f ( p)
3x = t

3∫

2

py N3(x , y) dS

(9.38)
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as depicted in Figure 9.3c. Recalling again for emphasis that N1(x , y) is zero
along the integration path, Equation 9.38 can be expressed in the compact form

{
f ( p)
} =
∫

S

[N ]T

{
px

py

}

t dS (9.39)

with

[N ]T =











N1 0
N2 0
N3 0
0 N1

0 N2

0 N3











(9.40)

{
f ( p)} =






f ( p)
1x

f ( p)
2x

f ( p)
3x

f ( p)
1y

f ( p)
2y

f ( p)
3y






(9.41)

The reader is urged to write out in detail the matrix multiplication indicated in
Equation 9.39 to ensure that the result is correct. Although developed in the con-
text of the three-node triangular element, Equation 9.39 will prove generally
applicable for two-dimensional elements and require only minor modification
for application to three-dimensional problems.

Given the triangular plane stress element shown in Figure 9.4a, determine the nodal
forces equivalent to the distributed loads shown via the method of work equivalence dis-
cussed previously. Element thickness is 0.2 in. and uniform.

■ Solution
Using the nodal coordinates specified, the interpolation functions (with element area
A = 1) are

N1(x , y) = 1

2
[2 − 2x ] = 1 − x

N2(x , y) = 1

2
[2x − y]

N3(x , y) = 1

2
y

EXAMPLE 9.1



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

338 CHAPTER 9 Applications in Solid Mechanics

Figure 9.4
(a) Distributed loads on a triangular element.
(b) Work-equivalent nodal forces.
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Along edge 1-2, y = 0, px = 0, py = −100 psi; hence, Equation 9.39 becomes

{
f ( p)
} =
∫

S











1 − x 0
x 0
0 0
0 1 − x
0 x
0 0











{
0

−100

}

t dS

= 0.2

1∫

0











1 − x 0
x 0
0 0
0 1 − x
0 x
0 0











{
0

−100

}

dx =






0
0
0

−10
−10

0






lb
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For edge 2-3, we have x = 1, px = 150y, py = 0, so that

{
f ( p)
} =
∫

S




















0 0
1

2
(2 − y) 0

y

2
0

0
1

2
(2 − y)

0
y

2
0 0




















{
150y

0

}

t dS

= 0.2

2∫

0





















0 0
1

2
(2 − y) 0

y

2
0

0
1

2
(2 − y)

0
y

2
0 0





















{
150y

0

}

dy =






0
20
40
0
0
0






lb

Combining the results, the nodal force vector arising from the distributed loads for the
element shown is then

{
f ( p)
} =






f1x

f2x

f3x

f1y

f2y

f3y






=






0
20
40

−10
−10

0






lb

as shown in Figure 9.4b.

In addition to distributed edge loads on element boundaries, so-called body
forces may also arise. In general, a body force is a noncontact force acting on a
body on a per unit mass basis. The most commonly encountered body forces
are gravitational attraction (weight), centrifugal force arising from rotational
motion, and magnetic force. Currently, we consider only the two-dimensional

case in which the body force is described by the vector 
{

FB X

FBY

}

in which FB X

and FBY are forces per unit mass acting on the body in the respective coordi-
nate directions. As with distributed loads, the body forces are to be replaced by
equivalent nodal forces. Considering a differential mass � t dx dy undergoing
displacements (u, v) in the coordinate directions, mechanical work done by the
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body forces is

dWb = � FB X ut dx dy + � FBY vt dx dy (9.42)

Considering the volume of interest to be a CST element in which the displace-
ments are expressed in terms of interpolation functions and nodal displace-
ments as

{
u(x , y)
v(x , y)

}

=
[

N1 N2 N3 0 0 0
0 0 0 N1 N2 N3

]






u1

u2

u3

v1

v2

v3






= [N ]

{
u
v

}

(9.43)

the total work done by the body forces acting on the element is expressed in
terms of nodal displacement as

Wb = � t

∫∫

A

FB X ( N1u1 + N2u2 + N3u3) dx dy

+ � t

∫∫

A

FBY ( N1v1 + N2v2 + N3v3) dx dy (9.44)

As desired, Equation 9.44 is in the form

Wb = f (b)
1x u1 + f (b)

2x u2 + f (b)
3x u3 + f (b)

1y v1 + f (b)
2y v2 + f (b)

3y v3 (9.45)

in terms of equivalent concentrated nodal forces. The superscript (b) is used to
indicate nodal-equivalent body force. Comparison of the last two equations
yields the nodal force components as

f (b)
i x = � t

∫

A

Ni FB X dx dy i = 1, 3

f (b)
iy = � t

∫

A

Ni FBY dx dy i = 1, 3

(9.46)

The nodal force components equivalent to the applied body forces can also be
written in the compact matrix form

{
f (b)
} = � t

∫

A

[N ]T

{
FB X

FBY

}

dx dy (9.47)

While developed in the specific context of a constant strain triangular element in
plane stress, Equation 9.47 proves to be a general result for two-dimensional
elements. A quite similar expression holds for three-dimensional elements.
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Determine the nodal force components representing the body force for the element of
Example 9.1, if the body force is gravitational attraction in the y direction, so that

{
FB X

FBY

}

=
{

0
−386.4

}

in./sec2

given the density of the element material is � = 7.3 × 10−4 slug/in.3.

■ Solution
As the x component of the body force is zero, the x components of the nodal force vector
will be, too, so we need not consider those components. The y components are computed
using the second of Equation 9.46:

f (b)
i y = � t

∫

A

Ni FBY dx dy i = 1, 3

From the previous example, the interpolation functions are

N1(x , y) = 1

2
[2 − 2x ] = 1 − x

N2(x , y) = 1

2
[2x − y]

N3(x , y) = 1

2
y

We have, in this instance,

f (b)
1y = � t

∫∫

A

FBY N1 dx dy = � t

∫∫

A

FBY (1 − x ) dx dy

f (b)
2y = � t

∫∫

A

FBY N2 dx dy = � t

∫∫

A

FBY

2
(2x − y) dx dy

f (b)
3y = � t

∫∫

A

FBY N3 dx dy = � t

∫∫

A

FBY

2
y dx dy

The limits of integration must be determined on the basis of the geometry of the area. In
this example, we utilize x as the basic integration variable and compute the y-integration
limits in terms of x. For the element under consideration, as x varies between zero and
one, y is the linear function y = 2x so the integrations become

f (b)
1y = � t FBY

1∫

0

2x∫

0

(1 − x ) dy dx = � t FBY

1∫

0

2x (1 − x ) dx = � tY

(

x 2 − 2x 3

3

)∣
∣
∣
∣

1

0

= � t FBY

3
= −0.0189 lb

EXAMPLE 9.2



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

342 CHAPTER 9 Applications in Solid Mechanics

f (b)
2y = � t FBY

1∫

0

2x∫

0

1

2
(2x − y) dy dx = � t FBY

2

1∫

0

2x 2 dx

= � t FBY

2

(
2

3

)

= � t FBY

3
= −0.0189 lb

f (b)
3y = � t FBY

2

1∫

0

2x∫

0

y dx dy = � t FBY

2

1∫

0

2x 2 dx = � t FBY

3
= −0.0189 lb

showing that the body force is equally distributed to the element nodes.

If we now combine the concepts just developed for the CST element in plane
stress, we have a general element equation that includes directly applied nodal
forces, nodal force equivalents for distributed edge loadings, and nodal equiva-
lents for body forces as

[k]{�} = { f } + { f ( p)
} + { f (b)

}
(9.48)

where the stiffness matrix is given by Equation 9.24 and the load vectors are as
just described. Equation 9.48 is generally applicable to finite elements used in
elastic analysis. As will be learned in studying advanced finite element analysis,
Equation 9.48 can be supplemented by addition of force vectors arising from plas-
tic deformation, thermal gradients or temperature-dependent material properties,
thermal swelling from radiation effects, and the dynamic effects of acceleration.

9.3 PLANE STRAIN: RECTANGULAR ELEMENT
A solid body is said to be in a state of plane strain if it satisfies all the assump-
tions of plane stress theory except that the body’s thickness (length in the z
direction) is large in comparison to the dimension in the xy plane. Mathemati-
cally, plane strain is defined as a state of loading and geometry such that

εz = ∂w

∂ z
= 0 �xz = ∂u

∂ z
+ ∂w

∂x
= 0 �yz = ∂v

∂ z
+ ∂w

∂y
= 0 (9.49)

(See Appendix B for a discussion of the general stress-strain relations.)
Physically, the interpretation is that the body is so long in the z direction that

the normal strain, induced by only the Poisson effect, is so small as to be negli-
gible and, as we assume only xy-plane loadings are applied, shearing strains
are also small and neglected. (One might think of plane strain as in the example
of a hydroelectric dam—a large, long structure subjected to transverse loading
only, not unlike a beam.) Under the prescribed conditions for plane strain, the
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constitutive equations for the nonzero stress components become

�x = E

(1 + �)(1 − 2�)
[(1 − �)εx + �ey]

�y = E

(1 + �)(1 − 2�)
[(1 − �)εy + �εx ]

�xy = E

2(1 + �)
�xy = G�xy

(9.50)

and, while not zero, the normal stress in the z direction is considered negligible
in comparison to the other stress components.

The elastic strain energy for a body of volume V in plane strain is

Ue = 1

2

∫∫∫

V

(�x εx + �yεy + �xy�xy) dV (9.51)

which can be expressed in matrix notation as

Ue = 1

2

∫∫∫

V

[�x �y �xy]

{ εx

εy

�xy

}

dV (9.52)

Combining Equations 9.50 and 9.52 with considerable algebraic manipulation,
the elastic strain energy is found to be

Ue = 1

2

∫∫∫

V

[ εx εy �xy]
E

(1 + �)(1 − 2�)

×







1 − � � 0
� 1 − � 0

0 0
1 − 2�

2












εx

εy

�xy





dV (9.53)

and is similar to the case of plane stress, in that we can express the energy as

Ue = 1

2

∫∫∫

V

{ε}T [D]{ε} dV

with the exception that the elastic property matrix for plane strain is defined as

[D] = E

(1 + �)(1 − 2�)







1 − � � 0
� 1 − � 0

0 0
1 − 2�

2





 (9.54)



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

344 CHAPTER 9 Applications in Solid Mechanics

The nonzero strain components in terms of displacements are

εx = ∂u

∂x

εy = ∂v

∂y

�xy = ∂u

∂y
+ ∂v

∂x

(9.55)

For a four-node rectangular element (for example only), the column matrix
of strain components is expressed as

{ε} =





εx

εy

�xy





=












∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N4

∂x
0 0 0 0

0 0 0 0
∂N1

∂y

∂N2

∂y

∂N3

∂y

∂N4

∂y
∂N1

∂y

∂N2

∂x

∂N3

∂y

∂N4

∂y

∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N4

∂x

















u1

u2

u3

u4

v1

v2

v3

v4






(9.56)

in terms of the interpolation functions and the nodal displacements. As is cus-
tomary, Equation 9.56 is written as

{ε} = [B]{�} (9.57)

with [B] representing the matrix of derivatives of interpolation functions and {�}
is the column matrix of nodal displacements. Hence, total strain energy of an
element is

Ue = 1

2
{�}T

∫∫∫

V

[B]T [D][B] dV {�} = 1

2
{�}T [k]{�} (9.58)

and the element stiffness matrix is again given by
[
k (e)
] =
∫∫∫

V (e)

[B T ][D][B] dV (e) (9.59)

The interpolation functions for the four-node rectangular element per Equa-
tion 6.56 are

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

(9.60)



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

9.3 Plane Strain: Rectangular Element 345

Figure 9.5 A rectangular
element of width 2a and
height 2b.

2

(1, 	1)(	1, 	1)

(	1, 1) (1, 1)

1

4 3

2b

2a

s

r

with the natural coordinates defined as in Figure 9.5. To compute the strain com-
ponents in terms of the natural coordinates, the chain rule is applied to obtain

∂

∂x
= ∂

∂r

∂r

∂x
= 1

a

∂

∂r

∂

∂y
= ∂

∂s

∂s

∂y
= 1

b

∂

∂s

(9.61)

Performing the indicated differentiations, the strain components are found to be

{ε} =





εx

εy

�x y






=












s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a
0 0 0 0

0 0 0 0
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b

s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a

















u1

u2

u3

u4

v1

v2

v3

v4






(9.62)

showing that the normal strain εx varies linearly in the y direction, normal strain
εy varies linearly in the x direction, and shear strain �xy varies linearly in both
coordinate directions (realizing that the natural coordinate r corresponds to the
x axis and natural coordinate s corresponds to the y axis).

From Equation 9.62, the [B] matrix is readily identified as

[B] =











s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a
0 0 0 0

0 0 0 0
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b

s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a











(9.63)
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hence, the element stiffness matrix is given, formally, by

The element stiffness matrix as defined by Equation 9.64 is an 8 × 8 symmetric
matrix, which therefore, contains 36 independent terms. Hence, 36 integrations
are required to obtain the complete stiffness matrix. The integrations are straight-
forward but algebraic tedious. Here, we develop only a single term of the stiff-
ness matrix in detail, then discuss the more-efficient numerical methods used in
finite element software packages.

If we carry out the matrix multiplications just indicated, the first diagonal
term of the stiffness matrix is found (after a bit of algebra) to be

k (e)
11 = Etb

16a(1 + 2�)

1∫

−1

1∫

−1

(s − 1)2 dr ds + Eta

32b(1 + �)

1∫

−1

1∫

−1

(r − 1)2 dr ds

(9.65)
and this term evaluates to

k (e)
11 = Etb

16a(1 + 2�)

2(s − 1)3

3

∣
∣
∣
∣

1

−1

+ Eta

32b(1 + �)

2(r − 1)3

3

∣
∣
∣
∣

1

−1

= Etb

16a(1 + 2�)

(
16

3

)

+ Eta

32b(1 + �)

(
16

3

)

(9.66)

[
k(e)
] =
∫∫∫

V (e)

[BT ] [D] [B] dV (e)

= Etab

(1 + �)(1 − 2�)

1∫

−1

1∫

−1


































s − 1

4a
0

r − 1

4b
1 − s

4a
0 −1 + r

4b
1 + s

4a
0

1 + r

4b

−1 + s

4a
0

1 − r

4b

0
r − 1

4b

s − 1

4a

0 −1 + r

4b

1 − s

4a

0
1 + r

4b

1 + s

4a

0
1 − r

4b
−1 + s

4a








































1 − � � 0
� 1 − � 0

0 0
(1 + �)(1 − 2�)

2(1 + �)







×











s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a
0 0 0 0

0 0 0 0
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b

s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a











dr ds (9.64)
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Note that the integrands are quadratic functions of the natural coordinates. In
fact, analysis of Equation 9.64 reveals that every term of the element stiffness
matrix requires integration of quadratic functions of the natural coordinates.
From the earlier discussion of Gaussian integration (Chapter 6), we know that a
quadratic polynomial can be integrated exactly using only two integration (or
evaluation) points. As here we deal with integration in two dimensions, we must
evaluate the integrand at the Gauss points

ri = ±
√

3

3
sj = ±

√
3

3

with weighting factors Wi = Wj = 1. If we apply the numerical integration
technique to evaluation of k (e)

11 , we obtain, as expected, the result identical to that
given by Equation 9.66. More important, the Gauss integration procedure can be
applied directly to Equation 9.64 to obtain the entire element stiffness matrix as

[
k (e)
] = tab

2∑

i=1

2∑

j=1

Wi Wj [B(ri , sj )]T [D][B(ri , sj )] (9.67)

where the matrix triple product is evaluated four times, in accordance with the
number of integration points required. The summations and matrix multiplica-
tions required in Equation 9.67 are easily programmed and ideally suited to
digital computer implementation.

While written specifically for the four-node rectangular element, Equa-
tion 9.67 is applicable to higher-order elements as well. Recall that, as the polyno-
mial order increases, exact integration via Gaussian quadrature requires increase
in both number and change in value of the integration points and weighting fac-
tors. By providing a “look-up” table of values fashioned after Table 6.1, computer
implementation of Equation 9.67 can be readily adapted to higher-order elements.

We use the triangular element to illustrate plane stress and the rectangular
element to illustrate plane strain. If the developments are followed clearly, it is
apparent that either element can be used for either state of stress. The only dif-
ference is in the stress-strain relations exhibited by the [D] matrix. This situation
is true of any element shape and order (in terms of number of nodes and order of
polynomial interpolation functions). Our use of the examples of triangular and
rectangular elements are not meant to be restrictive in any way.

9.4 ISOPARAMETRIC FORMULATION OF
THE PLANE QUADRILATERAL ELEMENT

While useful for analysis of plane problems in solid mechanics, the triangular
and rectangular elements just discussed exhibit shortcomings. Geometrically, the
triangular element is quite useful in modeling irregular shapes having curved
boundaries. However, since element strains are constant, a large number of small
elements are required to obtain reasonable accuracy, particular in areas of high
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Figure 9.6
(a) A four-node, two-dimensional isoparametric element. (b) The parent element in
natural coordinates.
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stress gradients, such as near geometric discontinuities. In comparison, the rec-
tangular element provides the more-reasonable linear variation of strain compo-
nents but is not amenable to irregular shapes. An element having the desirable
characteristic of strain variation in the element as well as the ability to closely ap-
proximate curves is the four-node quadrilateral element. We now develop the
quadrilateral element using an isoparametric formulation adaptable to either
plane stress or plane strain.

A general quadrilateral element is shown in Figure 9.6a, having element
node numbers and nodal displacements as indicated. The coordinates of node i
are (xi, yi) and refer to a global coordinate system. The element is formed by
mapping the parent element shown in Figure 9.6b, using the procedures devel-
oped in Section 6.8. Recalling that, in the isoparametric approach, the geometric
mapping functions are identical to the interpolation functions used to discretize
the displacements, the geometric mapping is defined by

x =
4∑

i=1

Ni (r, s)xi

y =
4∑

i=1

Ni (r, s)yi

(9.68)

and the interpolation functions are as given in Equation 9.60, so that the dis-
placements are described as

u(x , y) =
4∑

i=1

Ni (r, s)ui

v(x , y) =
4∑

i=1

Ni (r, s)vi

(9.69)
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Now, the mathematical complications arise in computing the strain components
as given by Equation 9.55 and rewritten here as

{ε} =





εx

εy

�xy





=






∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x






=












∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x












{
u
v

}

(9.70)

Using Equation 6.83 with 
 = u , we have

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r

∂u

∂s
= ∂u

∂x

∂x

∂s
+ ∂u

∂y

∂y

∂s

(9.71)

with similar expressions for the partial derivative of the v displacement. Writing
Equation 9.71 in matrix form






∂u

∂r
∂u

∂s






=







∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s












∂u

∂x
∂u

∂y






= [J ]






∂u

∂x
∂u

∂y






(9.72)

and the Jacobian matrix is identified as

[J ] =
[

J11 J12

J21 J22

]

=







∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s





 (9.73)

as in Equation 6.83. Note that, per the geometric mapping of Equation 9.68, the
components of [J ] are known as functions of the partial derivatives of the inter-
polation functions and the nodal coordinates in the x y plane. For example,

J11 = ∂x

∂r
=

4∑

i=1

∂ Ni

∂r
xi = 1

4
[(s − 1)x1 + (1 − s)x2 + (1 + s)x3 − (1 + s)x4]

(9.74)

a first-order polynomial in the natural (mapping) coordinate s. The other terms
are similarly first-order polynomials.

Formally, Equation 9.72 can be solved for the partial derivatives of dis-
placement component u with respect to x and y by multiplying by the inverse of
the Jacobian matrix. As noted in Chapter 6, finding the inverse of the Jacobian
matrix in algebraic form is not an enviable task. Instead, numerical methods are
used, again based on Gaussian quadrature, and the remainder of the derivation
here is toward that end. Rather than invert the Jacobian matrix, Equation 9.72
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can be solved via Cramer’s rule. Application of Cramer’s rule results in

∂u

∂x
=

∣
∣
∣
∣
∣
∣
∣
∣

∂u

∂r
J12

∂u

∂s
J22

∣
∣
∣
∣
∣
∣
∣
∣

|J | = 1
|J | [J22 −J12]






∂u

∂r
∂u

∂s






(9.75)

∂u

∂y
=

∣
∣
∣
∣
∣
∣
∣
∣

J11
∂u

∂r

J21
∂u

∂s

∣
∣
∣
∣
∣
∣
∣
∣

|J | = 1
|J | [−J21 +J11]






∂u

∂r
∂u

∂s






or, in a more compact form,





∂u

∂x
∂u

∂y






= 1
|J |
[

J22 −J12

−J21 J11

]






∂u

∂r
∂u

∂s






(9.76)

The determinant of the Jacobian matrix |J | is commonly called simply the
Jacobian.

Since the interpolation functions are the same for both displacement compo-
nents, an identical procedure results in






∂v

∂x
∂v

∂y






= 1
|J |
[

J22 −J12

−J21 J11

]






∂v

∂r
∂v

∂s






(9.77)

for the partial derivatives of the v displacement component with respect to global
coordinates.

Let us return to the problem of computing the strain components per
Equation 9.70. Utilizing Equations 9.76 and 9.77, the strain components are
expressed as

{ε} =
{ εx

εy

�xy

}

=






∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x






= 1
|J |




J22 −J12 0 0
0 0 −J21 J11

−J21 J11 J22 −J12










∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s






= [G]






∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s






(9.78)
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with what we will call the geometric mapping matrix, defined as

[G] = 1
|J |




J22 −J12 0 0
0 0 −J21 J11

−J21 J11 J22 −J12



 (9.79)

We must expand the column matrix on the extreme right-hand side of Equa-
tion 9.78 in terms of the discretized approximation to the displacements. Via
Equation 9.69, we have





∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s






=















∂N1

∂r

∂N2

∂r

∂N3

∂r

∂N4

∂r
0 0 0 0

∂N1

∂s

∂N2

∂s

∂N3

∂s

∂N4

∂s
0 0 0 0

0 0 0 0
∂N1

∂r

∂N2

∂r

∂N3

∂r

∂N4

∂r

0 0 0 0
∂N1

∂s

∂N2

∂s

∂N3

∂s

∂N4

∂s




















u1

u2

u3

u4

v1

v2

v3

v4






(9.80)

where we reemphasize that the indicated partial derivatives are known functions
of the natural coordinates of the parent element. For shorthand notation, Equa-
tion 9.80 is rewritten as






∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s






= [P] {�} (9.81)

in which [P ] is the matrix of partial derivatives and {�} is the column matrix of
nodal displacement components.

Combining Equations 9.78 and 9.81, we obtain the sought-after relation for
the strain components in terms of nodal displacement components as

{ε} = [G ][P ]{�} (9.82)

and, by analogy with previous developments, matrix [B] = [G ][P ] has been
determined such that

{ε} = [B]{�} (9.83)

and the element stiffness matrix is defined by

[
k (e)
] = t

∫

A

[B]T [D][B] d A (9.84)
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with t representing the constant element thickness, and the integration is per-
formed over the area of the element (in the physical xy plane). In Equation 9.84,
the stiffness may represent a plane stress element or a plane strain element, de-
pending on whether the material property matrix [D] is defined by Equation 9.6
or 9.54, respectively. (Also note that, for plane strain, it is customary to take the
element thickness as unity.)

The integration indicated by Equation 9.84 are in the x-y global space, but
the [B] matrix is defined in terms of the natural coordinates in the parent element
space. Therefore, a bit more analysis is required to obtain a final form. In the
physical space, we have d A = dx dy , but we wish to integrate using the natural
coordinates over their respective ranges of −1 to +1. In the case of the four-node
rectangular element, the conversion is straightforward, as x is related only to r
and y is related only to s, as indicated in Equation 9.61. In the isoparametric case
at hand, the situation is not quite so simple. The derivation is not repeated here,
but it is shown in many calculus texts [1] that

d A = dx dy = |J | dr ds (9.85)

hence, Equation 9.84 becomes

[
k (e)
] = t

∫

A

[B]T [D][B] |J | dr ds = t

1∫

−1

1∫

−1

[B]T [D][B] |J | dr ds (9.86)

As noted, the terms of the [B] matrix are known functions of the natural
coordinates, as is the Jacobian |J |. The terms in the stiffness matrix represented
by Equation 9.86, in fact, are integrals of ratios of polynomials and the integra-
tions are very difficult, usually impossible, to perform exactly. Instead, Gaussian
quadrature is used and the integrations are replaced with sums of the integrand
evaluated at specified Gauss points as defined in Chapter 6. For p integration
points in the variable r and q integration points in the variable s, the stiffness
matrix is approximated by

[
k (e)
] = t

p∑

i=1

q∑

j=1

Wi W J [B(ri , sj )]T [D][B(ri , sj )]|J (ri , sj )|dr ds (9.87)

Since [B] includes the determinant of the Jacobian matrix in the denominator, the
numerical integration does not necessarily result in an exact solution, since the
ratio of polynomials is not necessarily a polynomial. Nevertheless, the Gaussian
procedure is used for this element, as if the integrand is a quadratic in both r and
s, with good results. In such case, we use two Gauss points for each variable, as
is illustrated in the following example.

Evaluate the stiffness matrix for the isoparametric quadrilateral element shown in Fig-
ure 9.7 for plane stress with E = 30(10)6 psi, � = 0.3, t = 1 in. Note that the properties
are those of steel.

EXAMPLE 9.3
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Figure 9.7 Dimensions are in inches.
Axes are shown for orientation only.
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3
(2.25, 1.5)
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2
(2, 0)

y

x

■ Solution
The mapping functions are

x (r, s) = 1

4
[(1 − r )(1 − s)(1) + (1 + r )(1 − s)(2) + (1 + r )(1 + s)(2.25)

+ (1 − r )(1 + s)(1.25)]

y(r, s) = 1

4
[(1 − r )(1 − s)(0) + (1 + r )(1 − s)(0) + (1 + r )(1 + s)(1.5)

+ (1 − r )(1 + s)(1)]

and the terms of the Jacobian matrix are

J11 = ∂ x

∂r
= 1

2

J12 = ∂y

∂r
= 1

4
(0.5 − 0.5s)

J21 = ∂ x

∂s
= 1

2

J22 = ∂y

∂s
= 1

4
(2.5 − 0.5r )

and the determinant is

|J | = J11 J22 − J12 J21 = 1

16
(4 − r + s)

Therefore, the geometric matrix [G ] of Equation 9.79 is known in terms of ratios of
monomials in r and s as

[G] = 4

4 − r + s




2.5 − 0.5r −(0.5 − 0.5s) 0 0

0 0 −2 2
−2 2 2.5 − 0.5r −(0.5 − 0.5s)





For plane stress with the values given, the material property matrix is

[D] = 32.97(10)6




1 0.3 0

0.3 1 0
0 0 0.35



 psi
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Next, we note that, since the matrix of partial derivatives [P] as defined in Equation 9.81
is also composed of monomials in r and s,

[P] = 1

4







s − 1 1 − s 1 + s −(1 + s) 0 0 0 0
r − 1 −(1 + r) 1 + r 1 − r 0 0 0 0

0 0 0 0 s − 1 1 − s 1 + s −(1 + s)
0 0 0 0 r − 1 −(1 + r) 1 + r 1 − r







the stiffness matrix of Equation 9.86 is no more than quadratic in the natural coordinates.
Hence, we select four integration points given by

ri = sj = ±
√

3

3

and weighting factors

Wi = Wj = 1.0

per Table 6.1.
The element stiffness matrix is then given by

[
k (e)
] = t

2∑

i=1

2∑

j=1

Wi Wj [B(ri , sj )]T [D][B(ri , sj )]|J (ri , sj )|

The numerical results for this example are obtained via a computer program written in
MATLAB using the built-in matrix functions of that software package. The stiffness
matrix is calculated to be

[
k(e)
] =
















2305 −1759 −617 72 798 −152 −214 −432
−1759 1957 471 −669 −52 −522 14 560
−617 471 166 −19 −214 41 57 116

72 −669 −19 616 −533 633 143 −244
798 −52 −214 −533 1453 −169 −389 −895

−152 −522 −41 633 −169 993 45 −869
−214 14 57 143 −389 45 104 240
−432 560 116 −244 −895 −869 240 1524
















103 lb/in.

A classic example of plane stress analysis is shown in Figure 9.8a. A uniform thin plate
with a central hole of radius a is subjected to uniaxial stress �0. Use the finite element
method to determine the stress concentration factor given the physical data �0 = 1000 psi,
a = 0.5 in., h = 3 in., w = 6 in., E = 10(10)6 psi, and Poisson’s ratio = 0.3.

■ Solution
The solution for this example is obtained using commercial finite element software with
plane quadrilateral elements. The initial (coarse) element mesh, shown in Figure 9.8b, is
composed of 33 elements. Note that the symmetry conditions have been used to reduce
the model to quarter-size and the corresponding boundary conditions are as shown on the
figure. For this model, the maximum stress (as expected) is calculated to occur at node 1
(at the top of the hole) and has a magnitude of 3101 psi.

EXAMPLE 9.4
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Figure 9.8
(a) A uniformly loaded plate in plane stress with a central hole of
radius a. (b) A coarse finite element mesh using quadrilateral
elements. Node numbers are as shown (31 elements).

To examine the solution convergence, a refined model is shown in Figure 9.8c, using
101 elements. For this model, the maximum stress also occurs at node 1 and has a calcu-
lated magnitude of 3032 psi. Hence, between the two models, the maximum stress values
changed on the order of 2.3 percent. It is interesting to note that the maximum displacement
given by the two models is essentially the same. This observation reinforces the need to
examine the derived variables for convergence, not simply the directly computed variables.

As a final step in examining the convergence, the model shown in Figure 9.8d con-
taining 192 elements is also solved. (The node numbers are eliminated for clarity.) The
maximum computed stress, again at node 1, is 3024 psi, a miniscule change relative to
the previous model, so we conclude that convergence has been attained. (The change in
maximum displacement is essentially nil.) Hence, we conclude that the stress concentra-
tion factor Kt = �max /�0 = 3024/1000 = 3.024 is applicable to the geometry and load-
ing of this example. It is interesting to note that the theoretical (hence, the subscript t)



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

356 CHAPTER 9 Applications in Solid Mechanics

stress concentration factor for this problem as computed by the mathematical theory of
elasticity is exactly 3. The same result is shown in many texts on machine design and
stress analysis [2].

9.5 AXISYMMETRIC STRESS ANALYSIS
The concept of axisymmetry is discussed in Chapter 6 in terms of general inter-
polation functions. Here, we specialize the axisymmetric concept to problems
of elastic stress analysis. To satisfy the conditions for axisymmetric stress, the
problem must be such that

1. The solid body under stress must be a solid of revolution; by convention, the
axis of revolution is the z axis in a cylindrical coordinate system (r, �, z).

2. The loading of the body is symmetric about the z axis.

(c)

(d)

Figure 9.8 (Continued)
(c) Refined mesh of 101 elements. Node numbers are removed for
clarity. (d) An additional refined mesh with 192 elements.
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Figure 9.9
(a) Cross section of an axisymmetric body. (b) Differential element in
an rz plane. (c) Differential element in an r-� plane illustrating tangential
deformation. Dashed lines represent deformed positions.

(a)

r

z

(b)

dz

dr

(c)

u

r

u� dr�u
�r

d�

r d�

(r�u) d�

3. All boundary (constraint) conditions are symmetric about the z axis.
4. Materials properties are also symmetric (automatically satisfied by a linearly

elastic, homogeneous, isotropic material).

If these conditions are satisfied, the displacement field is independent of the
tangential coordinate �, and hence the stress analysis is mathematically two-
dimensional, even though the physical problem is three-dimensional. To develop
the axisymmetric equations, we examine Figure 9.9a, representing a solid of rev-
olution that satisfies the preceding requirements. Figure 9.9b is a differential
element of the body in the rz plane; that is, any section through the body for
which � is constant. We cannot ignore the tangential coordinate completely,
however, since as depicted in Figure 9.9c, there is strain in the tangential direc-
tion (recall the basic definition of hoop stress in thin-walled pressure vessels
from mechanics of materials). Note that, in the radial direction, the element
undergoes displacement, which introduces increase in circumference and associ-
ated circumferential strain.

We denote the radial displacement as u, the tangential (circumferential) dis-
placement as v, and the axial displacement as w. From Figure 9.9c, the radial
strain is

εr = 1

dr

(

u + ∂u

∂r
dr − u

)

= ∂u

∂r
(9.88)

The axial strain is

εz = 1

dz

(

w + ∂w

∂ z
dz − w

)

= ∂w

∂ z
(9.89)

and these relations are as expected, since the rz plane is effectively the same as a
rectangular coordinate system. In the circumferential direction, the differential
element undergoes an expansion defined by considering the original arc length
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versus the deformed arc length. Prior to deformation, the arc length is ds = r d�,
while after deformation, arc length is ds = (r + u) d�. The tangential strain is

ε� = (r + u)(d�) − r d�

r d�
= u

r
(9.90)

and we observe that, even though the problem is independent of the tangential
coordinate, the tangential strain must be considered in the problem formulation.
Note that, if r = 0, the preceding expression for the tangential strain is trouble-
some mathematically, since division by zero is indicated. The situation occurs,
for example, if we examine stresses in a rotating solid body, in which case the
stresses are induced by centrifugal force (normal acceleration). Additional dis-
cussion of this problem is included later when we discuss element formulation.

Additionally, the shear strain components are

�r z = ∂u

∂ z
+ ∂w

∂r

�r� = 0

��z = 0

(9.91)

If we substitute the strain components into the generalized stress-strain relations
of Appendix B (and, in this case, we utilize � = y), we obtain

�r = E

(1 + �)(1 − 2�)
[(1 − �)εr + �(ε� + εz)]

�� = E

(1 + �)(1 − 2�)
[(1 − �)ε� + �(εr + εz)]

�z = E

(1 + �)(1 − 2�)
[(1 − �)εz + �(εr + ε�)]

�r z = E

2(1 + �)
�r z = G�r z

(9.92)

For convenience in finite element development, Equation 9.92 is expressed in
matrix form as





�r

��

�z

�r z





= E

(1 + �)(1 − 2�)









1 − � � � 0
� 1 − � � 0
� � 1 − � 0

0 0 0
1 − 2�

2














εr

ε�

εz

�ez






(9.93)

in which we identify the material property matrix for axisymmetric elasticity as

[D] = E

(1 + �)(1 − 2�)









1 − � � � 0
� 1 − � � 0
� � 1 − � 0

0 0 0
1 − 2�

2









(9.94)
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9.5.1 Finite Element Formulation

Recall from the general discussion of interpolation functions in Chapter 6 that es-
sentially any two-dimensional element can be used to generate an axisymmetric
element. As there is, by definition, no dependence on the � coordinate and no cir-
cumferential displacement, the displacement field for the axisymmetric stress
problem can be expressed as

u(r, z) =
M∑

i=1

Ni (r, z)ui

w(r, z) =
M∑

i=1

Ni (r, z)wi

(9.95)

with ui and wi representing the nodal radial and axial displacements, respectively.
For illustrative purposes, we now assume the case of a three-node triangular
element.

The strain components become

εr = ∂u

∂r
=

3∑

i=1

∂ Ni

∂r
ui

ε� = u

r
=

3∑

i=1

Ni

r
ui

εz = ∂w

∂ z
=

3∑

i=1

∂ Ni

∂ z
wi

�r z = ∂u

∂ z
+ ∂w

∂r
=

3∑

i=1

∂ Ni

∂ z
ui +

3∑

i=1

∂ Ni

∂r
wi

(9.96)

and these are conveniently expressed in the matrix form






εr

ε�

εz

�r z






=
















∂N1

∂r

∂N2

∂r

∂N3

∂r
0 0 0

N1

r

N2

r

N3

r
0 0 0

0 0 0
∂N1

∂z

∂N2

∂z

∂N3

∂z
∂N1

∂z

∂N2

∂z

∂N3

∂z

∂N1

∂r

∂N2

∂r

∂N3

∂r





















u1

u2

u3

w1

w2

w3






(9.97)

In keeping with previous developments, Equation 9.97 is denoted {ε} = [B]{�}
with [B] representing the 4 × 6 matrix involving the interpolation functions.
Thus total strain energy of the elements, as described by Equation 9.15 or 9.58
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and the stiffness matrix, is

[
k (e)
] =
∫∫∫

V (e)

[B]T [D][B] dV (e) (9.98)

While Equation 9.98 is becoming rather familiar, a word or two of caution is
appropriate. Recall in particular that, although the interpolation functions used
here are two dimensional, the axisymmetric element is truly three dimensional
(toroidal). Second, the element is not a constant strain element, owing to the
inverse variation of ε� with radial position, so the integrand in Equation 9.98 is
not constant. Finally, note that [D] is significantly different in comparison to the
counterpart material property matrices for plane stress and plane strain. Taking
the first observation into account and recalling Equation 6.93, the stiffness
matrix is defined by

[
k (e)
] = 2


∫∫

A(e)

[B]T [D][B]r dr dz (9.99)

and is a 6 × 6 symmetric matrix requiring, in theory, evaluation of 21 integrals.
Explicit term-by-term integration is not recommended, owing to the algebraic
complexity. When high accuracy is required, Gauss-type numerical integration
using integration points specifically determined for triangular regions [3] is used.
Another approach is to evaluate matrix [B] at the centroid of the element in an rz
plane. In this case, the matrices in the integrand become constant and the stiff-
ness matrix is approximated by

[
k (e)
] ≈ 2
r̄ A[ B̄]T [D][ B̄] (9.100)

Of course, the accuracy of the approximation improves as element size is
decreased.

Referring to a previous observation, formulation of the [B] matrix is trouble-
some if r = 0 is included in the domain. In this occurrence, three terms of Equa-
tion 9.97 “blow up,” owing to division by zero. If the stiffness matrix is evaluated
using the centroidal approximation of Equation 9.100, the problem is avoided,
since the radial coordinate of the centroid of any element cannot be zero in an
axisymmetric finite element model. Nevertheless, radial and tangential strain and
stress components cannot be evaluated at nodes for which r = 0. Physically, we
know that the radial and tangential displacements at r = 0 in an axisymmetric
problem must be zero. Mathematically, the observation is not accounted for in
the general finite element formulation, which is for an arbitrary domain. One
technique for avoiding the problem is to include a hole, coinciding with the z axis
and having a small, but finite radius [4].

9.5.2 Element Loads

Axisymmetric problems often involve surface forces in the form of internal or
external pressure and body forces arising from rotation of the body (centrifugal
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Figure 9.10
(a) Axisymmetric element. (b) Differential length
of the element edge.

3

1
2

pz

pr

z

r
(a)

pz

prdS

(b)

force) and gravity. In each case, the external influences are reduced to nodal
forces using the work equivalence concept previously introduced.

The triangular axisymmetric element shown in Figure 9.10a is subjected to
pressures pr and pz in the radial and axial directions, respectively. The equivalent
nodal forces are determined by analogy with Equation 9.39, with the notable
exception depicted in Figure 9.10b, showing a differential length dS of the ele-
ment edge in question. As dS is located a radial distance r from the axis of sym-
metry, the area on which the pressure components act is 2
r dS. The nodal
forces are given by

{
f ( p)
} =
{

f ( p)
r

f ( p)
z

}

= 2


∫

S

[N ]T

{
pr

pz

}

r dS (9.101)

and the path of integration S is the element edge. In this expression, [N ]T is as
defined by Equation 9.40.

Calculate the nodal forces corresponding to a uniform radial pressure pr = 10 psi acting
as shown on the axisymmetric element in Figure 9.11.

■ Solution
As we have pressure on one face only and no axial pressure, we immediately observe that

fr 2 = fz1 = fz2 = fz3 = 0

The nonzero terms are

fr 1 = 2


∫

S

N1 pr r dS

fr 3 = 2


∫

S

N3 pr r dS

EXAMPLE 9.5
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Using Equation 9.28 with r, z in place of x, y, the interpolation functions are

N1 = 4 − r − z

N2 = r − 3

N3 = z

and along the integration path (r = 3), we have

N1 = 1 − z

N2 = 0

N3 = z

If the integration path is from node 1 to node 3, then dS = dz and

fr 1 = 2
(10)(3)

1∫

0

z dz = 30
 lb

fr 3 = 2
(10)(3)

1∫

0

(1 − z) dz = 30
 lb

Note that, if the integration path is taken in the opposite sense (i.e., from node 3 to
node 2), then dS = −dz and the same results are obtained.

Body forces acting on axisymmetric elements are accounted for in a manner
similar to that discussed for the plane stress element, while taking into consider-
ation the geometric differences. If body forces (force per unit mass) RB and Z B

act in the radial and axial directions, respectively, the equivalent nodal forces are
calculated as

{
f (B)
} = 2
�

∫

A(e)

[N ]T

{
RB

Z B

}

r dr dz (9.102)

For the three-node triangular element, [N ]T would again be as given in Equa-
tion 9.40. Extension to other element types is similar.

Figure 9.11 Uniform radial pressure.
Dimensions are in inches.

z

r

3 (3, 1)

10 psi

1 (3, 0) 2 (4, 0)
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Generally, radial body force arises from rotation of an axisymmetric body
about the z axis. For constant angular velocity �, the radial body force compo-
nent RB is equal to the magnitude of the normal acceleration component r�2 and
directed in the positive radial direction.

The axisymmetric element of Figure 9.11 is part of a body rotating with angular velocity
10 rad/s about the z axis and subjected to gravity in the negative z direction. Compute the
equivalent nodal forces. Density is 7.3(10)−4 lb-s2/in.4

■ Solution
For the stated conditions, we have

RB = r �2 = 100r in./s2

Z B = −g = −386.4 in./s2

Using the interpolation functions as given in Example 9.5,

fr 1 = 2
�

∫

A

N1 RB r dr dz = 2
� (100)

4∫

3

4−r∫

0

(4 − r − z)r 2 dz dr = 0.84 lb

fr 2 = 2
�

∫

A

N2 RB r dr dz = 2
� (100)

4∫

3

4−r∫

0

(r − 3)r 2 dz dr = 0.98 lb

fr 3 = 2
�

∫

A

N3 RB r dr dz = 2
� (100)

4∫

3

4−r∫

0

zr 2 dz dr = 0.84 lb

fz1 = 2
�

∫

A

N1 Z B r dr dz = −2
� (386.4)

4∫

3

4−r∫

0

(4 − r − z)r dz dr = −1.00 lb

fz2 = 2
�

∫

A

N2 Z B r dr dz = −2
� (386.4)

4∫

3

4−r∫

0

(r − 3)r dz dr = −1.08 lb

fz3 = 2
�

∫

A

N3 Z B r dr dz = −2
� (386.4)

4∫

3

4−r∫

0

zr dz dr = −1.00 lb

The integrations required to obtain the given results are straightforward but algebraically
tedious. Another approach that can be used and is increasingly accurate for decreasing
element size is to evaluate the body forces and the integrand at the centroid of the cross
section of the element area as an approximation. Using this approximation, it can be
shown that

∫

A

Ni (r̄ , z̄)r̄ dz dr = r̄ A

3
i = 1, 3

EXAMPLE 9.6
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so the body forces are allocated equally to each node. For the present example, the result is

fr 1 = fr 2 = fr 3 = 0.88 lb

fz1 = fz2 = fz3 = −1.03 lb

Note that, within the numerical accuracy used here, the total radial force and the total
axial force are the same for the two methods.

9.6 GENERAL THREE-DIMENSIONAL
STRESS ELEMENTS

While the conditions of plane stress, plane strain, and axisymmetry are frequently
encountered, more often than not the geometry of a structure and the applied loads
are such that a general three-dimensional state of stress exists. In the general case,
there are three displacement components u, v, and w in the directions of the x, y,
and z axes, respectively, and six strain components given by (Appendix B)

{ε} =






εx

εy

εz

�xy

�xz

�yz






=






∂u

∂x
∂v

∂y
∂w

∂z
∂u

∂y
+ ∂v

∂x
∂u

∂z
+ ∂w

∂x
∂v

∂z
+ ∂w

∂y






(9.103)

For convenience of presentation, the strain-displacement relations of Equa-
tion 9.103 can be expressed as

{ε} =

























∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y

























{ u
v
w

}

= [L]

{ u
v
w

}

(9.104)

and matrix [L ] is the 6 × 3 matrix of derivative operators.
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The stress-strain relations, Equation B.12, are expressed in matrix form as

{�} =






�x

�y

�z

�x y

�x z

�yz






= E

(1 + �)(1 − 2�)


















1 − � � � 0 0 0
� 1 − � � 0 0 0
� � 1 − � 0 0 0

0 0 0
1 − 2�

2
0 0

0 0 0 0
1 − 2�

2
0

0 0 0 0 0
1 − 2�

2


















{ε}= [D]{ε}

(9.105)

Note that, for the general case, the material property matrix [D] is a 6 × 6 matrix
involving only the elastic modulus and Poisson’s ratio (we continue to restrict
the presentation to linear elasticity). Also note that the displacement components
are continuous functions of the Cartesian coordinates.

9.6.1 Finite Element Formulation

Following the general procedure established in the context of two-dimensional
elements, a three-dimensional elastic stress element having M nodes is formu-
lated by first discretizing the displacement components as

u(x , y, z) =
M∑

i=1

Ni (x , y, z)ui

v(x , y, z) =
M∑

i=1

Ni (x , y, z)vi

w(x , y, z) =
M∑

i=1

Ni (x , y, z)wi

(9.106)

As usual, the Cartesian nodal displacements are ui , vi , and wi and Ni (x , y, z) is
the interpolation function associated with node i. At this point, we make no as-
sumption regarding the element shape or number of nodes. Instead, we simply
note that the interpolation functions may be any of those discussed in Chapter 6
for three-dimensional elements.

Introducing the vector (column matrix) of nodal displacements,

{�} = [ u1 u2 · · · u M v1 v2 · · · vM w1 w2 · · · wM ]T

(9.107)
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the discretized representation of the displacement field can be written in matrix
form as

{ u
v
w

}

=






[N ] [0] [0]
[0] [N ] [0]
[0] [0] [N ]




{�} = [N3]{�} (9.108)

In the last equation, each submatrix [N ] is the 1 × M row matrix of interpolation
functions

[N ] = [N1 N2 · · · NM ] (9.109)

so the matrix we have chosen to denote as [N3] is a 3 × 3M matrix composed of
the interpolation functions and many zero values. (Before proceeding, we
emphasize that the order of nodal displacements in Equation 9.107 is convenient
for purposes of development but not efficient for computational purposes. Much
higher computational efficiency is obtained in the model solution phase if the
displacement vector is defined as {�} = [u1 v1 w1 u2 v2 w2 · · · u M vM wM ]T .)

Recalling Equations 9.10 and 9.19, total potential energy of an element can
be expressed as

� = Ue − W = 1

2

∫∫∫

V

{ε}T [D]{ε} dV − {�}T { f } (9.110)

The element nodal force vector is defined in the column matrix

{ f } = [ f1x f2x · · · fMx f1y f2y · · · fMy f1z f2z · · · fMz]
T

(9.111)

and may include the effects of concentrated forces applied at the nodes, nodal
equivalents to body forces, and nodal equivalents to applied pressure loadings.

Considering the foregoing developments, Equation 9.110 can be expressed
(using Equations 9.104, 9.105, and 9.108), as

� = Ue − W = 1

2

∫∫∫

V

�T [L ]T [N3]T [D][L ][N3]{�} dV − {�}T { f } (9.112)

As the nodal displacement components are independent of the integration over
the volume, Equation 9.112 can be written as

� = Ue − W = 1

2
{�}T

∫∫∫

V

[L ]T [N3]T [D][L ][N3] dV {�} − {�}T { f } (9.113)

which is in the form

� = Ue − W = 1

2
{�}T

∫∫∫

V

[B]T [D][B] dV {�} − {�}T { f } (9.114)
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In Equation 9.114, the strain-displacement matrix is given by

[B] = [L][N3] =

























∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂z

0
∂

∂z

∂

∂y
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and is observed to be a 6 × 3M matrix composed of the first partial derivatives
of the interpolation functions.

Application of the principle of minimum potential energy to Equation 9.114
yields, in analogy with Equation 9.22,

∫∫∫

V

[B]T [D][B] dV {�} = { f } (9.116)

as the system of nodal equilibrium equation for a general three-dimensional stress
element. From Equation 9.116, we identify the element stiffness matrix as

[k] =
∫∫∫

V

[B]T [D][B] dV (9.117)

and the element stiffness matrix so defined is a 3M × 3M symmetric matrix,
as expected for a linear elastic element. The integrations indicated in Equa-
tion 9.117 depend on the specific element type in question. For a four-node,
linear tetrahedral element (Section 6.7), all the partial derivatives of the volume
coordinates are constants, so the strains are constant—this is the 3-D analogy to
a constant strain triangle in two dimensions. In the linear tetrahedral element, the
terms of the [B] matrix are constant and the integrations reduce to a constant
multiple of element volume.

If the element to be developed is an eight-node brick element, the interpolation
functions, Equation 6.69, are such that strains vary linearly and the integrands
in Equation 9.117 are not constant. The integrands are polynomials in the spatial
variables, however, and therefore amenable to exact integration by Gaussian quad-
rature in three dimensions. Similarly, for higher-order elements, the integrations
required to formulate the stiffness matrix are performed numerically.

The eight-node brick element can be transformed into a generally shaped
parallelopiped element using the isoparametric procedure discussed in Sec-
tion 6.8. If the eight-node element is used as the parent element, the resulting
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isoparametric element has planar faces and is analogous to the two-dimensional
quadrilateral element. If the parent element is of higher-order interpolation func-
tions, an element with general (curved) surfaces results.

Regardless of the specific element type or types used in a three-dimensional
finite element analysis, the procedure for assembling the global equilibrium equa-
tions is the same as discussed several times, so we do not belabor the point here.
As in previous developments, the assembled global equations are of the form

[K ]{�} = {F } (9.118)

with [K ] representing the assembled global stiffness matrix, {�} representing the
column matrix of global displacements, and {F } representing the column matrix
of applied nodal forces. The nodal forces may include directly applied external
forces at nodes, the work-equivalent nodal forces corresponding to body forces
and forces arising from applied pressure on element faces.

9.7 STRAIN AND STRESS COMPUTATION
Using the stiffness method espoused in this text, the solution phase of a finite
element analysis results in the computation of unknown nodal displacements as
well as reaction forces at constrained nodes. Computation of strain components,
then stress components, is a secondary (postprocessing) phase of the analysis.
Once the displacements are known, the strain components (at each node in the
model) are readily computed using Equation 9.104, which, given the discretiza-
tion in the finite element context, becomes

{ε} = [L]

{ u
v
w

}

= [L][N3]{�} = [B]{�} (9.119)

It must be emphasized that Equation 9.119 represents the calculation of strain
components for an individual element and must be carried out for every element
in the finite element model. However, the computation is straightforward, since
the [B] matrix has been computed for each element to determine the element
stiffness matrix, hence the element contributions to the global stiffness matrix.

Similarly, element stress components are computed as

{�} = [D][B]{�} (9.120)

and the material property matrix [D] depends on the state of stress, as previously
discussed. Equations 9.119 and 9.120 are general in the sense that the equations
are valid for any state of stress if the strain-displacement matrix [B] and the
material property matrix [D] are properly defined for a particular state of stress. (In
this context, recall that we consider only linearly elastic deformation in this text.)

The element strain and stress components, as computed, are expressed in
the element coordinate system. In general, for the elements commonly used in
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stress analysis, the coordinate system for each element is the same as the global
coordinate system. It is a fact of human nature, especially of engineers, that we
select the simplest frame in which to describe a particular occurrence or event.
This is a way of saying that we tend to choose a coordinate system for conve-
nience and that convenience is most often related to the geometry of the problem
at hand. The selected coordinate system seldom, if ever, corresponds to maxi-
mum loading conditions. Specifically, if we consider the element stress calcula-
tion represented by Equation 9.120, the stress components are referred, and
calculated with reference, to a specified Cartesian coordinate system. To deter-
mine the critical loading on any model, we must apply one of the so-called fail-
ure theories. As we limit the discussion to linearly elastic behavior, the “failure”
in our context is yielding of the material. There are several commonly accepted
failure theories for yielding in a general state of stress. The two most commonly
applied are the maximum shear stress theory and the distortion energy theory. We
discuss each of these briefly. In a general, three-dimensional state of stress, the
principal stresses �1, �2, and �3 are given by the roots of the cubic equation rep-
resented by the determinant [2]

∣
∣
∣
∣
∣
∣

�x − � �xy �xz

�xy �y − � �yz

�xz �yz �z − �

∣
∣
∣
∣
∣
∣
= 0 (9.121)

Customarily, the principal stresses are ordered so that �1 > �2 > �3. Via the
usual convention, a positive normal stress corresponds to tension, while a nega-
tive normal stress is compressive. So, while �3 is algebraically the smallest of the
three principal stresses, it may represent a compressive stress having signifi-
cantly large magnitude. Also recall that the principal stresses occur on mutually
orthogonal planes (the principal planes) and the shear stress components on
those planes are zero.

Having computed the principal stress components, the maximum shear
stress is

�max = largest of

( |�1 − �2|
2

,
|�1 − �3|

2
,
|�2 − �3|

2

)

(9.122)

The three shear stress components in Equation 9.122 are known to occur on
planes oriented 45◦ from the principal planes.

The maximum shear stress theory (MSST) holds that failure (yielding) in a
general state of stress occurs when the maximum shear stress as given by Equa-
tion 9.122 equals or exceeds the maximum shear stress occurring in a uniaxial
tension test at yielding. It is quite easy to show that the maximum shear stress
in a tensile test at yielding has value equal to one-half the tensile yield strength
of the material. Hence, the failure value in the MSST is �max = Sy/2 = Sys . In
this notation, Sy is tensile yield strength and Sys represents yield strength in shear.

The distortion energy theory (DET) is based on the strain energy stored in a
material under a given state of stress. The theory holds that a uniform tensile or
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compressive state of stress (also known as hydrostatic stress) does not cause dis-
tortion and, hence, does not contribute to yielding. If the principal stresses have
been computed, total elastic strain energy is given by

Ue = 1

2

∫∫∫

V

(�1ε1 + �2ε2 + �3ε3) dV

= 1

2E

[
�2

1 + �2
2 + �2

3 − 2�(�1�2 + �1�3 + �2�3)
]
V (9.123)

To arrive at distortion energy, the average (hydrostatic) stress is defined as

�av = �1 + �2 + �3

3
(9.124)

and the corresponding strain energy is

Uhyd = 3�2
av

2E
(1 − 2�)V (9.125)

The distortion energy is then defined as

Ud = Ue − Uhyd (9.126)

After a considerable amount of algebraic manipulation, the distortion energy in
terms of the principal stress components is found to be given by

Ud = 1 + �

3E

[
(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2

2

]1/2

V (9.127)

The DET states that failure (yielding) occurs in a general state of stress when the
distortion energy per unit volume equals or exceeds the distortion energy per unit
volume occurring in a uniaxial tension test at yielding. It is relatively easy to
show (see Problem 9.20) that, at yielding in a tensile test, the distortion energy is
given by

Ud = 1 + �

3E
S2

y V (9.128)

and, as before, we use Sy to denote the tensile yield strength. Hence, Equa-
tions 9.127 and 9.128 give the failure (yielding) criterion for the DET as

[
(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2

2

]1/2

≥ Sy (9.129)

The DET as described in Equation 9.129 leads to the concept of an equivalent
stress (known historically as the Von Mises stress) defined as

�e =
[

(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2

2

]1/2

(9.130)
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Table 9.1 Stress Values (psi) Computed at Node 107 of Example 9.4

�x �y �xy

Element 1 2049.3 187.36 118.4
Element 2 2149.4 315.59 91.89
Element 12 1987.3 322.72 204.13
Element 99 1853.8 186.88 378.36
Average 2009.8 253.14 198.19

and failure (yielding) can then be equivalently defined as

�e ≥ Sy (9.131)

Even though we do not present the algebraic details here, the DET can be shown
to be equivalent to another elastic failure theory, known as the octahedral shear
stress theory (OSST). For all practical purposes, the OSST holds that yielding
occurs when the maximum shear stress exceeds 0.577Sy. In comparison to the
MSST, the OSST gives the material more “credit” for strength in shear.

Why do we go into detail on these failure theories in the context of finite el-
ement analysis? As noted previously, strain and stress components are calculated
in the specified coordinate system. The coordinate system seldom is such that
maximum stress conditions are automatically obtained. Here is the point: Essen-
tially every finite element software package not only computes strain and stress
components in the global and element coordinate systems but also principal
stresses and the equivalent (Von Mises) stress for every element. In deciding
whether a design is acceptable (and this is why we use FEA, isn’t it?), we must
examine the propensity to failure. The examination of stress data is the responsi-
bility of the user of FEA software. The software does not produce results that
indicate failure unless the analyst carefully considers the data in terms of specific
failure criteria.

Among the stress- and strain-related items generally available as a result of
solution are the computed stresses (in the specified coordinate system), the prin-
cipal stresses, the equivalent stress, the principal strains, and strain energy. With
the exception of strain energy, the stress data are available on either a nodal or
element basis. The distinction is significant, and the analyst must be acutely
aware of the distinction. Since strain components (therefore, stress components)
are not in general continuous across element boundaries, nodal stresses are com-
puted as average values based on all elements connected to a specific node. On
the other hand, element stresses represent values computed at the element cen-
troid. Hence, element stress data are more accurate and should be used in mak-
ing engineering judgments. To illustrate, we present some of the stress data
obtained in the solution of Example 9.4 based on two-dimensional, four-node
quadrilateral elements. In the model, node 107 (selected randomly) is common to
four elements. Table 9.1 lists the stresses computed at this node in terms of the
four connected elements. The values are obtained by computing the nodal
stresses for each of the four elements independently, then extracting the values
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for the common node. The last row of the table lists the average values of the
three stress components at the common node. Clearly, the nodal stresses are not
continuous from element to element at the common node. As previously dis-
cussed, the magnitudes of the discontinuities should decrease as the element
mesh is refined.

In contrast, the element stress components for the same four elements are
shown in Table 9.2. The values listed in the table are computed at the element
centroid and include the equivalent (Von Mises) stress as defined previously.
While not included in the table, the principal stress components are also avail-
able from the solution. In general, the element stresses should be used in results
evaluation, especially in terms of application of failure theories.

9.8 PRACTICAL CONSIDERATIONS
Probably the most critical step in application of the finite element method is the
choice of element type for a given problem. The solid elements discussed in this
chapter are among the simplest elements available for use in stress analysis.
Many more element types are available to the finite element analyst. (One com-
mercial software system has no fewer than 141 element types.) The differences
in elements for stress analysis fall into three categories: (1) number of nodes,
hence, polynomial order of interpolation functions; (2) type of material behavior
(elastic, plastic, thermal stress, for example); and (3) loading and geometry of the
structure to be modeled (plane stress, plane strain, axisymmetric, general three
dimensional, bending, torsion).

As an example, consider Figure 9.12, which shows a flat plate supported at
the corners and loaded by a pressure distribution p(x, y) acting in the negative z
direction. The primary mode of deformation of the plate is bending in the z direc-
tion. To adequately describe the behavior, a finite element used to model the plate
must be such that continuity of slope in both xz and yz planes is ensured. There-
fore, a three-dimensional solid element as described in Section 9.8 would not be
appropriate as only the displacement components are included as nodal variables.
Instead, an element that includes partial derivatives representing the slopes must
be included as nodal variables. Plate elements have been developed on the basis
of the theory of thin plates (usually only covered in graduate programs) in which

Table 9.2 Element Stress Components (psi) for Four Elements Sharing a Common Node
in Example 9.4

�x �y �xy �e

Element 1 2553.5 209.71 179.87 2475.8
Element 2 1922.7 351.69 43.55 1774.8
Element 12 1827.5 264.42 154.44 1731.5
Element 99 2189.0 249.14 480.57 2236.4

p(x,y)

x y

z

Figure 9.12
Example of a thin
plate subjected to
bending.
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Figure 9.13
(a) A general, noncircular section in torsion. (b) Motion of a point from P to P′ as a
result of cross-section rotation. (c) A differential element at the surface of a torsion
member. (d) A differential element showing the contribution of shear stress to torque. 
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the bending deflection is governed by a fourth-order partial differential equation.
The simplest such element is a four-node element using cubic interpolation func-
tions and having 4 degrees of freedom (displacement, two slopes, and a mixed
second derivative) at each node [4]. A similar situation exists with shell (thin
curved plate) structures. Specialized elements are required (and available) for
structural analysis of shell structures. The major point here is that a breadth of
knowledge and experience is required for a finite element analyst to become truly
proficient at selecting the correct element type(s) for a finite element model and,
subsequently interpreting the results of the analysis.

Once the element type has been selected, the task becomes that of defining
the model geometry as a mesh of finite elements. In its most rudimentary form,
this task involves defining the coordinate location of every node in the model
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(note that, by default, the nodes define the geometry) followed by definition of all
elements in terms of nodes. Many years ago, in the early development of the
finite element method, the tasks of node and element definition were labor
intensive, as the definitions required use of the specific language statements of a
particular finite element software system. The tasks were laborious, to say the
least, and prone to error. With currently technology, especially graphical user
interfaces and portability of computer-aided design (CAD) databases, these
tasks have been greatly simplified. It is now possible, with many FEA programs,
to “import” the geometry of a component, structure, or assembly directly from a
CAD system, so that geometry does not need to be defined. The finite element
software can then automatically create a mesh (automeshing) of finite elements
to represent the geometry. The advantages of this capability include (1) the finite
element analyst need not redefine the geometry; consequently, (2) the designer’s
intent is not changed inadvertently; and (3) the finite element analyst is relieved
of the burden of specifying the details of the node and element definitions. The
major disadvantage is that the analyst is not in direct control of the meshing op-
eration.

The word direct is emphasized. In automeshing, the software user has some
control over the meshing process. There are two general types of automeshing
software, generally referred to as free meshing and mapped meshing. In free
meshing, the user specifies a general, qualitative mesh description, ranging from
coarse to fine, with 10 or more gradations between the extremes. The software
then generates the mesh accordingly. In mapped meshing, the user specifies quan-
titative information regarding node spacing, hence, element size, and the soft-
ware uses the prescribed information to generate nodes and elements. In either
method, the software user has some degree of control over the element mesh.

A very important aspect of meshing a model with elements is to ensure that,
in regions of geometric discontinuity, a finer mesh (smaller elements) is defined
in the region. This is true in all finite element analyses (structural, thermal, and
fluid), because it is known that gradients are higher in such areas and finer
meshes are required to adequately describe the physical behavior. In mapped
meshing, this is defined by the software user. Fortunately, in free meshing, this
aspect is accounted for in the software. As an example, refer back to Exam-
ple 9.4, in which we examined the stress concentration factor for a hole in a thin
plate subjected to tension. The solution was modeled using the free mesh feature
of a finite element software system. Figure 9.8b is a coarse mesh as generated by
the software. Geometry is defined by four lines and a quarter-circular arc; these,
in turn, define a single area of interest. Having specified the element type (in this
case a plane stress, elastic, quadrilateral), the area meshing feature is used to gen-
erate the elements as shown. It is important to note the relatively fine mesh in the
vicinity of the arc representing the hole. This is generated by the software auto-
matically in recognition of the geometry. The mesh-refined models of Fig-
ure 9.8c and 9.8d are also generated by the free meshing routine. From each of
these cases, we see that, not only does the number of elements increase, but the
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relative size of the elements in the vicinity of the hole is maintained relative to
elements far removed from the discontinuity.

The automeshing capabilities of finite software as briefly described here are
extremely important in reducing the burden of defining a finite element model of
any geometric situation and should be used to the maximum extent. However,
recall that the results of a finite element analysis must be judged by human
knowledge of engineering principles. Automated model definition is a nicety of
modern finite element software; automated analysis of results is not.

Analysis of results is the postprocessing phase of finite element analysis.
Practical models contain hundreds, if not thousands, of elements, and the com-
puted displacements, strains, stresses, and so forth are available for every ele-
ment. Poring through the data can be a seemingly endless task. Fortunately, finite
element software has, as part of the postprocessing phase, routines for sorting
the results data in many ways. Of particular importance in stress analysis, the
data can be sorted in ascending or descending order of essentially any stress
component chosen by the user. Hence, one can readily determine the maximum
equivalent stress, for example, and determine the location of that stress by the
associated element location. In addition, with modern computer technology, it is
possible to produce color-coded stress contour plots of an entire model, to visu-
ally observe the stress distribution, the deformed shape, the strain energy distri-
bution, and many other criteria.

9.9 TORSION
Torsion (twisting) of structural members having circular cross sections is a com-
mon problem studied in elementary mechanics of materials. (Recall that earlier
we developed a finite element for such cases.) A major assumption (and the
assumption is quite valid for elastic deformation) in torsion of circular members
is that plane sections remain plane after twisting. In the case of torsion of a non-
circular cross section, this assumption is not valid and the problem is hence more
complicated. A general structural member subjected to torsion is shown in Fig-
ure 9.13a. The member is subjected to torque T acting about the x axis, and it is
assumed that the cross section is uniform along the length. An arbitrary point
located on a cross section at position x is shown in Figure 9.13b. If the cross sec-
tion twists through angle �, the point moves through arc ds and the displacement
components in the y and z directions are

v = −z�

w = y�
(9.132)

respectively. Since the angle of twist varies along the length of the member, we
conclude that the displacement components of Equation 9.132 are described by

v = v(x , z) w = w(x , y) (9.133)
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Owing to the noncircular cross section, plane sections do not remain plane;
instead, there is warping, hence displacement, in the x direction described by

u = u(y, z) (9.134)

Applying the definitions of the normal strain components to Equation 9.133
and 9.134, we find

εx = ∂u

∂x
= 0

εy = ∂v

∂y
= 0

εz = ∂w

∂ z
= 0

(9.135)

and it follows that the normal stress components are �x = �y = �z = 0. To com-
pute the shear strain components, we introduce the angle of twist per unit length

 such that the rotation of any cross section can be expressed as � = 
x . The dis-
placement components are then expressed as

u = u(y, z) v = −
x z w = 
x y (9.136)

and the shear strain components are

�xy = ∂u

∂y
+ ∂v

∂x
= ∂u

∂y
− 
z

�xz = ∂u

∂ z
+ ∂w

∂x
= ∂u

∂ z
+ 
y

�yz = ∂v

∂ z
+ ∂w

∂y
= 0

(9.137)

It follows from the stress-strain relations that the only nonzero stress components
are �xy and �xz and the only equilibrium equation (Appendix B) not identically
satisfied becomes

∂�xy

∂y
+ ∂�xz

∂ z
= 0 (9.138)

We now hypothesize the existence of a scalar function �(y, z) such that

�xy = ∂�

∂ z
�xz = − ∂�

∂y
(9.139)

In the context of the torsion problem, scalar function � is known as Prandtl’s
stress function and is generally analogous to the stream function and potential
function introduced in Chapter 8 for ideal fluid flow. If the relations of Equa-
tion 9.139 are substituted into Equation 9.138, we find that the equilibrium con-
dition is automatically satisfied. To discover the governing equation for the stress
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function, we compute the stress components as

�xy = G�xy = G

(
∂u

∂y
− 
z

)

�xz = G�yz = G

(
∂u

∂ z
+ 
y

) (9.140)

and note that

∂�xy

∂ z
= G

(
∂2u

∂y ∂ z
− 


)

∂�xz

∂y
= G

(
∂2u

∂y ∂ z
+ 


) (9.141)

Combining the last two equations results in

∂�xy

∂ z
− ∂�xz

∂y
= ∂2�

∂y2
+ ∂2�

∂ z2
= −2G
 (9.142)

as the governing equation for Prandtl’s stress function. As with the fluid formu-
lations of Chapter 8, note the analogy of Equation 9.142 with the case of heat
conduction. Here the term 2G
 is analogous to internal heat generation Q.

9.9.1 Boundary Condition

At the outside surface of the torsion member, no stress acts normal to the surface,
so the resultant of the shear stress components must be tangent to the surface.
This is illustrated in Figure 9.13c showing a differential element dS of the surface
(with the positive sense defined by the right-hand rule). For the normal stress to
be zero, we must have

�xy sin � − �xz cos � = 0 (9.143)

or

�xy
dz

ds
− �xz

dy

ds
= 0 (9.144)

Substituting the stress function relations, we obtain

∂�

dz

dz

ds
+ d�

dy

dy

ds
= d�

ds
= 0 (9.145)

which shows that the value of the stress function is constant on the surface. The
value is arbitrary and most often taken to be zero.

9.9.2 Torque

The stress function formulation of the torsion problem as given previously does
not explicitly include the applied torque. To obtain an expression relating the
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applied torque and the stress function, we must consider the moment equilibrium
condition. Referring to the differential element of a cross section shown in Fig-
ure 9.13d, the differential torque corresponding to the shear stresses acting on the
element is

dT = (y�xz − z�xy) d A (9.146)

and the total torque is computed as

T =
∫∫

A

(y�xz − z�xy) d A = −
∫∫

A

(

y
∂�

∂y
+ z

∂�

dz

)

dy dz = 2

∫∫

A

� d A

(9.147)

The final result in the last equation is obtained by integrating by parts and noting
the condition � = 0 on the surface.

9.9.3 Finite Element Formulation

Since the governing equation for the stress function is analogous to the heat con-
duction equation, it is not necessary to repeat the details of element formulation.
Instead, we reiterate the analogies and point out one very distinct difference in
how a finite element analysis of the torsion problem is conducted when the stress
function is used. First, note that the stress function is discretized as

�{y, z} =
M∑

i

Ni (y, z)� i (9.148)

so that the finite element computations result in nodal values analogous to nodal
temperatures (with the conductivity values set to unity). Second, the torsion term
2G
 is analogous to internal heat generation Q. However, the angle of twist per
unit length 
 is actually the unknown we wish to compute in the first place.
Preferably, in such a problem, we specify the geometry, material properties, and
applied torque, then compute the angle of twist per unit length as well as stress
values. However, the formulation here is such that we must specify a value for
angle of twist per unit length, compute the nodal values of the stress function,
then obtain the torque by summing the contributions of all elements to Equa-
tion 9.147. Since the governing equation is linear, the angle of twist per unit
length and the computed torque can be scaled in ratio as required. The procedure
is illustrated in the following example.

Figure 9.14a shows a shaft having a square cross section with 50-mm sides. The mate-
rial has shear modulus 80 Gpa. Shaft length is 1 m. The shaft is fixed at one end and sub-
jected to torque T at the other end. Determine the total angle of twist if the applied torque
is 100 N-m.

EXAMPLE 9.7
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■ Solution
Observing the symmetry conditions, we model one-fourth of the cross section using
three-node linear triangular elements, as in Figure 9.14b. For simplicity of illustration, we
use only two elements and note that, at nodes 2, 3, and 4, the value of the stress function
is specified as zero, since these nodes are on the surface. Also note that the planes of sym-
metry are such that the partial derivatives of the stress function across those planes are
zero. These conditions correspond to zero normal heat flux (perfect insulation) in a con-
duction problem.

The element stiffness matrices are given by

[
k (e)
] =
∫∫

A

([
∂ N

∂y

]T [
∂ N

∂y

]

+
[

∂ N

∂ z

]T [
∂ N

∂ z

])

d A

and element nodal forces are
{

f (e)
} =
∫∫

A

2G
 [N ]T d A

(Note the use of y, z coordinates in accord with the coordinate system used in the preced-
ing developments.)

These relations are obtained by analogy with Equation 7.35 for heat conduction. The
interpolation functions are as defined in Equation 9.28.

Element 1

N1 = 1

2 A
(625 − 25y)

∂ N1

∂y
= − 25

2 A

∂ N1

∂yz
= 0

N2 = 1

2 A
(25y − 25z)

∂ N2

∂y
= 25

2 A

∂ N2

∂ z
= − 25

2 A

N3 = 1

2 A
(25z)

∂ N3

∂y
= 0

∂ N3

∂ z
= 25

2 A

Since the partial derivatives are all constant, the stiffness matrix is

[
k(1)
] = 1

4A






−25
25
0





[ −25 25 0 ] + 1

4A






0
−25
25





[ 0 −25 25 ]

Figure 9.14 Finite element model of Example 9.7.

25 mm

(a)

25 mm

(b)

4 3

1 2

2

1
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or

[
k(1)
] = 1

1250




625 −625 0

−625 625 0
0 0 0



+ 1

1250




0 0 0
0 625 −625
0 −625 625





=



0.5 −0.5 0

−0.5 1 −0.5
0 −0.5 0.5





The element nodal forces are readily shown to be given by

{
f (1)
} = 2G
A

3






1
1
1






which we leave in this general form for the time being.

Element 2

N1 = 1

2A
(625 − 25z)

∂N1

∂y
= 0

∂N1

∂z
= − 25

2A

N2 = 1

2A
(25y)

∂N2

∂y
= 25

2A

∂N2

∂z
= 0

N3 = 1

2A
(25z − 25y)

∂N3

∂y
= − 25

2A

∂N3

∂z
= 25

2A

[
k(2)
] = 1

4A






0
25

−25





[ 0 25 −25 ] + 1

4A






−25
0
25





[ −25 0 25 ]

[k(2) ] = 1

1250




0 0 0
0 625 −625
0 −625 625



+ 1

1250




625 0 −625
0 0 0

−625 0 625





=



0.5 0 −0.5
0 0.5 −0.5

−0.5 −0.5 1.0





For element 2, the nodal forces are also given by

{
f (2)
} = 2G
A

3






1
1
1






Noting the element to global nodal correspondences, the assembled system equa-
tions are







1 −0.5 0 −0.5
−0.5 1 −0.5 0

0 −0.5 1 −0.5
−0.5 0 −0.5 1












�1

�2

�3

�4






= 2G
A

3






2
1
2
1





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Since nodes 2, 3, and 4 are on the outside surface, we set � 2 = � 3 = � 4 = 0 to obtain the
solution

� 1 = 4G
A

3

We still have not addressed the problem that the angle of twist per unit length is unknown
and continue to ignore that problem temporarily, since for this very simple two-element
model, we can continue with the hand solution. The torque is given by Equation 9.149 as

T = 2

∫∫

A

� d A

but the integration is over the entire cross section. Hence, we must sum the contribution
from each element and, in this case, since we applied the symmetry conditions to reduce
the model to one-fourth size, multiply the result by 4. For each element, the torque
contribution is

T (e) = 2

∫∫

A

[
N (e)
]

d A
{
� (e)
}

and for the linear triangular element this simply becomes

T (e) = 2 A

3

(
�

(e)
1 + �

(e)
2 + �

(e)
3

)

Accounting for the use of symmetry, the total torque indicated by our two-element solu-
tion is

T = 4
2 A

3

(
�

(1)
1 + �

(2)
2

) = 64

9
G
A2

or

T



= 64

9
G A2

Now we address the problem of unknown angle of twist per unit length. Noting, in the last
equation, the ratio is constant for specified shear modulus and cross-sectional area, we
could simply specify an arbitrary value of 
, follow the solution procedure to compute
the corresponding torque, compute the ratio, and scale the result as needed. If, for exam-
ple, we had assumed 
 = 10−6 rad/mm, our result would be

T = 64

9
(80)(103)(10−6)(312.5)2 = 55555.6 N·mm ⇒ 55.6 N·m

Thus, to answer the original question, we compute the angle of twist per unit length cor-
responding to the specified torque as


 = 100

55.6
(10−6) ≈ 1.8(10−6) rad/mm
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and the total angle of twist would be

� = 
L = 1.8(10−6)(1000) = 1.8(10−3) rad

or about 0.1 degree. The exact solution [5] for this problem shows the angle of twist per
unit length to be 
 = 1.42(10−6) rad/mm . Hence, our very simple model is in error by
about 27 percent.

9.10 SUMMARY
In this chapter, we present the development of the most basic finite elements used
in stress analysis in solid mechanics. As the finite element method was originally
developed for stress analysis, the range of element and problem types that can be
analyzed by the method are very large. Our description of the basic concepts is
intended to give the reader insight on the general procedures used to develop
element equations and understand the ramifications on element, hence, model,
formulation for various states of stress. As mentioned in the context of plate
bending in Section 9.8, finite element analysis involves many advanced topics in
engineering not generally covered in an undergraduate program. The interested
reader is referred to the many advanced-level texts on the finite element method
for further study. The intent here is to introduce the basic concepts and generate
interest in learning more of the subject.
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PROBLEMS
9.1 Use the general stress-strain relations from Appendix B and the assumptions of

plane stress to derive Equations 9.2.
9.2 Let {z} be the N × 1 column matrix [z1 z2 z3 · · · z N ]T and let [A] be an N ×

N real-valued matrix. Show that the matrix product {z}T [A]{z} always results in
a scalar, quadratic function of the components zi.
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9.3 Beginning with the general elastic stress-strain relations, derive Equation 9.50
for the conditions of plane strain.

9.4 Determine the strain-displacement matrix [B] for a three-node triangular element
in plane strain.

9.5 Determine the strain-displacement matrix [B] for a four-node rectangular element
in plane stress.

9.6 Using the interpolation functions given in Equation 9.28, determine the
explicit expression for the strain energy in a three-node triangular element in
plane stress.

9.7 The constant strain triangular element shown in Figure P9.7 is subjected to
a uniformly distributed pressure as shown. Determine the equivalent nodal
forces.

Figure P9.7

9.8 The constant strain triangular element shown in Figure P9.8 is subjected
to the linearly varying pressure as shown and a body force from gravity
(g = 386.4 in./s2) in the negative y direction. Determine the equivalent
nodal forces.

Figure P9.8

9.9 The element of Figure P9.7 is of a material for which the modulus of elasticity is
E = 15 × 106 psi and Poisson’s ratio is � = 0.3. Determine the element stiffness
matrix if the element is subjected to plane stress.

1 (0, 0)

2
(0.5, 1)

3
(	0.1, 0.8)

p0

3 (0.5, 2)

2 (1, 1)

1 (0, 0)

p0
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9.10 Repeat Problem 9.9 for plane strain.
9.11 Repeat Problem 9.9 for an axisymmetric element.
9.12 The overall loading of the element in Problem 9.7 is such that the nodal

displacements are u1 = 0.003 in., v1 = 0, u2 = 0.001 in., v2 = 0.0005 in.,
u3 = 0.0015 in., v3 = 0. Calculate the element strain, stress, and strain energy
assuming plane stress conditions.

9.13 Repeat Problem 9.13 for plane strain conditions.
9.14 A thin plate of unit thickness is supported and loaded as shown in Figure P9.14.

The material is steel, for which E = 30 × 106 and � = 0.3. Using the four
constant strain triangular elements shown by the dashed lines, compute the
deflection of point A. Compare the total strain energy with the work of the
external force system.

Figure P9.14

9.15 Integrate Equation 9.65 by the Gaussian numerical procedure to verify
Equation 9.66.

9.16 A three-node triangular element having nodal coordinates, shown in
Figure P9.16, is to be used as an axisymmetric element. The material properties
are E = 82 GPa and � = 0.3. The dimensions are in millimeters. Calculate the
element stiffness matrix using both the exact definition of Equation 9.99 and
the centroidal approximation of Equation 9.100. Are the results significantly
different?

Figure P9.16

 1
(10, 0)

3
(15, 10)

2
(20, 	10)

20 in.

30 in.

p0 � 300 psi
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9.17 The axisymmetric element in Figure P9.16 is subjected to a uniform, normal
pressure p0 acting on the surface defined by nodes 1 and 3. Compute the
equivalent nodal forces.

9.18 The axisymmetric element in Figure P9.16 is part of a body rotating about
the z axis at a constant rate of 3600 revolutions per minute. Determine the
corresponding nodal forces.

9.19 Consider the higher-order three-dimensional element shown in Figure P9.19,
which is assumed to be subjected to a general state of stress. The element has
20 nodes, but all nodes are not shown for clarity.
a. What is the order of the polynomial used for interpolation functions?
b. How will the strains (therefore, stresses) vary with position in the element?
c. What is the size of the stiffness matrix?
d. What advantages and disadvantages are apparent in using this element in

comparison to an eight-node brick element?

Figure P9.19

9.20 Show that in a uniaxial tension test the distortion energy at yielding is given by
Equation 9.128.

9.21 A finite element analysis of a certain component yields the maximum principal
stresses �1 = 200 MPa, �2 = 0, �3 = −90 MPa. If the tensile strength of the
material is 270 MPa, is yielding indicated according to the distortion energy
theory? If not, what is the “safety factor” (ratio of yield strength to equivalent
stress)?

9.22 Repeat Problem 9.21 if the applicable failure theory is the maximum shear stress
theory.

9.23 The torsion problem as developed in Section 9.9 has a governing equation
analogous to that of two-dimensional heat conduction. The stress function is
analogous to temperature, and the angle of twist per unit length term (2G
) is
analogous to internal heat generation.
a. What heat transfer quantities are analogous to the shear stress components

in the torsion problem?
b. If one solved a torsion problem using finite element software for two-

dimensional heat transfer, how would the torque be computed?
9.24 The torsion problem as developed in Section 9.9 is two-dimensional when posed

in terms of the Prandtl stress function. Could three-dimensional elastic solid
elements (such as the eight-node brick element) be used to model the torsion
problem? If yes, how would a pure torsional loading be applied?

9.25 Figure P9.25 shows the cross section of a hexagonal shaft used in a quick-change
power transmission coupling. The shear modulus of the material is 12 × 106 psi
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Figure P9.25

and the shaft length is 12 in. Determine the total angle of twist when the shaft
is subjected to a net torque of 250 ft-lb. Use linear triangular elements and take
advantage of all appropriate symmetry conditions.

z

y

0.875 in.


