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Introduction

A large number of economic decisions have implications on the future and are
made under uncertainty. This is the case, for instance, of individual saving,
insurance and portfolio choices, and investment decisions of firms. A variety
of institutional arrangements and financial tools facilitate these decisions and
allow risk taking and risk sharing: insurance companies, stock exchanges, futures
and derivatives assets, to name a few. Research in finance and the economics of
uncertainty aims to understand the emergence of these tools, their functioning
and adequacy to allocate risks.

Uncertainty is ubiquitous. An investment requires a certain time lag before it
yields an income, which in turn depends on random events that impact upon
prices of raw inputs, production processes, and competition. The future financial
resources and needs of households vary owing to illness, family composition,
or unemployment. At the macroeconomic level, uncertainty is also pervasive
making forecasts on future aggregate variables prone to errors.

In order to cope with resources and needs that fluctuate over time, economic
agents, whether households or firms, save and borrow for intertemporal income
smoothing. A more uncertain future may induce households to save more for what
is called a precautionary motive. It may also lead to the creation of institutions to
allow risk sharing between economic agents. Futures markets, for instance, sim-
plify the management of risks stemming from changes in the supply and the
price of commodities. Mutual corporations and insurance companies specialize
in covering individual risks, such as car accidents, house fires, and the like. Stock
markets enable entrepreneurs to finance their activities by going public. Stock-
holders invest by buying a stake in the company (stocks) and share future profits
or losses, which often entail too much risk for a small number of individuals to
assume. Thus, the public becomes involved while benefiting from the expertise
and economies of scale associated with an activity that can be conducted more
effectively by professionals than by amateurs. More generally, stock markets allow
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2 Introduction

risky participations in productive activities to be diversified through appropriate
portfolio choices. Finally, derivative financial instruments (options, swaps, etc.)
have recently experienced a prodigious expansion, linked to hedging requirements
of the investors vis-à-vis movements in interest rates and stock market prices.

How do these institutions work? Are they well designed? What is the role of
financial markets? These questions have given rise to a very large body of work,
especially in the past 30 years, in both finance and economics. Initially, each
discipline worked separately, developing its own models and approach, to treat
uncertainty.

Finance is marked by two pioneering works: the Black and Scholes’s method
for establishing the value of an option by arbitrage, and the equilibrium rela-
tionships of Sharpe and Lintner’s capital asset pricing model (CAPM), which relate
the expected returns of financial securities to simple statistical characteristics.
Professionals soon recognized the practical values of these contributions, which
facilitated the proliferation of derivatives and the development of quantitative
portfolio management techniques.

Economics took the path of extending the general equilibrium theory to an
uncertainty framework, building on the decision models under risk proposed by
von Neumann and Morgenstern. As the works of Arrow and Debreu, among
others, made clear, the usual welfare properties of equilibrium cannot be taken
for granted. The absence of markets, more precisely their incompleteness, was, and
remains, the focus of a great deal of attention. Why are some markets not viable?
What implications does that have?

In the 1980s, whereas the links between the two bodies of works were bet-
ter understood, it became clear that a crucial piece was missing. Indeed, both
approaches assumed all stakeholders to have access to identical information.
Everyone was supposed to evaluate future prospects in the same way, to use
the same model with the same probabilities of the evolution of the economy, the
dividend process, or the bankruptcy of the firms. This is known as the symmetric
information framework. Since then research in both economics and finance has
emphasized the differences in the information available to economic agents, how
news is disseminated, and the role this plays in price setting, in risk undertaking,
and in financial contracting. In particular, the concept of rational expectations,
introduced by Muth, made possible the study of the transmission of information
through prices.

This book has two main goals. The first is to present the fundamental prin-
ciples of risk allocation in a unified framework, assuming symmetric information.
Models employed in this book are as simple as possible so as to underscore the
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relationships between the techniques currently used in finance and the economic
analysis of risk. The second goal is to look into information dissemination and
thus identify some key limits of the basic models. Are financial markets, as some
maintain, the ideal locations for the exchange of information? Should insiders’
use of privileged information be controlled? Is the release of information always
a good thing?

The book is divided into three parts.
After a brief description of the most common financial instruments, Part 1

presents the notion of arbitrage and the derived techniques of valuation by duplica-
tion. Chapter 1 gives a basic introduction to stocks, bonds, interest rates, and the
spot rate curve and describes some derivatives (options and futures). It explains
how markets operate with emphasis on futures markets for commodities and
financial instruments. Derivative securities have proliferated in the past 20 years.
They are built on preexisting assets using formulas that are often quite complex. It
is important to understand how they are most often priced and the assumptions
that underlie their valuation. This is the goal of Chapter 2, which deals with
the fundamental principle of absence of opportunities for arbitrage and valuation by
duplication. Duplication of a derivative is possible when its risky payoff can be
reproduced with financial instruments available on the markets. It turns out that
this very simple idea yields surprisingly strong conclusions that are abundantly
(and sometimes abusively?) used in financial practice.

Part 2, the heart of the book, deals with exchanges of risks. The basic model
is that of an economy in which future income, possibly random, is to be divided
between the economic agents (also called investors). How do markets for financial
assets perform this division? Is the resulting allocation optimal? Can market
participants benefit from insider information?

To answer these questions, a first step is to describe how individual investors
behave in an uncertain environment. Some basic concepts such as attitudes toward
risk, how expectations are formed, and the value of information are introduced in
Chapter 3. The guiding principles of portfolio choice (hedging and speculation)
and risk diversification are derived in Chapter 4.

Once the individual’s behavior is set, market functioning at the aggregate level
can be studied. The traditional economic approach to optimality and equilibrium
under symmetric information is the subject of Chapters 5 and 6. The optimality of
risk-sharing contracts between a group of individuals quite naturally leads to sep-
arate individual idiosyncratic risks from macroeconomic risks. Optimality implies
spreading individual risks providing the rationale for their mutualization. Macroe-
conomic risks, on the other hand, are unavoidable. Allocating them efficiently
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among economic agents requires taking into account their individual attitudes
toward risk. The incomes of those who are most risk averse will scarcely be
affected by the vagaries of the macroeconomy, while the less risk averse will
accept wide fluctuations, perhaps compensated by a higher average income than
the former.

A natural question is whether the existing financial markets lead to an optimal
allocation. The answer is positive if markets are complete. This is the case when
there is a sufficiently large number of derivatives, especially on market indexes.
In terms of positive analysis, we examine how – complete or incomplete – asset
markets function and allocate risks in the mean–variance CAPM framework.
Introducing risky nonfinancial incomes allows us to bridge the most widely used
model in finance with the standard equilibrium approach in economics.

Whereas financial markets play an important role for trading goods and alloc-
ating risks over time, the casual observation of the day-to-day movements of the
markets leads to emphasize their sensitivity to the arrival of new information.
News often motivates transactions and causes market prices to move. Chapter 7
addresses this issue. A new piece of information modifies the perceived probabil-
ity of occurrence of the future events. It may be available to all participants (public
information), or only to a selected few insiders (private information). The analysis
is conducted in a framework characterized by rational expectations – a concept that
is illustrated with several examples (including Muth’s celebrated case) – in which
investments made today change the distribution of prices tomorrow. Insurance
dissipates as events become public knowledge. Allowing insiders to trade a stock
on which they have access to relevant information in advance of the general public
may create adverse selection effects: non informed investors who are aware of the
presence of insiders may feel duped and may withdraw from the market. Finally,
Chapter 8 is devoted to intertemporal dynamics and discusses the equity premium
puzzle, as well as speculative bubbles.

The firm and how it is financed are the subject of the last part of the book
(Chapters 9 and 10). The issues addressed here are at the frontier between man-
agement, corporate finance, and economics. The interaction between decision
making and the financial structure of the firm is emphasized. Building on a simpli-
fied representation of balance sheets, the famous Modigliani and Miller theorem
is presented. Most often the liability of the stockholders is limited to their original
outlay. Several issues are investigated in this context. The risk of bankruptcy, the
relationship between the values of the various securities issued by the firm, and
the potential sources of conflict between the various stakeholders in the event of
bankruptcy are investigated. The functioning of the credit market is also affected
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by limited liability, which may induce borrowers (entrepreneurs) to choose invest-
ments that are increasingly risky as the nominal interest rate rises. We conclude
with a look at the issue of asymmetric information between an entrepreneur and
her financial backers, whether stockholders or banks, and present a rationale for
prohibiting insider trading.

This book is based on lectures given at the École polytechnique and at the DEA
Analyse et politique économiques of the École des hautes études en Sciences
Sociales. We wish to thank our students and our fellow staff members, some of
whom occasionally moderated exercise sessions, for their remarks and sugges-
tions. We are particularly indebted to Isabelle Braun Lemaire, Bruno Jullien, and
Bernard Salanié.
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Valuation by Arbitrage
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Financial instruments:
an introduction 1

Price fluctuations are a major source of risks. A farmer who sows his field does
not know what price he will receive for his crop. An exporter must deal with
exchange rate fluctuations. In order to spread better the risks associated with
these price movements, futures markets were established to fix the terms of
trades to be conducted at predetermined future dates.

Similarly, the prices of financial assets, in particular, stocks and bonds, are
subject to strong fluctuations. Entrepreneurs and governments require capital to
finance risky activities. When these activities are clearly identified (e.g., by the
enactment of a law), and when the identity and stability of a borrower is estab-
lished beyond doubt, securities representing loans such as stocks and bonds
can be traded on markets, called financial markets. The prices of these securi-
ties fluctuate in response to numerous factors: The business cycle, earnings
reports, and so on. Markets for futures and derivatives came into existence
to make better management of the risks associated with price movements
possible.

The purpose of this chapter is to describe the main characteristics of common
financial instruments and of the markets on which they are traded, and to present
some simple arbitrage mechanisms. We begin by describing assets usually referred
to as primary assets: Fixed-income securities – monetary securities and bonds – and
stocks. Interest rates are defined and linked to the prices of bonds. We introduce
zero-coupon bonds and explain why the spot curve provides a useful tool for
valuing fixed-income securities. The second part presents the derivatives markets,
the instruments traded on them (futures and options), and the forward rate curve.
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10 Chapter 1

1 Money, Bond, and Stock Markets

Borrowers, usually firms or governments, issue IOUs in the form of stocks, bonds,
or other certificates to lenders, in fine mostly households. Financial markets
allow lenders to construct their portfolios in a flexible manner and to diversify
their assets: They play a key role by creating liquidity. This allows lenders to sell
unsecured claims on the market before maturity, which would be impossible or
at least very expensive otherwise.

1.1 Money Markets

Money markets are for borrowing and lending money for short periods of time,
less than 2 years. Customarily, short-term debts are priced in terms of an annual
interest rate on these markets. The rate is measured in percentages, for example,
4.07 percent, or in basis points, which are one hundredth of a percent, for example,
407 basis points. Central banks, commercial banks, financial institutions, and
large corporations are active on money markets. Rates vary with the duration of
the operation. For example, the federal funds rate (overnight) and the 3-month
treasury bills are differentiated. At maturity, the borrower reimburses the loan
plus interest at the agreed upon rate, which is computed according to conventions
that account for the duration of the loan.

1.2 Bonds

A bond is an IOU agreed to by the issuer, who commits to making payments
to the bondholder at various future dates, in general, over a finite time horizon.
When issued, the life span of a bond exceeds 2 years. The date at which the final
payment is made is called the maturity date or in short the maturity.1 Payments
may be of two types: Recurring installments, which are called coupons and are
usually disbursed at regular intervals, and a final payment, called the face value,
nominal value, or principal, which is frequently approximately equal to the initial
loan. The bond is issued at par when its issue price is equal to its face value, which
is achieved by adjusting the coupons.

1 Sometimes, the maturity of a bond also refers to its remaining length of life.
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Bonds can have complicated payoff structures. For example, coupons may be
linked to the market interest rate (variable rate bond), the date of the final payment
may be left up to the debtor with provision for a penalty to compensate for
expected depreciation, and the like. To keep the following discussion as tractable
as possible, we limit it to a particularly simple category of bonds, fixed-income
bonds: These have proceeds that are not, a priori, stochastic. On the issue date,
the amounts and dates of the payments are fixed, whatever the future circumstances.

Thus, the only remaining uncertainty is that the debtor may fail to abide by the
contract, or may default. The associated risk is called default risk or counterparty
risk because it depends upon the issuer.2 This risk can rarely be neglected in the
case of corporate bonds, bonds that are issued by firms. It is also considerable in
the case of some countries. In the rest of this chapter, we consider bonds for which
the risk of default can be considered nil, such as those issued by the governments
of the wealthiest nations.

On any given day, many bonds issued on different dates can be traded on the
market. In practice, comparisons between bonds are often based on the notion of
yield to maturity (in France, all new bond issues contain their yield to maturity in
their product description).

Usually, the unit of time is the year. The following definition deals with a
security that pays at the same date every year (see Remark 1.1 to take into account
fractions of years).

Definition 1.1 Given a bond with a price p at date 0 that yields a series of positive
payments, a(t), t = 1, . . . , T, its yield to maturity or actuarial rate denotes the unique
rate r for which the current value of these payments is equal to p

p =
T∑

t=1

a(t)
(1 + r)t

. (1.1)

Consider, for example, a bond indexed by 1, with a face value of $100, a maturity
of 10 years (T = 10), and paying an annual coupon equal to 5 percent of the face
value. We say that the coupon rate is 5 percent. Formally, if we set i = 0.05, we have

a1(t) = 100i, for t = 1, . . . , T − 1, and a1(T) = 100(1 + i).

2 Obviously, the reality is somewhat more complicated, since repayment of some debts is prioritized
in the event that a firm declares bankruptcy.
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Assume that this bond is issued at par. Its issue price is equal to its face value, or
$100. A simple calculation reveals that r = i.3 At later dates, as market conditions
evolve, the bond price will change and with it the yield to maturity.

To illustrate this point, let us examine time t = 1. Consider a new bond that
is issued on that date, indexed by 2, maturing in 9 years, whose principal is $100,
and with a coupon rate of i′. After payment of the date 1 coupon on bond 1, the
income streams yielded by the two bonds are

100i at t = 2, . . . , T − 1 and 100(1 + i) at T for bond 1

100i′ at t = 2, . . . , T − 1 and 100(1 + i′) at T for bond 2.

Assume that, as is often the case in practice, i′ is chosen such that bond 2 is
issued at par. Typically, conditions change and i′ differs from i. To clarify this
concept, let us set i′ < i. In this case, the second bond yields less than the first
at all times from 2 to T. Consequently, the price of bond 1 must exceed that of
bond 2. Otherwise, all the investors would buy the first bond and sell the second
and make a profit at all dates. This is called an opportunity for arbitrage. Thus, at
time 1, the price of bond 1 rises above $100, which is the price of bond 2, issued
at par. The price of bond 1 increases as i′ decreases. Also its actuarial rate falls,
remaining above i′, as we can easily verify. Similarly, the price of bond 1 decreases
as i′ increases.

Remark 1.1 In practice, assets are not constrained to serve coupons or dividends
at exact yearly intervals. This is easily accommodated by considering continuous
time. For instance, in the definition of the yield to maturity, in Eqn (1.1), for a
bond that distributes coupons every semester up to time T, the index of time
takes values t = τ/2, τ = 1, 2, . . . , 2T.

3 If p = 100, the actuarial rate is defined by

1 = i

[ T∑
t=1

1
(1 + r)t

]
+ 1
(1 + r)T

.

The part in square brackets, computed as the sum of the first terms of a geometrical series for 1/(1+r),
is equal to (1 − 1/(1 + r)T )/r. This gives r = i.
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1.3 The Spot Curve

As we have just seen, the actuarial rate of a bond adjusts to the market evolution.
Its movement also depends on the specific repayment structure of the bond –
the payments schedule and amounts – which, unlike in the preceding example,
varies greatly from one bond to the other. Thus, it is convenient to introduce
standardized assets, zero coupons, and their implicit actuarial rates. The derived
spot curve allows the variations in bond prices to be determined as a function of
their maturity and the repayment structure. In fact, experts in the field are phasing
out the use of the concept of an actuarial rate and are switching to a valuation
that is based on the spot curve when setting the price of a bond.

Zero Coupons

Consider a family of bonds, called zero-coupon bonds, that yield no payment
prior to reaching maturity and pay one dollar then. Their face value is thus
equal to one dollar, and they only vary in terms of the maturity. Denote q(t) as
today’s price of one zero-coupon unit maturing in t years. If zero coupons exist,
knowledge of their prices allows the valuation, by arbitrage, of any risk-free asset.
Let a(t) represent the payments to which possession of one unit of some asset
confers a claim in the future. A portfolio consisting of a(t) zero-coupon units
maturing at t, t = 1, . . . , yields exactly the same income as one unit of the asset
in question: We say that it replicates it. Thus, the price of the asset, p, must equal
the value of the portfolio, so as to eliminate opportunities for arbitrage,4 which
gives

p =
∑

t

q(t)a(t). (1.2)

This expression makes clear the relevance of zero coupons: If we knew their price
at all possible payment dates, we could assign a value to all fixed-income securities,
and detect whether some assets are incorrectly priced. The zero-coupon prices
correspond to different maturities. Interest rates, called zero-coupon rates, are
associated with the prices of zero coupons.

4 For example, p cannot be strictly greater than
∑

t q(t)a(t) when there are individuals who possess
a strictly positive amount of the asset. Otherwise, it would be in the interest of these investors to
sell the asset and to obtain the same income flow by buying the replicating portfolio made of zero
coupons. Section 2 more precisely formalizes the conditions under which the formula obtains.
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Definition 1.2 Let q(τ ) be today’s price for a risk-free zero coupon maturing at τ . The
interest rate, r(τ ), for operations maturing at τ is given by

1
(1 + r(τ ))τ

= q(τ ).

The spot rate curve, or spot curve, is the curve giving r(τ ) as a function of τ .

Since the unit of time is a year, r(τ ) represents the constant annual interest rate
until maturity, such that investing q(τ ) today, and reinvesting the interest earned
each year at the same rate, will yield one dollar at maturity.

The spot curve is thus the preferred instrument for pricing fixed-income securi-
ties. There is however a problem: Zero-coupon bonds are virtually nonexistent
for maturities greater than 1 year (though they have recently begun appearing
more frequently, especially in the United States). Thus, it is necessary to recover
the spot curve from the securities that are traded on markets.

Recovering the Spot Curve

Consider a sample of fixed-income securities, indexed by k = 1, . . . , K , having
solid counterparts and yielding income at assorted dates. Assuming that there are
no arbitrage opportunities for any of these securities, we have

pk =
∑

t

q(t)ak(t).

The prices pk as well as the values ak(t), which are part of the definition of the
assets, are observed. The spot curve is constructed by determining the values
for q(t). This is done by using least squares, or sometimes by postulating that
the curve belongs to a family of distributions depending on a small number
of well-chosen parameters. Figure 1.1 show examples of such a curve on US
Treasury bonds for a choice of dates since 1990.5 If it were possible to buy and
sell some combination of assets so as to recompose zero coupons, then according
to the duplication principle explained in footnote 4, everything would transpire
as if they actually existed. Differences with the adjusted theoretical values, gaps

5 The web site of the US Treasury provides historical estimates of these curves, as well as a descrip-
tion of the methodology used in their construction, at http://www.treasury.gov/offices/domestic-
finance/debt-management/interestrate/yield-hist.html. We have added to the curves an intercept
equal to the daily federal reserve rate found at http://www.federalreserve.gov/releases/h15/data/d/
fedfund.txt.
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Figure 1.1 Selected US spot rate curves of the past 15 years.

representing the distance pk−∑t q̂(t)ak(t) in which q̂(t) is estimated, may indicate
failures of arbitrage and must be analyzed carefully. Prohibitions on short sales of
government bonds and peculiarities related to tax law may be responsible. The
security in question may also feature a risk that was overlooked.

1.4 Stocks

Stocks are stakes in a company that confer the right to a fraction of the revenue
stream created by its activities, which are distributed in the form of dividends. The
firm’s initial owners who contribute to the creation or expansion of its activities
by providing funds or intangible contributions receive securities indicative of their
property rights. By bringing their company to the stock market, the incumbent
owners can raise capital useful for developing their activities and share the risk
with new investors. They can also divest themselves of the firm by reselling their
shares at any time.

Along with shipping companies, the first stock exchanges appeared in Italy and
the Hanseatic League during the heyday of the great explorations, soon after
lawyers had invented the concept of an incorporated company. Chartering a ship
to sail to the East Indies was a monumental undertaking, requiring a great outlay
of capital and, obviously, involving grave risks: Substantial earnings in the event of
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success, but a total write-off if the ship sank. The corporation thus allowed these
risks to be shared. With the stock exchange, the entire outlay did not need to be
locked up for the full duration of the expedition. The initial backers could re-sell
their shares before the business was completed, for example, to deal with unex-
pected personal or political reversals of fortune. The guarantees provided by the
organization of the market attracted small investors and allowed for a division
into smaller shares, permitting a diversification of risk between several ships,
for example.

Stockholders are entitled to the wealth generated by the firm and participate
in setting its broad strategic orientation. Most often, stockholders bear a limited
liability, meaning that losses incurred by the firm do not entail any personal
liability on their behalf exceeding the initial contribution.

Chapters 6 and 9 give data on corporate debt and equity financing, along with
information on the orders of magnitude of transactions on the stock exchange.
In fact, only the shares of large firms are traded on stock exchanges. As to bonds,
only large firms issue them – the others incur debt exclusively through financial
intermediaries. The impact that the risk of default on debt repayment has on the
financing of firms will be addressed in Chapter 10.

2 Derivatives Markets

By definition, futures (and, more generally, derivatives) are a function of preexist-
ing, primary assets, the underlying assets. Derivatives, such as options, were set up
by financial intermediaries to satisfy the needs of their clients. In practice, a distinc-
tion is made between the two types of operators on derivatives markets: End users
and financial intermediaries. End users, such as firms, households, governments,
and municipalities, invest or lend money through instruments corresponding to
their own financing needs: Pooled investment funds, options, forward and futures
contracts, and the like. Financial intermediaries, especially banks and insurance
companies, play a key role by designing derivatives that correspond to the needs
of their clients, the end users.

We shall describe a very limited number of derivatives that are standardized
and traded on organized exchanges. There is also a huge informal over-the-
counter (OTC) market, in which traders negotiate transactions over electronic
communications networks. Contracts are more flexible and are not managed by
a clearinghouse.
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2.1 Futures Markets for Commodities and Currencies

How They Work

On a spot market, sellers offer fixed amounts of some commodity or asset, say
wheat, for sale available immediately at a specified location. The market links
the buyers and the sellers, establishes the price at which supply equals demand,
possibly through an auction mechanism, and provides that the exchange occurs
immediately.

Futures and forward markets seek to replicate the functioning of spot markets
at some future date, the term. These markets set the price and location for
delivery at term: For example, 1 ton of wheat of a specified quality delivered to
a predetermined location next July 30. The exchange – delivery and payment –
occurs at a later date but the price is set today. This type of transaction is useful
under many circumstances in which prices fluctuate. Thus, an agricultural firm
that will be selling its wheat harvest next July 30 runs a risk that is not only related
to the quantity of the crop, but also to the fact that prices may be very different
from their current value because of various sociopolitical events that may be
difficult to anticipate. Denote a (random) crop by6 x̃. By selling an amount that
is close to the expected crop on the futures market, E[x̃], the firm reduces its risk
and ensures an income pt

0E[x̃], where pt
0 is the futures price (delivery at date t) on

today’s market (the date 0 indicated by the subscript). Notice that there remains
a residual risk associated with the difference between the actual crop x̃ and its
expectation. The overall income received on July 30 will be pt

0E[x̃]+ p̃t
t(x̃ −E[x̃]),

where p̃t
t is the spot price for wheat on July 30 (the superscript and the subscript are

equal). If the realized crop x is greater than E[x̃], the crop exceeds expectations,
and the surplus is sold on the spot market. Conversely, if x is less than E[x̃], the
farmer must buy E[x̃] − x on the spot market to fulfill his commitment on the
futures market.

Similarly, an exporter into the French market who will be ensured a revenue
of x euros in 3 months, and who is only interested in her income in dollars, can
eliminate this risk by selling x euros for dollars on the 3-month forward market.
If the forward exchange rate, as set on today’s market, is pt

0, she will receive
pt

0x dollars at term. Without transacting on forward markets, she would have
received p̃t

tx, where p̃t
t is the spot-market exchange rate after 3 months. Thus,

selling x euros forward eliminates the risk associated with uncertainty on the

6 Throughout the book, we denote a random variable by x̃ and its realization by x.
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value of p̃t
t . No losses will be sustained if p̃t

t turns out to be less than pt
0, but any

potential profits will also be forfeited in the opposite case.
Forward markets require more precautions for their good functioning than

do spot markets. In a forward transaction, the buyer undertakes to buy, and the
seller to sell, a good at a future date. All of the features of the transaction, that is,
price, quantity, and term, are fixed today, but the actual physical exchange, that is,
delivery and payment, takes place at term. While the fact that the buyer actually
has the funds, and the seller the goods, is immediately verified in the case of a spot
market, this is inherently impossible for futures contracts. The crop is yet to be
grown, or the exporter’s debtor may default. In order to make it materially
impossible to renege on the transaction, the institution organizing the market
will often require down payment of an initial margin from both parties. This
deposit, sometimes proportional to the amount of the transaction, is intended to
cover foreseeable variations in the price with respect to the futures price, p̃t

t − pt
0.

There is a distinction between forward and futures markets.
In the former, the initial margin represents the only movement of funds before

maturity. At term, a contract purchased yields a unit of the underlying product
(e.g., a ton of wheat) at the forward price, which can be immediately resold on
the spot market. Its value is thus equal to the difference between the product spot
and forward prices, or pt

t − pt
0, which may be positive or negative. Frequently,

there is no obligation to deliver the product, and the balance of the contract can
be settled with cash. The seller pays the buyer the value of the contract purchased,
pt

t − pt
0, provided this amount is positive or, conversely, receives pt

0 − pt
t if it is

negative.
As to futures contracts, there are daily margin calls reflecting day-to-day fluc-

tuations in the contract’s value. If the futures price increases from pt
τ to pt

τ+1
between dates τ and τ + 1, sellers pay ( pt

τ+1 − pt
τ ) per unit sold to buyers

(the institution that manages the market transfers the money from the seller’s
to the buyer’s account). Abstracting from the fact that these transfers occur over
the entire life span of the contract instead of at maturity, the (algebraic) sum
of margin calls paid by the seller is thus equal to pt

t − pt
0, or identical to the

final payment of the futures contract. In this book, we abstract from the dis-
tinction between “futures” and forward markets and the two terms are used
interchangeably.

How is the price of futures determined? One particularity of the futures market
is that the number of contracts purchased is equal to the number sold (or, alterna-
tively, the algebraic sum of the positions of all the participants is identically equal to
zero). There is no reason why the hedging needs of the final buyers should always
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equal those of the final sellers. Futures markets work because of the presence
of intermediaries who absorb the residual supply or demand (we say that they
insure the counterpart), and they can, in exchange, require compensation for the
costs or risks they incur. We establish here some relationships between prices on
futures markets, on spot markets, and the transfer costs between the present and
the term. These relationships are called arbitrage relationships. If they do not
hold, then there are arbitrage opportunities: A sure profit can be made in the
future with no commitment of funds.

Arbitrage Relationships

As a first example, let us look at the simplest case, that of currency forward
markets. Let pt

0 be the 3-month dollar–euro exchange rate on the forward market,
that is, the price in dollars of one euro, and p0

0 the current dollar–euro exchange
rate on the spot market. Assume that it is possible to lend or borrow dollars for
3 months without limitation and at the interest cost7 c$, euros at cost ce, and that
short-term credit and investment operations present no risk. If the relationship

p0
0

pt
0

= 1 + c$

1 + ce
, (1.3)

does not hold, we show that an operator can make a certain profit at t with no
investment today. Consider the following operations:

1 buy a euro on the forward market;
2 borrow 1/(1 + ce) euros today, which by definition of the interest rate is

associated with a reimbursement of one euro at t;
3 sell the 1/(1+ ce) euros on the foreign exchange spot market for dollars, which

are in turn invested for 3 months to yield pt
t(1 + c$)/(1 + ce) dollars at time t.

The two first operations are designed so that, at maturity t, the amount of euros
borrowed can be repaid from the proceeds of the forward purchase. The third
ensures that no commitment of funds is required. It remains to compute the
balance of the operation in dollars at 0 resulting from the investment of dollars

7 If the annualized rate is r, the interest cost for one quarter is, depending on convention, r/4 or
[(1 + r)1/4 − 1]. To simplify the notation, we denote by ce and c$ the interest cost to be paid in
3 months, respectively, for borrowing one e and one $.
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and the forward purchase of one euro. This yields an amount in dollars equal to

p0
0(1 + c$)/(1 + ce)− pt

0.

If this quantity is strictly positive, the operation guarantees a sure income: This
is called an arbitrage opportunity. When such an opportunity exists, arbitrageurs
take advantage of it by proceeding with the operation, and do it so effectively that
the purchase of euros on the forward market and their sale on the spot market
create a pressure on prices, which subsequently adjusts until the opportunity has
been dissipated.

If pt
0 were less than p0

0(1+c$)/(1+ce), the operation could be performed in the
opposite direction: Buy dollars on the forward market and sell the corresponding
amount on the spot market, financed by a loan denominated in euros. This would
also yield a sure profit. Arbitrage thus implies that the equality (1.3) holds.

Arbitrage operations involve simultaneous trades on the currency forward
market and the spot market. In practice, neither individuals nor firms
conduct these arbitrage operations.8 They are performed by specialized finan-
cial intermediaries, who respond to the hedging requirements of importers and
exporters.

Arbitrage relationships on the commodities market are looser. Indeed, if we
wish to repeat the previous exercise, but with wheat instead of dollars, we see
that it is not always possible to borrow wheat. Moreover, buying wheat implies
having to store it, which entails costs incurred between the present and the term.
Assume, to begin, that the total cost of storage is fully known and certain, and
that supply on the spot market is sufficient for it to be perfectly competitive. Let
c(0, t) be the total per-unit storage cost of 1 ton of wheat between the dates 0
and t, and let this be payable at time 0. This yields the following inequality:

pt
0 ≤ [p0

0 + c(0, t)](1 + r)t ,

where r is the interest rate on a risk-free loan between 0 and t. If this inequality
does not hold, then the following risk-free arbitrage operation will be profitable.
Purchase 1 ton of wheat (cost: p0

0), store it until maturity (cost: c(0, t)), and
simultaneously sell a ton of wheat on the futures market (receipt: pt

0 at the
3-month maturity), which then only needs to be delivered to the silo at time t.

8 Lending rates (paid by borrowers) are higher than borrowing rates (paid to individuals who invest
their assets), and arbitrage only provides a range of values to link spot market and futures market
exchange rates.



Anula Lydia: GABR: “chap01” — 2005/8/23 — 14:39 — page 21 — #13

Financial instruments: an introduction 21

The opposite relationship cannot be obtained by arbitrage. Nonetheless,
if there are investors who intend to store the wheat with certainty beyond time t,
the inequality must obtain in both directions. Otherwise, anyone with stocks
would be better off selling them on the spot market and buying the same
quantity back on the futures market. This leads to the following relationship:
pt

0 = [p0
0 + c(0, t)](1 + r)t .

In the colorful language of futures markets, when the difference pt
0 − p0

0 is
positive, which is usually the case, it is called contango. Contango includes all costs
for storage: Interest, compensation to the storage facility, depreciation, and the
like. In contrast to the assumption made above, there are generally risks associated
with storage (fire, etc.) that may, or may not, be assumed by arbitrageurs, and
contango may reflect this risk. During times of trouble, we may observe inversions,
that is, the futures price below the spot-market price: This is called backward-
ation.9 Following the same reasoning, this occurs when the spot market is highly
stretched during the period after a bad crop and before the new crop is harvested.
Stocks are exhausted, spot-market prices are (very) high, and an abundant crop
is expected to drive down prices. The futures price thus directly translates the
market’s expectation regarding the size of the coming crop, which is not directly
linked to conditions on the spot market.

2.2 Futures Markets for Financial Instruments

The evolution of the spot curve is stochastic, as are the goods prices from the
previous section, giving rise to a rate risk. To illustrate, this risk is borne by a bank
that extends a 15-year loan to a client at a fixed rate, and then partially refinances
over a shorter term. The refinancing cost depends upon the movement of the
rate. The rate risk mostly affects actors on financial markets. The owner of a
fixed-income bond from a top grade10 fully knows the revenue stream the bond
will yield until maturity. However, the price of the bond will change over time.
This is reflected in the financial balances of the owner and the issuer, when the
bond is evaluated marked to market, that is at market price.

9 Backwardation refers to a commission paid by the seller to delay delivery of the promised quantity.
Contango is a commission paid by the buyer to delay payment and delivery.
10 As alluded to before, for an identical maturity, the lending rate varies with the borrower, more
precisely with its risk of default. Banks and firms that seek external funding by issuing bonds are
ranked according to this risk. A top-grade issuer is one that is considered as having no default risk.
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To manage these risks, futures markets have been created on the model of
commodities futures markets. These markets are complemented by derivatives
markets (which are defined in the following section). In the United States, the
Chicago Board of Trade has been a leader in futures trading. Futures trading is
regulated by the Commodity Futures Trading Commission (CFTC), an independ-
ent agency of the US government. The National Futures Association (NFA) also
plays a regulatory role under the supervision of the CFTC.

The price of the “good” purchased forward, whether commodities or financial
instruments, must be observed at maturity without contestation by the two con-
tractors. For forwards on short-term loans for instance, in which a contract bears
on an interest rate, the contract specifies which rate is used (since rates may differ
according to the issuer). The London Interbank Offered Rate (LIBOR) is a most
widely used benchmark for short-term interest rates. It serves as an underlying
rate of many derivatives transactions, both OTC and exchange traded. Also, since
the introduction of the euro in 1999, European banks agreed on a new interbank
reference rate within the Economic and Monetary Union: Euribor. It is the rate
at which euro interbank term deposits are offered by one prime bank to another
prime bank (prime banks are first-class credit standing banking institutions).

Let us describe a simple example. On June 1, the purchaser of a 3-month LIBOR
futures contract on $1 million (called notional principal) maturing (or settled) the
following July 1, is guaranteed on June 1 a fixed interest rate – the forward
rate – for a 3-month loan of 1 million dollars, which can be underwritten on the
interbank market on July 1.11 This is a forward market: No money changes hands
before the settlement date (the maturity of the contract). At maturity on July 1,
the contract is settled financially: The purchaser receives the difference between
the interest charge corresponding to the current 3-month LIBOR rate and the
previously agreed upon rate, when the latter is lower, and pays the differential to
the seller when it is greater.

This type of operation allows a large firm – a bank or an insurance company –
that knows it will need to contract a 3-month loan of 1 million dollars next July 1
to protect itself against fluctuations in the rate that may occur in the interim.

More generally, there are futures markets for long-term rates, for market
indices, swaps on interest rates that combine several forward contracts, and the

11 Such a contract is often called a forward rate agreement (FRA). The settlement dates of the futures
contracts, from 1 to 12 months, correspond to the subscription dates of the 3-month LIBOR loan.
There are as many rates posted on the market as there are settlement dates.
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like. Some of these markets are related through arbitrage relationships as we now
show.

What price (or what rate) is established on the futures market? Arbitrage
creates a link between the spot curve we saw in the previous section and the
futures markets, assuming that zero-coupon bonds exist or can be recomposed
and short-selling is possible. Indeed, to determine the forward price of a zero
coupon of life span m to be bought at t, one can proceed with the following
operation today (in our example t corresponds to July 1, t + m to September 30,
and m represents a quarter):

– sell q(t)/q(t + m) zero coupons, maturing at t + m;
– buy a zero coupon maturing at t.

By construction, this operation, called cash and carry, does not cost anything
today: The purchase costs q(t) dollars and the sale yield the same amount. At t, it
will yield 1 dollar and at t + m it will cost q(t)/q(t + m) dollars.

Thus, the operation is identical to a forward loan of 1 dollar at t for m periods
(3-month loan of 1 dollar taken on July 1) with a final repayment of q(t)/q(t + m),
that is, with interest cost q(t)/q(t + m)− 1.

Because of arbitrage, it follows that the forward price qt(m) of a zero coupon
bought at t, maturing at t + m is q(t + m)/q(t) dollars.

In addition to spot rates, forward rates for operations of maturity t can be
defined. They are often denoted by f . We start with 1-year operations, for which
the interest cost is q(t)/q(t + 1)− 1.

Definition 1.3 Let q(τ ) be today’s price for a zero coupon maturing at τ for
τ = 0, . . .. The 1-year forward interest rate for a contract maturing at time t, f t(1),
is defined by

1 + f t(1) = 1
qt(1)

= q(t)
q(t + 1)

.

The forward rate f t(1) is the prevailing rate fixed at time 0 for loan operations
starting at time t for a period of 1 year.12 Note that all the values (prices and
forward rates) just defined are relative to the current date at which the asset prices

12 A second index to designate the reference date, here 0, would eliminate any possible confusion ( f t
0

would designate the forward rate on markets opened at date 0 for maturity t), but we have omitted it
to simplify the notation.
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are observed. The price of zero coupons maturing after t full years is linked to the
1-year forward rates by the discounting formula:

q(t) =
t−1∏
τ=0

1
1 + f τ (1)

.

Typically, the forward rates evolve over time. Also, whereas f t(1) is the forward
rate at time 0 for 1-year loan operations at time t, the 1-year rate observed at
time t will typically differ from this forward rate: The relationship between these
two rates will be studied in Chapter 8.

Similarly, the forward interest rate, f t(m), for zero-coupon loans of life span m
to be executed at time t is defined by

1
[1 + f t(m)]m = q(t + m)

q(t)
. (1.4)

Finally, the instantaneous forward rate curve is frequently constructed in
parallel to the spot curve. With the “instantaneous forward rate” at time t,
we mean a rate fi,t that yields a forward investment of 1 dollar in t periods
for an infinitesimal duration. Using the above expression, this gives rise to
Definition 1.4.

Definition 1.4 The “instantaneous forward rate” with maturity t is defined as

fi,t = lim
dt→0

1
dt

[
q(t)

q(t + dt)
− 1

]
.

By construction, the forward rate curve is approximately equal to the deriv-
ative of the spot curve.13 A curve of the instantaneous forward rate is depicted
together with an associated (bold) spot curve in Figure 1.2. Since the overnight
rate is directly controlled by monetary authorities, the forward rate curve is often
considered to be an indicator of the market’s expectations vis-à-vis the central
bank’s policies.

13 Indeed, if the price function is continuously differentiable, we have

fi,t = − q′(t)
q(t)

, q(t) = exp
(

−
∫ t

0
fi,udu

)

log(1 + r(t)) = 1
t

∫ t

0
fi,udu.
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Figure 1.2 An example of spot and forward curves: French Franc December 31, 1993.

2.3 Options

There are two broad categories of options: Call options and put options, which
allow the purchase or sale of a security (the underlying security) at a future date.
The specific characteristics of an option determine when, and at what price, this
right may be exercised. European options can only be exercised at a given date,
while American options can be exercised by their owners at any time prior to
maturity. We shall focus on the former.

Definition 1.5 European option – a call (put) option on a security gives the right,
but not the obligation, to buy (sell) one unit of the security at a previously specified price
and date. The price is called the strike price or the exercise price, and the date is the
maturity or expiration date.

In what follows, the price of a call option is denoted by C, and the price of
a put by P. An option can be used for hedging and, like any other security, for
speculation.

Thus, a 3-month call option of 1 euro against dollar with a strike price of
$K makes it possible to guarantee against an increase of the euro in 3 months.
If the euro exchange rate exceeds $K in 3 months, the holder of the option will
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exercise it, earning the difference between the going rate and K . If the euro
exchange rate is below K , she has no interest in exercising the option.

More generally, the payoff to the holder of a call option at the expiration date
is equal to

max(S − K , 0),

where S is the security price at the expiration date, and K the strike price.
In what follows, we denote a+ = max(a, 0).
As a result of the arbitrage activities of financial intermediaries, the prices of

various derivatives and of the underlying asset are interrelated.14 In particular,
a fundamental arbitrage relationship holds between the prices of put and call
options.

Put–call parity: Consider, at t = 0, a call and a put option with the same strike
price, K , the same maturity, on the same stock. The risk-free interest rate is r
per unit of time. Let us denote the spot-market price of the stock, the price of the
call, and the price of the put at time t = 0 as S0, C, and P, respectively.

The payoffs of the call and put options at time T are, respectively, equal to
(S − K)+ and (K − S)+, if S is the price of the stock at t = T (unknown at time
t = 0).

Now, whatever this price, we have

(S − K)+ − (K − S)+ = S − K .

The term on the left-hand side is the payoff at T obtained by buying a unit of
the call option and selling a unit of the put option at t = 0.

The term on the right-hand side is the payoff one gets when buying a portfolio
comprising a stock and a loan of K(1 + r)−T at t = 0. Since the final payoffs of
these two strategies are identical for any future price of the stock, the condition
of the absence of arbitrage opportunities forces their costs today to be identical,
whence the parity relationship

C − P = S0 − K(1 + r)−T .

14 These relations do not determine the price levels. How the prices themselves are determined by
markets forces is a quite complex issue, which will be touched upon later in this book.
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BIBLIOGRAPHICAL NOTE

The purpose of this short chapter was merely to introduce the vocabulary and
operating principles of financial markets and futures and forward markets. For a
more thorough understanding of these concepts, the reader may refer to Duffie
(1989), who provides a more detailed presentation. The first part of the Allen
and Gale (1994) book provides a brief overview of the historical development of
financial innovation.

Allen, F. and D. Gale (1994). Financial innovation and risk sharing, MIT Press, Cambridge.
Duffie, D. (1989). Futures markets, Prentice Hall, Englewood Cliffs, NJ.

Exercises

1.1 Relationships between options prices

1. We consider three European call options on the same asset and with the same
time to expiration, whose strike prices are K1, K2, K3 = λK1 + (1 − λ)K2 with
λ ∈ [0, 1], respectively.

At some point in time before maturity, let us denote by C(Ki) the price of
the option with a strike price of Ki at that time. Show that the absence of
opportunities for arbitrage implies:

C(K3) ≤ λC(K1)+ (1 − λ)C(K2).

2. Consider two assets, 1 and 2, and let three European call options, having the
same time to expiration written on (respectively):
(a) asset 1 with strike price K1,
(b) asset 2 with strike price K2,
(c) a portfolio comprising one unit of each of assets 1 and 2 with the strike

price K1 + K2.

If we denote the prices of these options at a given date C1, C2, and C12, respectively,
show that the absence of opportunities for arbitrage implies that

C12 ≤ C1 + C2.

Explain your results.
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Financial futures, and derivatives in general, are built on preexisting underlying
securities. By simultaneously conducting operations on several markets, special-
ized intermediaries intervene whenever an opportunity for arbitrage arises that
ensures a profit in all contingencies. With the increasing sophistication of deriv-
atives, the ancient art of arbitrage can become very complicated today. These
interventions ensure some price consistency across markets. In particular, they
induce relationships between the prices of securities and derivatives that lead to
the procedures of valuation by arbitrage that are systematically used by financial
institutions.

The goal of this chapter is to formalize and analyze the notion of arbitrage. The
underlying assumptions and the limits of the arbitrage-based valuation procedures
that are used by financial institutions are made explicit.

Uncertainty is described in terms of states of nature that determine future pay-
offs. An opportunity for arbitrage consists of transactions in which no money can
be lost and some can be earned in certain states of nature. In the absence of
friction, such opportunities should not last, which motivates the study of markets
without arbitrage opportunities. The absence of arbitrage opportunities dictates
some relationships between the prices of securities and their payoffs that are eas-
ily expressed in terms of state prices. These relationships also allow the valuation
of some securities on the basis of the prices of other securities. This procedure,
however, is only valid under certain conditions. In particular, a natural and key
distinction is made between complete markets, for which the valuation procedure
is always valid, and markets that are incomplete.

Section 1 studies a static framework. In Section 2, the analysis is extended to the
dynamic framework that underlies the most commonly used valuation methods,
at the cost of strong assumptions on expectations. We emphasize that arbitrage
relationships only allow to get the prices of some derivatives from others, but never
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determine the prices of the whole set of securities: Such a determination typically
requires a complete economic model, similar to that discussed in Chapters 5 and 6.

1 Static Arbitrage

1.1 States of Nature

Consider an economy at time 0, with a future that may be uncertain. In this
section, the future is reduced to a single point in time, t = 1. Uncertainty is
modeled by a set of states of nature that represents all possibilities at time 1. A
state of nature e provides a description of the economic environment: It includes
all relevant information, such as agents’ tastes, their resources, firms’ profits,
dividends paid by each asset, and so on. We assume here that the number of states
is finite, with E denoting the set of states and E representing the number of states
in E .

The appropriate set of states depends on the problem under investigation and
may be more or less complex. The only constraint is that the characteristics
of the economy can be expressed as a deterministic function of the state. For
example, to price a European call option, the state may be summarized by the
price of the underlying security, S (assumed to take a finite number of values),
because the payoff accruing to the holder of this option is a function of that price,
max(S − K , 0).

The set of states of nature is analogous to the fundamental space of probability
theory. However, notice that throughout this chapter we never say that some
states are more or less probable than the others. No probability distribution is
specified over the state space. Indeed, an opportunity for arbitrage arises when
operations can be conducted that yield profits in some states of nature without
generating losses in any other state. The existence, or absence, of any such
opportunity depends exclusively on the set of possible states and not on any
probability distribution on these states.

1.2 Securities

Consider a market, opened at time 0, on which are traded k = 1, . . . , K securities.
A unit of security k is defined by a payoff (coupons, dividends, resale price at
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some future date) in dollars, which the owner receives in the various states of
nature: ak(e) represents the payoff contingent on the occurrence of state e, e in E .
The vector of payoffs to security k is the row vector ãk of dimension E, made of
ak(e) for e running in E .

The matrix of the securities payoffs is denoted ã, its elements by ak(e) and its
dimension by (K × E). The price of security k today is designated pk, and the
vector of the prices p is a column vector in IRK .

The set of all states, the contingent payoffs, and the prices of the securities are the data
characterizing the markets. They are summarized by (E , ã, p).

A portfolio specifies the (positive) holdings, or long positions, as well as the
debts (negative), or short positions in the various securities. It is represented by
a column vector, z = (zk)k=1,...,K , the kth element of which, zk, indicates the
number of units of security k in the portfolio when it is positive. If it is negative,
the portfolio is short on security k which commits its owner to paying |zk|ak(e) at
time t = 1 in the event that state e materializes.

The value of the portfolio is equal to

K∑
k=1

pkzk = p′z.

The portfolio yields in state e the payoff (also called revenue or income):

cz(e) =
K∑

k=1

ak(e)zk.

The vector of contingent payoffs associated with z, a row vector in IRE , is simply
written as

c̃z = z′ã.

We shall use this convention throughout this book: Securities prices and portfolios
are represented by column vectors while contingent payoffs by row vectors.

This representation encompasses financial instruments that obligate their
owners to pay out in some states of nature, such as bets on elections. Formally,
some of the payoffs ak(e)may be negative.

Consider, for example, a forward market on a commodity, say wheat, opened
at time 0 and maturing at time 1. Recall that at maturity the payoff of the forward
contract is the difference between the price of wheat on the spot market, and the
forward price, f , determined at time 0.
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Figure 2.1 Two-state model.

Let w(e) denote the spot price of wheat at time 1 where e is the state that
materializes. If we abstract from guarantee deposits, no payments are made
when the contract is signed. At maturity, the buyer of a contract gets the (positive
or negative) payoff w(e)− f , if e materializes. Thus, in terms of our conventions,
a forward contract corresponds to a financial instrument k, the price of which
today is nil, pk = 0, and which yields the contingent payoff, ak(e) = w(e) − f ,
tomorrow. Typically, there are states in which the spot price exceeds the futures
price and vice versa.

Example 2.1 There are two states of nature and two securities: A risk-free
security with rate r, and a stock whose price1 S at t = 0 can move to (1 + h)S in
one state and (1 + b)S in the other. The model is written as

E = {h, b}, p =
[

1

S

]
, ã =

[
1 + r 1 + r

(1 + h)S (1 + b)S

]
.

The payoff of portfolio z is

[z1(1 + r)+ z2(1 + h)S, z1(1 + r)+ z2(1 + b)S].

Figure 2.1 represents the case of a stock that increases by 20 percent or decreases
by 10 percent.

1 This model will be used and developed to price an option on the stock. Thus we use the standard
notation of option models: S denotes the price of the underlying security.
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1.3 Absence of Arbitrage Opportunities and Valuation

Pure arbitrage theory is set in a perfectly competitive market for financial assets.
At a given market price p, a stakeholder can buy or sell any quantity of assets.
Moreover, there are no limits on allowable short positions. Thus, the theory
does not account for possible transaction costs, prohibitions on short sales, or
limitations on buying or selling.2

An opportunity for arbitrage is a possibility to realize nonnegative profits in all
states of nature, today or in the future, with a strictly positive profit in at least one
state.3 In the absence of constraints on transactions, this leads to the following
definition:

Definition 2.1 Arbitrage opportunity An opportunity for arbitrage in markets
(E , ã, p) is a portfolio z such that

K∑
1

zkak(e) ≥ 0 ∀ e and z′p ≤ 0

(or, equivalently4 z′ã ≥ 0 and z′p ≤ 0) with at least one strict inequality among these
E + 1 inequalities.

If there are no limits on the quantities exchanged, an opportunity for arbitrage
cannot last, since operators will have an interest in exploiting it infinitely. This
leads us to consider markets in which there are no opportunities for arbitrage.

A direct consequence of the absence of opportunities for arbitrage is that the value
of a portfolio depends only on the payoff it generates. Indeed, assume that two
portfolios, z1 and z2, generate the same payoffs but do not have the same value.
Then, for example, if

p′z1 < p′z2,

portfolio z1 − z2 constitutes an opportunity for arbitrage.

2 In practice, purchase and sale prices differ to varying degrees, the difference being a bid-ask spread.
Exercise 2.3 deals with a simple example of arbitrage relationships in this circumstance.
3 Two slightly different notions of arbitrage opportunity may be considered, depending on whether
the profit is immediate or deferred. The relationships between these notions are examined in
Exercise 3.2.
4 We adopt the following conventions for vector notation: z ≥ 0 means that each element of z is
positive or nil, z > 0 is equivalent to z ≥ 0, except that at least one component is strictly positive.
Finally, z � 0 indicates that all elements are strictly positive.
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Valuation by arbitrage follows from this remark: A security j with revenue ãj is
“replicated” by a portfolio z comprising other securities if the payoff yielded by z
is identical to that from j in all states:

aj(e) =
∑
k �=j

zkak(e) ∀e.

In this case, the security is said to be redundant. The price of security j must
be equal to the value of the portfolio that replicates it, so as to eliminate any
opportunity for arbitrage. We thus obtain a relationship between the price of the
replicated security and those of the other securities in the replicating portfolio,
that is,

pj =
∑
k �=j

zkpk.

Example 2.2 Price of a call option in a two-state model Let us return to the
first example with two states of nature, one risk-free investment, one stock and a
call option on the stock at time 1 with strike price K . The option can be replicated
with the stock and the risk-free asset. Consider the more interesting case in which
the option is only exercised if the stock price is high, so that

(1 + h)S > K > (1 + b)S.

The income yielded by the option is then:

(1 + h)S − K in state h,

0 in state b.

For a portfolio z consisting of the risk-free asset and the stock to replicate the
option, it must satisfy

z1(1 + r)+ z2(1 + h)S = (1 + h)S − K ,

z1(1 + r)+ z2(1 + b)S = 0.

Since this system of equations has the solution:

z1 = − (1 + b)[(1 + h)S − K]
(1 + r)(h − b)

, z2 = (1 + h)S − K
(h − b)S

,

the price of the option, C, must be equal to z1 + z2S, so that

C = r − b
(1 + r)(h − b)

[S(1 + h)− K]. (2.1)
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Notice that this reasoning is valid on the condition that the underlying security
is available and can be traded without limitations, without transaction costs and
without storage costs. If we are dealing with options on wheat prices, replication
involves storage costs and is asymmetrical in terms of buying and selling, as we
saw in Chapter 1.

Valuation using State Prices

There exists a useful tool for pricing all portfolio payoffs without explicitly refer-
ring to the composition of the portfolio. These are state prices that are used
frequently – especially in the context of dynamic valuation. State prices play a
role comparable to that of discount factors used in intertemporal analysis without
uncertainty. Just as discount factors allow comparison of revenues at different
times, state prices allow the comparison of revenues between different states of
nature. The state price associated with a state e has a direct interpretation when
a specific security, known as an Arrow–Debreu security or a contingent security,
is traded. An Arrow–Debreu security associated with a state of nature e yields
1 dollar if e occurs, and nothing otherwise. If such a security exists, its price is
the state price associated with e: It is the price today of 1 dollar tomorrow in
state e. Thus, it is a contingent discount factor. Even if there are no Arrow–
Debreu securities, state prices can be defined whenever there are no arbitrage
opportunities.

Theorem 2.1 State prices There are no arbitrage opportunities on markets
(E , ã, p) if, and only if, there exists a column5 vector q = [q(e)]e∈E of strictly positive
elements, such that

pk =
∑

e

q(e)ak(e) ∀k. (2.2)

Vector q is called a vector of state prices.

Corollary 2.1 Discounting with state prices Let q be a vector of state prices and
z a portfolio. Then,

p′z =
∑

e

q(e)cz(e). (2.3)

5 This vector, while indexed by the states, is a column vector: Indeed it plays the role of a price.
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According to Corollary 2.1,
The price today of a portfolio is equal to the sum of the portfolio incomes discounted by

the state prices.
State prices allow the comparison of revenues across various states of nature.

They make it possible to find the value today of any replicable income. A contingent
income vector (c(e)) is said to be6 replicable or spanned if there is a portfolio z that
generates exactly the same payoff in each state e: c(e) = cz(e). Equivalently, the
vector is a linear combination of revenues generated by existing assets. Expres-
sion (2.3) can be restated as saying: The price payable today to obtain a replicable
income vector tomorrow is equal to the sum of these incomes discounted by the state
prices.

The qualifier replicable is very important here. The terminology “state prices”
may be confusing, and may sometimes lead to a misguided application of Eqn (2.3)
for computing the “value” of an income vector (c(e)) that is not replicable. This
point will be clarified when we distinguish between complete and incomplete
markets.

Corollary 2.2 State prices and Arrow–Debreu prices Let q be a vector of state
prices. If there exists a portfolio yielding 1 dollar in state e and 0 dollars otherwise, its
price is equal to q(e).

Corollary 2.2 assumes that the Arrow–Debreu security contingent on e can
be replicated by a portfolio. In this case, q(e) is unique, of course, and can be
interpreted as the price to be paid today to obtain 1 dollar in state e. Otherwise,
this interpretation is false and, furthermore, q(e) is not uniquely determined.
As an example of such a situation, let there be three states of nature and two
securities with

ã =
[

1 1 0

1 1 −1

]
.

The price of the Arrow–Debreu security associated with state 1 cannot be deter-
mined by arbitrage. There is an infinity of state prices, q(1), satisfying the property
in Theorem 2.1.

Proof of Theorem 2.1 The demonstration relies on a strong version of the Farkas
lemma – see Gale (1960, p. 49), for example, see the following lemma.

6 Note that the terminology is identical to that used for a redundant asset: the payoff of a redundant
asset is spanned by a portfolio composed of other assets.
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Lemma Let A be a real K × L matrix. Then only one of the following properties
obtains:

1. There exists one solution x � 0 to the equation Ax = 0.
2. There is one solution, z, in IRK to the inequality z′A > 0.

Let A = (ã, −p) be a K × (E + 1) matrix created by stacking horizontally ã
and −p. If property 2 from the lemma obtains, there exists a portfolio z, such that
z′ã ≥ 0 and z′p ≤ 0 with some strict inequality. This contradicts the absence of
opportunities for arbitrage. Thus, property 1 obtains, and the last element of x
can be set equal to 1 without loss of generality. Denoting by q the vector of the
first E components, this gives

ãq − p = 0,

which proves Eqn (2.2). The converse is obvious.

1.4 Complete Markets

The notion of complete markets is useful for a thorough understanding of the
fundamental limitations of valuation by arbitrage. Markets are complete when all
revenue configurations are replicable through some portfolio.

Definition 2.2 Complete markets Given (E , ã), markets are complete if, for all
c̃ = [c(e)]e∈E , there exists a portfolio z such that c̃ = c̃z, that is,

c(e) =
K∑
1

zkãk(e) ∀e.

For markets to be complete, there must be at least as many securities as there
are states of nature. If there is one security contingent on each state of nature,
markets are clearly complete: The income configuration c̃ is obtained by buying
c(e) units of each security contingent on state e. The cost of c̃ is thus simply equal
to
∑

e q(e)c(e). Indeed, if markets are complete, everything transpires as if such a
full system of contingent securities existed, since there exists a portfolio yielding
1 dollar in state e and 0 otherwise. If we denote the value of this portfolio by
q(e), we are back to the previous case. Rather than working with the original
securities, we can, by a linear transformation, revert to a complete system of
contingent securities. The following property, the demonstration of which is left
to the reader, characterizes complete markets.
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Theorem 2.2 Given (E , ã, p),

(1) markets are complete if and only if the rank of ã is E; and
(2) complete markets without opportunities for arbitrage are associated with a unique

vector of state prices q, and all future income configurations c̃ have a present value
given by the discounting formula: ∑

e

q(e)c(e).

In practice, eliminating possibly redundant securities, markets are complete
if there are exactly as many linearly independent securities as there are states of
nature. In this case, the square matrix ã has an inverse, and the vector of state
prices, if any, is given by q = ã−1p. Thus, the condition of absence of opportunities
for arbitrage is simply written as

q = ã−1p � 0.

All financial instruments whose payoffs can be written as a function defined on
that state space can thus be valued with state prices.

Example 2.3 Let us return to Example 2.2 in which there are two states of nature
h or b that determine the stock price increase (b < h). Markets are complete, and
the state prices q(h) and q(b), if any, satisfy:

1 = q(h)(1 + r)+ q(b)(1 + r),

S = q(h)S(1 + h)+ q(b)S(1 + b),

whence:

q(h) = r − b
(1 + r)(h − b)

, q(b) = h − r
(1 + r)(h − b)

.

The condition that state prices be positive is thus b < r < h (which we could
easily have established by reasoning directly).

The price C of a call option of strike price K is simply:

C = q(h)[S(1 + h)− K] = r − b
(1 + r)(h − b)

[S(1 + h)− K].

Here, again, we find Eqn (2.1), as in Example 2.2.
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1.5 Risk-Adjusted Probability

When there exists a risk-free security, the pricing formula in terms of state prices
is interpreted as a mathematical expectation with respect to a probability measure
calculated by normalizing the state prices. Such a distribution is called risk adjusted.
This formulation is very popular in finance, particularly in dynamic settings
(see the end of this chapter).

By definition, a risk-free security yields the same payoff in all possible states at
time 1: 1 + r dollars for 1 dollar invested at time 0, where r is the risk-free interest
rate. When q is a vector of state prices, Eqn (2.2) applied to the risk-free security
yields

1 =
∑

e

q(e)(1 + r).

Since state prices are nonnegative, we can define a probability distribution π̄
on E by

π̄(e) = q(e)(1 + r).

Equation (2.2) then becomes

pk = 1
1 + r

∑
e

π̄(e)ak(e).

Anticipating in further chapters, the revenue per dollar invested on security k,
ãk/pk, is called the (gross) return to security k. Note that the return to the risk-free
security is 1 + r. This immediately yields the following.

Corollary 2.3 Risk-adjusted probability If there exists a risk-free security, there
are no arbitrage opportunities if and only if there exists a probability distribution π̄ on E ,
with positive probability on each state, such that the price of any security is equal to its
discounted expected payoff:

pk = 1
1 + r

∑
e

π̄(e)ak(e) ∀ k,

where r is the risk-free rate.
Under this probability, the expected returns to securities are all equal:

∑
e

π̄(e)
ak(e)

pk
= 1 + r ∀ k.
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By construction, the risk-adjusted probability is simply a system of normalized
prices. The terminology may be confusing. There is no immediate relationship
with the probabilities of occurrence of the various states of nature – these have
not yet been defined!

2 Intertemporal Arbitrage

The preceding results extend directly to an intertemporal framework with several
periods. First, we specify the time structure.

2.1 Time Structure

There are several periods with a final date T : t = 0, . . . , T. At time T, all securities
are sold at given exogenous prices. Transactions may occur, dividends distributed,
and information available at discrete times intervening between 0 and T. To
formalize this situation, let us assume that there is a set of states of nature on each
date from 1 to T.

As stated previously, a state of nature at a time t provides a full description of
the economic environment at time t, that is, all known factors that may impact on
securities prices and their future dividends at time t. Past events are assumed not to
be forgotten. In other words, knowledge of the state at time t includes knowledge
of the states through which the economy passed since time 0. In practice, et is
written as et = (et−1, εt), where εt represents the possible shocks occurring at
date t. This structure is represented by a tree (using graph terminology). Figure 2.2
represents a model, called the binomial model, in which a state is followed by two
possible states over four periods. We write et < et+1 if state et precedes et+1, and
we say that et+1 is a successor to state et . A state can only have one predecessor,
but typically has several successors. Seen from date 0, the set of all possible states
at time T can be very large. For example, if each state has two successors, there
will be 2T final states – as time elapses, information becomes more focused, and
the number of possible future final states is divided by two at each date. More
generally, the set of all paths emanating from a state et until T provides the full
range of possible developments. We denote by Et the set of all possible states at
time t and E = ∪Et the set of all states. This latter set plays an analogous role
to the set of states E (same notation) in the two-period model from the previous
section.
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t = 1 t = 2 t = 3

e1= d

e1= u

e3= uuu
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e3= udd
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e3= dud
e3= ddu

e3= ddd

e2= uu

e2= ud

e2= du

e2= dd

e0

t = 0

Figure 2.2 A binomial tree structure.

2.2 Instantaneous Arbitrage

First, consider only portfolios constituted at time 0 and held until time T with no
modification during the intervening dates.

The payoffs procured from the securities are described by extending the con-
ventions of the two-period model. At all dates t, before the end of times, t < T,
the income, in terms of the numeraire, paid to the owner of one unit of security
k is dk(et) in state et . For example, for a bond, dk(et) is equal to the coupon paid in
state et , possibly increased by reimbursement of the capital, if it matures before T.
To account for assets representing claims that extend beyond time T, the income
served at the last date is denoted by ak(eT): It includes the (exogenously given)
resale price at the last date. Thus, in the case of a stock, dk(et) represents the
dividend paid out to stockholders in any state et prior to liquidation at time T,
and ak(eT) is the sum of the dividend and the resale price in any state at time T.
We use the generic term “dividend” for d even though the terminology is only
valid for stocks. For bonds, “coupon” would be the appropriate term.
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By an immediate application of the absence of arbitrage opportunities, and in
particular of Eqn (2.2) from Theorem 2.1, to all possible states at all times E , there
exist strictly positive state prices, q = [q(et)], such that

pk(e0) =
∑

et ,t=1,...,T−1

q(et)dk(et)+
∑

eT

q(eT)ak(eT). (2.4)

The intertemporal structure allows futures markets open at time 0 to be accom-
modated. For example, consider a futures market for time t for a fixed-income
bond that yields a sure income stream, that is, one which is only a function of
time, denoted by d(t). This bond can be bought or sold for delivery at time t, at
a price f agreed upon today and payable at t. Purchase of a bond on the futures
market for t does not cost anything before that date and yields a revenue of −f ,
regardless of the states at time t and d(τ ) for all states at the times τ subsequent
to t. Thus, we have

f
∑
et∈Et

q(et) =
∑
τ>t

[ ∑
eτ∈Eτ

q(eτ )
]

d(τ ).

The absence of opportunities for arbitrage provides a condition for consistency of
futures prices with spot prices. Moreover, introducing futures markets may con-
tribute to making markets complete. However, the potential is limited since, as
in the Example above, futures markets are generally unconditional. Transactions
are assumed to occur at time t, whatever state of nature et prevails at that time.
Nonetheless, we have seen in Chapter 1 how, in the case of certainty, futures trans-
actions are replicable by cash-and-carry type strategies, that is, by interventions
on spot markets carried out today and at the term. This type of argument can be
generalized to the case of uncertainty: the existence of spot markets in the future,
provided that the prices to be established on them are fully anticipated, allow markets to
be dynamically completed.

2.3 Dynamic Arbitrage

Assume that the only markets in place are the spot markets for securities that are
open at all times.7

7 The introduction of futures markets in parallel to these spot markets would seriously complicate the
notation and, to a lesser extent, the analysis. In the particular case of dynamically complete markets,
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Thus, the data are

1 a succession of states of nature described by a tree;
2 securities k = 1, . . . , K ;
3 the sequence of dividends per unit of security k, dk(et) in state et , at all

intermediate dates, and a final payoff ak(eT) for the last date T; and
4 the sequence of security k spot prices pk(et). By convention, pk(et) is the spot

price of the security purchased in the state et after distribution of the dividend
dk(et), for all intermediate dates. By convention, as in the static model, the
payoff ak(eT) at the final date includes the resale price of the security, so that
pk(eT) can be set to zero.

This information is assumed known by the participants. This means in par-
ticular that the spot prices of the securities, pk(et), are perfectly foreseen, or,
equivalently, that the prices of the securities are part of the definition of et .

The existence of spot markets for securities that are open in all states of nature
and the assumption of perfect foresight on prices on these markets provide the frame-
work for valuation by dynamic arbitrage. It is the most commonly used, both for
discrete time (as here) and for continuous time. A portfolio constituted today
is not necessarily maintained unaltered until time T. In particular, a stochastic
revenue stream may be replicated with a program of acquisitions and sales during
the intervening periods on the markets that will open, which is called a dynamic
portfolio strategy.

Definition 2.3 A portfolio strategy z defines the portfolio z(et) = [zk(et)] held in
each state et after the transactions. Everything is liquidated at T, z(eT) = 0 for all final
states eT .

The value of the strategy z at time 0 is that of the initial portfolio:

p(e0)
′z(e0) =

K∑
k=1

zk(e0)pk(e0),

and the income generated in a state et at date t, t = 1, . . . , T − 1, is given by

cz(et) =
K∑

k=1

[zk(et−1)− zk(et)]pk(et)+
K∑

k=1

zk(et−1)dk(et),

introduced further on, all futures transactions on an existing underlying security can be replicated by
a sequence of cash-and-carry type operations on the spot market. Futures markets are thus redundant.
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and at date T,

cz(eT) =
K∑

k=1

[zk(eT−1)]ak(eT)

where et−1 is the unique predecessor of et.

Example 2.4 Some strategies, called elementary strategies, are very simple. They
involve intervention only if a given state et occurs, and liquidating the purchased
portfolio on the following date. If the portfolio consists of one unit of security k,
the strategy viewed from time 0 consists of two opposing operations on the spot
market for security k: At time t, if the state is et , one unit of the security is bought,
and it is then resold on the following date whatever happens.

More generally, an elementary strategy is characterized by a vector θ(et) in IRK

that describes the composition of the portfolio, and is written as

z(et) = θ(et), z(es) = 0 for es �= et .

The income generated by this strategy is8

c(et) = −
K∑

k=1

pk(et)θk(et), (2.5)

c(et+1) =
K∑

k=1

[pk(et+1)+ dk(et+1)]θk(et) if et+1 > et (2.6)

c(es) = 0 for any other state. (2.7)

An arbitrage opportunity is a strategy with an initial value that is negative or
nil and that generates nonnegative revenues at all times and in all future states,
with at least one strict inequality.

Definition 2.4 An opportunity for arbitrage is a strategy z such that cz(et) ≥ 0 for
all et , all t > 0, and p(e0)

′z(e0) ≤ 0, with at least one strict inequality.

8 The formula is valid for t < T − 1. When t = T − 1, the income generated by the strategy at
date T is

c(eT ) =
K∑

k=1

ak(eT )θk(eT−1).
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Intuitively, a short-term arbitrage opportunity in state et , between t and t + 1,
should translate into an intertemporal opportunity for arbitrage. In addition,
according to the principles of static arbitrage, the absence of opportunities for
arbitrage in the short term implies the existence of state prices for the direct
successors of et , et+1. We shall demonstrate that this is sufficient for constructing
state prices as of time 0. A necessary and sufficient condition for the absence of
opportunities for intertemporal arbitrage is the absence of short-term arbitrage
opportunities in all states of nature.

Theorem 2.3 Assume an economy in which the only markets are spot markets and in
which prices are perfectly anticipated conditionally on the states of nature.

1 The three following properties are equivalent:
(a) There are no opportunities for arbitrage.
(b) There exists a vector q = [q(et), et ∈ E] of strictly positive elements such that, for

any strategy z,

p(e0)
′z(e0) =

∑
et ,t=1,...,T

q(et)cz(et). (2.8)

q is called the vector of state prices discounted at time 0.
(c) For any state et , t ≥ 0, there exists a vector [q(et+1|et), et+1 ∈ E], of strictly

positive prices for all direct successors of et, such that, for all k:

pk(et) =
∑

et+1|et+1>et

q(et+1|et)[pk(et+1)+ dk(et+1)],

t = 0, . . . , T − 2

pk(eT−1) =
∑

eT |eT>eT−1

q(eT |eT−1)ak(eT).

(2.9)

The vector [q(et+1|et)] gives prices for the successor states of et discounted in et.
2 Given discounted state prices [q(et+1|et)] for all et , the prices defined by

q(et+1) = q(e1|e0) · · · q(et+1|et), (2.10)

where (e0, e1, . . . , et+1) is the unique path from e0 to et+1, are state prices.
Conversely, given state prices [q(et)], the formula:

q(et+1|et) = q(et+1)

q(et)

defines prices for the successor states of et for all et .
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The interpretation of Eqn (2.8) is the same as in the two-period model: the value
of a portfolio strategy in e0 is equal to the discounted value of the revenue it generates.

Similarly, the discounted state prices at some date, knowing the state et , link
the price of a security with the income it generates at time t + 1. According to
Eqn (2.9), the price of security k in state et is equal to the discounted value, measured
with the discounted state prices in et, of the income (dividends + resale price) it generates
at time t + 1.

Proof of Theorem 2.3

1 (a) ⇒ (c)This results from applying Theorem 2.1 to the elementary strategies
of state et .
(c) ⇒ (b) Let us define the prices [q(et)] by Eqn (2.10). We multiply (2.9) by

q(et)θk(et) and sum over k. This yields:

q(et)[p(et)
′θ(et)] =

∑
et+1|et+1>et

q(et+1)[p(et+1)+ d(et+1)]′θ(et),

t = 0, . . . , T − 2

q(eT−1)[p(eT−1)
′θ(eT−1)] =

∑
eT |eT>eT−1

q(eT)a(eT)
′θ(eT−1).

Using (2.5), we see that (2.8) obtains for all elementary strategies. Observe that
any portfolio strategy z is a sum of elementary strategies θ(eτ ), setting

θ(e0) = z(e0), θ(et) = z(et)− z(et−1) for t > 0.

By linear combination, (2.8) is true of all portfolio strategies. This also
demonstrates that q is a system of state prices.
(b) ⇒ (a) directly.

2 The first part has already been demonstrated. Conversely, applying (2.8) to ele-
mentary strategies associated with state et , dividing by q(et), yields (2.9).

Equation (2.8) allows any revenue stream that can be replicated by a portfolio
strategy to be valued. Drawing on the static model, this leads to the introduction
of the notion of dynamically complete markets. In such markets, any income stream
can be replicated by a portfolio strategy. Consequently, (2.8) permits a rigorous
interpretation of state prices, on one hand, and of the valuation of any financial
instrument, on the other.
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Definition 2.5 Markets are dynamically complete if any income stream,
(c(et), t ≥ 1), can be replicated by a portfolio strategy: for any stream c, there exists z
such that

c(et) = cz(et) ∀et , t = 1, . . . , T.

Let us interpret state prices in the case of complete markets. According to (2.8),
the cost of a strategy that yields 1 dollar in state et and nil in any other state is
necessarily equal to q(et). Consequently, q(et) is the price to be paid at t = 0
to obtain 1 dollar in state et . It is strictly positive and uniquely defined. When
markets are incomplete, this interpretation is only valid if such a strategy exists.
The most important practical point is that markets are dynamically complete
whenever there are enough securities in each state to generate any vector of
state-contingent revenues for the immediately succeeding states. Compared with
the static perspective at the initial date, which requires considering all paths that
the economy might follow, the use of dynamic strategies allows a considerable
reduction in the number of securities required for complete markets. When it
is a matter of a derivative written on an underlying security, the relevant states
correspond to the various prices of the security, which are naturally organized
into a tree describing the possible evolution of this price. If markets are complete
in each period – and this condition imposes a strong constraint on the choice
of the tree – it is technically simple to assign a price to each new derivative for
each price stream. We shall illustrate these techniques with the binomial model
of Cox et al. (1979).

Valuing an Option in the Binomial Model

We take up Example 2.2 extended to several periods. In each period, a risk-free
security with a constant return of r between two successive dates and the risky
stock can be traded. A state et is followed by two successors, (et , h) and (et , b),
corresponding to stock price growth rates of h and b, respectively. In other words,
if S(et) is the stock price in state et , its price will be S(et)(1 + h) in state (et , h) or
S(et)(1 + b) in state (et , b).

Consider a derivative on this stock, say a European option maturing at T
with a strike price of K . From the perspective of time 0, there is a large number
of final states. However, markets are dynamically complete: Since each state is
followed by two successors, the risky stock and the risk-free security suffice to
complete the markets (their payoffs are never proportional since b and h differ).
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To value the option using (2.8), we need to evaluate the state prices. For this, it
is convenient to first compute the state prices between two successive dates, and
then apply (2.10).

1 Calculation of the state prices q(et+1|et) We apply (2.9) to the two assets in et ,
knowing that the two following states are characterized by h and b:

1 = q(h|et)(1 + r)+ q(b|et)(1 + r),

S(et) = q(h|et)S(et)(1 + h)+ q(b|et)S(et)(1 + b).

Thus, it follows that state prices are independent of et and are given by the same
expression as in the two periods model in Example 2.2:

q(h) = r − b
(1 + r)(h − b)

, q(b) = h − r
(1 + r)(h − b)

.

2 Calculation of the state prices q discounted in 0 A state et is characterized by the
succession of growth rates, high or low, realized from date 0 up to t. The state
price, which is the product of the intermediate prices, is equal to q(h)iq(b)t−i if
there were exactly i times h and t − i times b between 0 and t. Consequently, it
is independent of the order in which the jumps occurred.

3 The price at t = 0 of an option maturing at T and with a strike price of K The
option does not distribute intermediate dividends, and at time T, it pays out
[S(1 + h)i(1 + b)T−i − K]+ (we denote α+ = max(α, 0)) if there were i high
yields between 0 and T. Setting π̄ = (r − b)/(h − b) and grouping all the states
in which the yield was high i times, we obtain

C = 1
(1 + r)T

∑
i = 0,...,T

T!
(T − i)!i! π̄

i(1 − π̄)T−i

× [S(1 + h)i(1 + b)T−i − K]+,

where π̄ can be interpreted as a probability of occurrence of h, since it is
between 0 and 1.

In the Cox–Ross–Rubinstein model, the option price is equal to the expectation,
given the (risk-adjusted) probability π̄ , of its final value discounted at the risk-free rate.

This result can be generalized when the risk-free rate varies with the state of
nature (see the following section).

4 Hedging strategies The use of state prices allows the option price to be com-
puted very easily. Often a financial institution also wishes to calculate the
portfolio strategy that replicates the option. Indeed, having sold the option and
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unwilling to assume the associated risk, a replicating portfolio strategy serves
as a hedge: It exactly gives the payoffs that the institution is required to pay to
the option holders. The following algorithm accomplishes this:
(a) Starting from the “end” of the tree, in any state eT−1 preceding maturity,

compute the value of the option C(eT−1) in these states and the portfolio
z(eT−1) that replicates it.

(b) For any state eT−2 at T − 2, we know from step (a) the option price in the
two successor states: C(eT−2, h) and C(eT−2, b). The value of the option in
eT−2 follows:

C(eT−2) = q(h)C(eT−2, h)+ q(b)C(eT−2, b),

This is also the value of the portfolio z(eT−2) that will be worth C(eT−2, h)
and C(eT−2, b) in the two following states. This portfolio permits the
purchase of the replicating portfolio in the two succeeding states.

(c) Continue “up” the tree in the same fashion until time 0.

This Example illustrates two points:

1 The usefulness of the valuation formula (2.8): If we only seek to value the
option, it is much simpler to compute the state prices than to replicate the
option. The valuation, however, is only valid when such a replicate exists,
which follows automatically if markets are dynamically complete.

2 The flexibility provided by the algorithm: It allows to price and replicate all
derivatives written on the stock. For example, consider an American option
(recall that such an option can be exercised at various dates before maturity). In
each state, compare the value of the option if it is not exercised with the profit
generated by exercising it immediately: This simultaneously determines the
value of the option as the greater of these two terms, and the optimal exercise
strategy.

Example 2.5 Valuation of an option with a sliding strike price The binomial
tree allows the valuation of options with complex characteristics, known as
“exotics.” Here we propose the valuation of an option on stocks with the following
features:

1 The strike price is periodically redefined as a percentage of the stock price,
unless it reaches a floor fixed at the time of issue.

2 The option can be exercised at certain predetermined periods.
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Figure 2.3 Binomial model.

Figure 2.3 represents the possible evolution of the stock price over four periods,
in which we have set h = 0.20 and 1 + b = 1/(1 + h). If the risk-free rate r is
equal to 0.05, the risk-adjusted probability of the high state π̄ is equal to 0.591.

Consider an option with a strike price of 95 at time 0, revisable at t = 2, and
whose new value will be the greater of 90 (the floor) or 95 percent of the stock
price. The option can only be exercised on even dates, t = 2, 4 . . . and at the
strike price determined two periods previously. Thus, 95 is the strike price that
will prevail if it is exercised at time 2. At this time, the strike price (which is to be
exercised at t = 4) is adjusted to 136.8 if S = 144, maintained at 95 if S = 100,
and lowered to 90 if S = 69.4.

The calculation of the option value proceeds in several steps, starting from the
end of the tree. The retention value of the option at a given date is defined as the
value yielded by the option if it is not exercised immediately.

Step 1: We start at t = 2 in one of the three possible states.
Assuming that we keep the option, it can only be exercised at t = 4 and at a

known strike price. Thus, computing the retention value is a simple matter.
This allows the exercise strategy to be determined at t = 2. To know whether it

is preferable to exercise the option immediately or hold on to it, all that is needed
is to compare the retention value with the profit yielded by exercising it now.

For example, assume that S = 144. The retention value is equal to

π̄2(207.4 − 136.8)+ 2π̄(1 − π̄)(144 − 136.8) = 28.14,
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while exercising it immediately yields 144 − 95 = 49: The option is exercised!
Similarly, we find that

1 if S = 100: the retention value, π̄2(144 − 95)+ 2π̄(1 − π̄)(100 − 95) = 19.53,
is larger than the exercise value, 5 (the option is not exercised); and

2 if S = 69.4: the retention value, π̄2(100−95) = 1.75, is larger than the exercise
value, 0 (the option is not exercised), respectively.

The option value at t = 2, before possibly being exercised, is the maximum of
the two quantities, or 49 if S = 144, 19.53 if S = 100, and 1.75 if S = 69.4.

Step 2: We can now easily compute the option price at t = 0. It is the discounted
sum, computed with the state prices, of its value at time 2:

π̄249 + 2π̄(1 − π̄)19.53 + (1 − π̄)(1 − π̄)1.75 = 26.98.

2.4 Probabilistic Formulation: Risk-Adjusted Probability

The notion of risk-adjusted probability introduced in the two-period model
(Section 1.5) is particularly useful in a dynamic framework. Indeed, after nor-
malization, the formula (2.10) for constructing the state prices is transformed
into the Bayesian formula for conditional probabilities.

Consider a T-period model. Assume that there exists a short-term risk-free
security at all dates. Its return between t and t + 1, knowing the state et , is
independent of the successor et+1 of et and is denoted by r(et). Note that r(et),
which is the short-term risk-free rate, depends upon state et and may vary over
time: The security is riskless only between two successive periods, once the state
is known.

Theorem 2.4 Assume an economy with a risk-free short-term security in each period.
The three following properties are equivalent:

1 There are no opportunities for arbitrage;
2 There exists a strictly positive probability distribution π̄ for the tree, such that the value

of any strategy is equal to the expectation under π̄ of the discounted sum at the risk-free
rate for the future incomes it generates:

p(e0)
′z(e0) =

∑
et ,t=1,...,T

Eπ̄
t∏

τ=1

1
1 + r(eτ−1)

cz(et);
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3 There exists a strictly positive probability distribution for the transition from any state
et to its successors π̄(.|et) such that, for any k and et,

pk(et) = 1
1 + r(et)

Eπ̄ [pk(et+1)+ ak(et+1)|et], t = 0, . . . , T − 2

pk(eT−1) = 1
1 + r(eT−1)

Eπ̄ [ak(eT)|eT−1].
(2.11)

Comments: As in the two-period model, π̄ is called the risk-adjusted probability.
This probability is particularly useful in the dynamic model and in continuous
time, which is obtained in the limit when the interval separating successive trans-
actions is allowed to tend toward zero. In this situation, powerful tools developed
for stochastic processes can be used.

For a security k that does not distribute any dividends before the final period,
assuming that the interest rate is constant and equal to r, Eqn (2.11) is often
written as

(1 + r)−tpk(et) = Eπ̄ [(1 + r)−t−1pk(et+1)|et].
The term (1 + r)−tpk(et) is the security price in state et counted in terms of
dollars at time 0, for short the discounted price. Thus, the above expression says
that the expectation at time t + 1 of the discounted security price, conditional on
the state at date t, is equal to its value in state et . The risk of loss compensates
for the chance of profit in mathematical expectation. In mathematical terms, the
discounted security price is a martingale.9

Proof of Theorem 2.4 All that is required is Theorem 2.3 and to define π̄ from the
state prices [q(et)] with

π̄(et) = q(et)∑
states at time t q(e)

,

and the transition probabilities from the transition prices with

π̄(et+1|et) = q(et+1|et)[1 + r(et)].
9 Mathematically, a stochastic process x̃t is a martingale if the expectation of xt+1 conditional on the
information available at time t is equal to xt :

Etxt+1 = xt .
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Exercises

2.1 Options and complete markets The notion of complete markets is essential
to valuation by arbitrage. The following examples are designed to illustrate the
notion that it may be possible to complete markets by authorizing the negotiation
of options on preexisting assets.

1 In a two-period model with three states of nature e1, e2, and e3, consider a single
asset with payoffs ã1 given by (4,3,1).



Anula Lydia: GABR: “chap02” — 2005/8/23 — 14:39 — page 53 — #26

Arbitrage 53

Show that the introduction of two call options with different strike prices on
the asset allows the market to be completed.

How would this result be changed if the revenue a1 in state e3 was no longer 1,
but 3? Explain your results.

2 Consider a second scenario in which the market is comprised of two assets.
The states of nature in the second period are e1, e2, e3, and e4, and the revenue
vectors are

e1 e2 e3 e4

a1 1 1 2 2
a2 1 2 1 2

Is it possible to complete this market by introducing options on a1 and a2?
Explain your results.

3 Prove that it is possible to constitute a portfolio (or fund) with the two assets
so that call options on this fund allow for completion of the market.

Note: Question 1 illustrates the following, more general, result: Options on the
securities can complete market only if the securities allow the different states of
nature to be distinguished. Question 2 reveals that the converse is not trivial.
Indeed, the condition that the income from the available securities allows a dis-
tinction to be made between the various states is necessary and sufficient for the
existence of a portfolio of initial securities for which call (or put) options allow the
market to be completed (see Ross 1976b).

2.2 Consider a firm whose underlying value per share increases either by h or
b between t = 0 and t = 1 and between t = 1 and t = 2, where h > b. At date 1
it pays out a dividend of d, so that if the share price at t = 0 is 1, the share price
after the dividend is paid evolves as follows:

p(e3) = (1 + h − d)(1 + h)
p(e1) = (1 + h − d)

p(e4) = (1 + h − d)(1 + b)
p(e0) = 1

p(e5) = (1 + b − d)(1 + h)
p(e2) = (1 + b − d)

p(e6) = (1 + b − d)(1 + b)
t = 0 t = 1 t = 2

The risk-free interest rate is r.
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1 Compute the state prices associated with e1 and e2, at time t = 0. Verify that
they are independent of the dividend. Under what conditions are there no
opportunities for arbitrage? Similarly, at e1 and e2, compute the state prices of
the two possible successor states.

2 Consider a call option that can be exercised at t = 2, with a strike price of K ,
and with (1 + h − d)(1 + b) < K < (1 + h − d)(1 + h). Find an expression for
its price at t = 0.

3 Consider a call option that can be exercised at t = 1 before distribution of the
dividend, or at t = 2 at the strike price K . Under what condition on d is it
advantageous to exercise this option at t = 1?

4 Compute both option prices at t = 0 for

h = 0.05, b = 0.01, r = 0.02, d = 0.04, K = 1.04.

2.3 Arbitrage and transaction costs The organization of markets creates operating
costs that are supported by the participants. The purpose of this exercise is to
examine some of the interactions between these costs and arbitrage operations.

Consider a two-period model in which there are two states of nature and two
securities. The first security is risk free indexed with 0. To simplify, the interest
rate is nil, so that 1 dollar invested in it yields 1 dollar in each state of nature. The
other security yields a(1) in state 1 and a(2) in state 2, with a(2) > a(1) > 0. The
purchase price of this security is denoted by p+

1 , which may be greater than its
sale price, p−

1 .
We wish to value another security, defined by a contingent revenue stream

[b(1), b(2)] in the two states of nature, where b(2) > b(1). This security is
exchanged on a market with no transaction costs: There is a single buy and sell
price, p2.

1 In the absence of opportunities for arbitrage, calculate the state prices q(e1) and
q(e2) when p+

1 = p−
1 . Use this to derive the price of security 2. Now assume

that p+
1 > p−

1 .
(a) Determine the portfolio (z0, z1) of assets 0 and 1 that replicates the asset b.

Verify that z1 > 0.
(b) In the absence of opportunities for arbitrage, determine upper and lower

bounds p2 and p
2

for the price of asset 2.
2 Here we examine how the Arrow–Debreu formula for asset valuation

(Theorem 2.2) can be extended.
(a) Calculate the bounds for the prices of the Arrow–Debreu assets:

(q+(ei), q−(ei)) for the asset yielding 1 in state i.
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(b) Assume that b(1) > 0. Show that the pricing formula:

p+
2 = q+(e1)b(1)+ q+(e2)b(2), p−

2 = q−(e1)b(1)+ q−(e2)b(2),

yields upper and lower bounds for the asset price, but that these bounds can be
improved upon.



Anula Lydia: GABR: “chap02” — 2005/8/23 — 14:39 — page 56 — #29



Anula Lydia: GABR: “part-2” — 2005/8/23 — 14:40 — page 57 — #1

p a r t 2
Exchanging Risk



Anula Lydia: GABR: “part-2” — 2005/8/23 — 14:40 — page 58 — #2



Anula Lydia: GABR: “part-2” — 2005/8/23 — 14:40 — page 59 — #3

Exchanging risk 59

Before delving into the heart of the material, it is useful to briefly review an
intertemporal economy without uncertainty. The determinants of the demand
for savings, as well as the optimality properties of the equilibrium on the market
for loans, are briefly recapitulated in the first section. This allows us to explain
the problems encountered when future is uncertain and to put the material in the
following chapters into perspective.

1 The Model with Certainty

We adopt the simplest possible framework: There is a single good1 that cannot be
stored and is available “today,” at t = 0, and “tomorrow,” at t = 1. Consumers live
during both periods. They have resources during each period. To illustrate, think
of current resources as wage income and future resources as pension income.
Future resources are assumed known in the current period with no shadow of
uncertainty. Some exchanges between the members of this economy are likely
to be profitable. Some expect to have a more generous pension income than
required, while confronting substantial child-rearing costs in the present. They
wish to have part of their future resources available today. Conversely, others are
worried about their future and want to save. A market for lending and borrowing
allows mutually beneficial exchanges between these two periods. To describe the
functioning of this market, we first examine the behavior of a typical individual,
and then how equilibrium is established.

1.1 Individual Demand for Savings

Consider an individual with resources ω0 at t = 0 who receives ω1 at t = 1 with
certainty.

Lending and borrowing is possible at the rate r, r > −1. Savings of z, where
negative z indicates borrowing, yields the consumption profile (c0, c1) at times
0 and 1:

c0 = ω0 − z, c1 = ω1 + (1 + r)z. (P2.1)

1 The analysis can be easily extended to the case of several goods, in the following setup. First,
in addition to the market of lending and borrowing the numeraire, spot markets for all the goods exist
at both periods. Second, the relative prices that prevail at t = 1 are correctly anticipated.
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Eliminating z, the budget constraints for each date (P2.1) imply that the profile
satisfies

c0 + c1

1 + r
= ω0 + ω1

1 + r
. (P2.2)

This equation is known as the intertemporal budget constraint. The price of one
unit of the good at time 1, in terms of the good at time 0, equals 1/(1 + r). To
increase consumption by one unit at time 1, 1/(1 + r) units of consumption must
be forfeited at time 0. The term on the left-hand side of the budget constraint
is the value of the consumption profile, while the right-hand side is that of the
income profile. Since the good at time 0 serves as the numeraire, we say that
these values are discounted at time 0. If there are no limits on savings or borrowing, any
profile satisfying the intertemporal budget constraint can be obtained by adjusting
savings, z.

Individuals have preferences that describe their relative tastes over current and
future consumption (c0, c1). Faced with the rate r, a consumer chooses the con-
sumption profile he prefers from among those satisfying the intertemporal budget
constraint (P2.2): Such a profile is called optimal.

Preferences are represented by a real-valued utility function U(c0, c1) defined
on IR2+. The function U is assumed increasing in all arguments, continuously
differentiable, and strictly concave. Often it is also assumed to be additive across
periods of the form

U(c0, c1) = u(c0)+ δu(c1).

Albeit restrictive, this formulation is convenient, especially when generalizing the
model to more than two periods. The psychological discount factor, δ, positive and
less than one, captures the consumer’s preference for the present. The psychological
discount rate j is defined by:

δ = 1
1 + j

.

A consumption profile (c0, c1) is optimal when it maximizes utility U(c0, c1)

subject to the intertemporal budget constraint (P2.2). An optimal profile is char-
acterized by (P2.2) and the equality between the marginal rates of substitution
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and the ratio of the good price during the two periods2:

U ′
0(c0, c1)

U ′
1(c0, c1)

= 1 + r, (P2.3)

where U ′
t(c0, c1), the partial derivative ∂U(c0, c1)/∂ct , is the marginal utility of

consumption ct , for t equal to 0 or 1.
The rationale for this property of the optimal consumption profile is as fol-

lows. Consider a consumption profile (c0, c1) that satisfies (P2.2). A variation in
consumption of [dc0, −(1 + r)dc0] satisfies the budget constraint and, for small
variations, translates into a change in utility approximately equal to

[U ′
0(c0, c1)− U ′

1(c0, c1)(1 + r)]dc0.

If the term within the square brackets is positive (negative), the consumer will
increase (decrease) consumption today. Condition (P2.3) is necessary. It is also
sufficient owing to the strict concavity of the function U: Together with the budget
constraint (P2.2), condition (P2.3) provides a unique solution to the consumer’s
program.

In the (c0, c1) plane, the consumer’s budget constraint is the line through the
point � = (ω0,ω1), with slope equal to −(1 + r) (Figure P2.1). The optimum
occurs at the point of tangency of the indifference curve with the budget line.

In the case of additive utility, (P2.3) simplifies to

u′(c0)

u′(c1)
= 1 + r

1 + j
. (P2.4)

Since marginal utility is decreasing, we have

c0 > c1 ⇐⇒ r < j.

Current consumption exceeds future consumption if, and only if, the interest
rate r is less than the psychological discount rate j.

An increase of dr in the interest rate has several impacts – not necessarily all
in the same direction – on consumption today and its complement, savings. Tra-
ditionally, a distinction is made between an income effect and a substitution effect.
To see this, the compensating variation dW is defined as the change in discounted

2 We only consider situations in which there is no corner solution, that is, the consumer chooses
strictly positive levels of consumption in each of the two periods. This is the case if the util-
ity function satisfies the Inada condition: For all c1 > 0 limc→0 U′

0(c, c1) = ∞ and for all
c0 > 0 limc→0 U′

1(c0, c) = ∞.
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Figure P2.1 The consumer.

income necessary to enable the consumer to maintain the same consumption
profile as in the reference situation. Differentiating (P2.2) yields

dW = ω1 − c1

(1 + r)2
dr = c0 − ω0

(1 + r)2
dr.

dW is negative when the consumer is saving (i.e., consumption in period 1 exceeds
income in the same period) because, for a given level of savings, more can be
consumed during the second period if the interest rate increases. Similarly, dW
is positive when he is dissaving. To compute the variation in consumption levels
(dc0, dc1), we differentiate3 (P2.2) and (P2.4) in terms of dr. This yields:

dc0 + dc1

1 + r
= −dW ,

u′′(c0)dc0 − 1 + r
1 + j

u′′(c1)dc1 = u′(c1)

1 + j
dr,

3 Formally, the implicit function theorem applied to the system comprised of (P2.2) and (P2.4) yields
the consumption profile in terms of the exogenous variables of the model.
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and, after eliminating dc1,[
u′′(c0)+ (1 + r)2

1 + j
u′′(c1)

]
dc0 = u′(c1)

1 + j
dr − (1 + r)2

1 + j
u′′(c1)dW .

The variation in current consumption is decomposed into the two terms on the
right-hand side of the above equation. The first is the substitution effect. It fol-
lows from the equality of the marginal rate of substitution with the price ratio
between consumptions today and tomorrow, as given by (P2.4). As the interest
rate increases, its impact is always to reduce consumption today or, equivalently,
to increase savings. The second is the income effect. When the consumer is dissav-
ing (dW > 0), it operates in the same direction as the substitution effect; hence,
a rise in the interest rate unambiguously increases savings. In the more common
case of positive savings, the two effects work in opposite directions, and any fur-
ther conclusions require more information on preferences and the intertemporal
structure of resources (we will illustrate this with isoelastic functions).

1.2 Equilibrium, Optimum

Now consider the economy as a whole. Consumers are indexed with i and
characterized by their resources at both periods (ωi

0,ωi
1) and preferences Ui.

Definition P2.1 Equilibrium is given by an interest rate r and a consumption profile
(ci

0, ci
1) for each individual i, such that

1 (ci
0, ci

1) maximizes Ui subject to the budget constraint of agent i;
2 the scarcity constraints are satisfied:∑

i

ci
0 =

∑
i

ωi
0 and

∑
i

ci
1 =

∑
i

ωi
1.

When one of the scarcity constraints is satisfied, the fact that all the individual
budget constraints are met ensures that the other scarcity constraint is satisfied
as well (Walras’ law). The definition can be interpreted as describing equilibrium
on the market for borrowing and lending at time 0: Agent i’s savings are equal to
ωi

0 − ci
0, and aggregate borrowing equals aggregate lending.

It is easy to demonstrate that an equilibrium exists. Furthermore, the alloca-
tion of resources in equilibrium is Pareto optimal: It is impossible, given scarce
resources, to increase everyone’s utility. The proof of the optimality of the equi-
librium is very simple: If one individual’s utility is increased, the discounted value
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of his consumption profile (as calculated at the equilibrium discount rate r) must
be greater than at equilibrium. To improve everyone’s position vis-à-vis the equi-
librium situation, it is thus necessary that the value of each person’s consumption
exceeds that of his available resources. Summing over all individuals, the value of
aggregate consumption exceeds that of available resources, which is impossible
at a feasible allocation.

Example P2.1 Consider a consumer with an additive utility function U, where
u is given by

u(c) = c1−γ

1 − γ
, if γ > 0, γ �= 1,

or

u(c) = ln c, if γ = 1.

The case γ = 1 corresponds to the logarithmic specification. The function u is
isoelastic, since its elasticity with respect to consumption, that is, the derivative of
its log with respect to log c, is constant – independent of the level of consumption.
Optimal consumption is characterized by (P2.2) and

u′(c0)

u′(c1)
= c−γ

0

c−γ
1

= 1 + r
1 + j

,

which yields

c0 = α(r)
(
ω0 + ω1

1 + r

)
, where α(r) =

[
1 + 1

1 + r

(
1 + r
1 + j

)1/γ
]−1

.

(P2.5)

Current consumption is a fraction of intertemporal income, with a factor of
proportionality equal to α(r).

If γ < 1,α(r) decreases with r: Current consumption declines and savings rise
with r.

If γ > 1,α(r) increases with r: The direction of the variation thus depends
on the structure of resources or, specifically, on the ratio ω1/ω0. If this ratio is
very small, for example, nil, the consumer expects no future resources and her
savings diminish with the yield to savings, r. Conversely, if this ratio is very high,
the consumer dissaves. Borrowing decreases (savings increase) when the interest
rate rises, owing to higher interest charges.
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Now consider an economy in which all individuals have the same isoelastic
utility function with parameter γ and the same psychological discount rate j.
According to (P2.5), the equilibrium interest rate solves:

α(r)
∑

i

(
ωi

0 + ωi
1

1 + r

)
=
∑

i

ωi
0.

This equation only depends on aggregate resources or, more precisely, on their
growth rate g defined as 1 + g = ∑

i ω
i
1/
∑

i ω
i
0. It can be written as

α(r)
(

1 + 1 + g
1 + r

)
= 1.

Using the properties of α, one can easily verify that there is a unique equilibrium
if γ < 1, and that the equilibrium interest rate increases with the growth rate g.
If γ > 1, several equilibria may exist.

2 Introducing Uncertainty

Financial markets allow the exchange of goods available at different times.
Without uncertainty, as in the just described framework, a single market is suffi-
cient for all relevant exchanges to be possible. In other words, in the sense defined
in Chapter 2, markets are complete since there is only one state of nature at t = 1.
As we have just seen, equilibrium ensures an optimal allocation of resources.
How does this result generalize when future resources are uncertain? Following
the same reasoning as in the previous section, several questions arise.

First, future consumption is typically risky. This calls for a description of
individuals’, or investors’, choices when prospects are risky (Chapter 3). Under
uncertainty, utility reflects the individual’s attitude toward risk and the evaluation
of the risk. This evaluation is likely to be affected by the available information.

Second, the consumption or expenditure profiles that are attainable by trading
depend on the available financial instruments. A risk-free asset allows wealth to
be transferred between two periods in a very specific way. Assets that enable
income transfers between two states of nature tomorrow are valuable because
they allow the sharing of risky resources. They facilitate, for instance, risk-taking
by entrepreneurs by limiting their liability, at least partially, toward investors.
As described in Chapter 1, various assets perform this type of operation: Cor-
porate stock yields an income that is correlated with fluctuations in activity,
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while futures contracts allow risk at term to be shared with no prior exchange of
funds. Savings behavior thus becomes inextricably linked to the assets compris-
ing the portfolio choice, which determines the (risky) future consumption profile.
Chapter 4 is devoted to a detailed examination of a typical investor’s portfolio
choice in terms of his preferences, the risks of the resources linked to his activities,
and the securities that can be exchanged on the markets.

From the perspective of society as a whole, it is important to establish under
what conditions existing financial markets make a Pareto efficient allocation of
risky resources possible. Chapter 5 introduces the main principles: Mutualiza-
tion of individual risks and optimal allocation of macroeconomic risks. Again the
notion of complete markets turns out to be essential, allowing a link to be estab-
lished between the risk-adjusted probability of Chapter 2 and the “fundamentals,”
namely the objective probability of the occurrence of states of nature, resources,
and risk aversion. Also, the role of options as a tool to complete markets is
outlined. Chapter 6 more closely examines standard specifications of the econ-
omy that permit an explicit resolution of the equilibrium allocation and prices:
The CAPM and Consumption-based Capital Asset Pricing Model (CCAPM). The
returns of financial assets at equilibrium and risk premiums can be computed.

The two final chapters of Part 2 are devoted to extensions to the basic model.
Chapter 7 uses simple examples to address issues related to the information
available to agents. In the preceding chapters, all agents had the same exogenous
expectations concerning the future, represented by a single (objective) probability
associated with the occurrence of the states of nature. We show how, when
investors have distinct expectations, a market equilibrium may exist only under a
great deal of consistency between these expectations. We study how the arrival
of news interacts with the functioning of the markets and the associated risk allo-
cation. Finally, through the notion of rational expectations equilibrium, the issue
of whether and how prices convey private information is addressed. Chapter 8
deals with an infinite time horizon – in contrast to the preceding material that
was mostly limited to two-period models. This is the occasion to describe a model
for the stochastic evolution of the spot curve and to make explicit the difficulties
encountered by the theory in trying to explain the gap between the returns of
bonds and stocks.

BIBLIOGRAPHICAL NOTE

For a deeper understanding of basic microeconomic theory, the reader can refer
to microeconomic textbooks appropriate for Masters or PhD level courses. For
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the Masters level, Varian (1990) is recommended. Mas Colell et al. (1995) and
Kreps (1990) provide a more advanced coverage. Debreu’s book (1959), which is
quite abstract but fundamental, examines the relationships between equilibrium
and Pareto optimality. Debreu demonstrates how general equilibrium theory can
be applied to a world with uncertainty. Two crucial assumptions are needed:
Uncertainty is represented by exogenous states of nature and markets should be
complete.

Debreu, G. (1959). Theory of value, Wiley, New York.
Kreps, D. (1990). A course in microeconomic theory, Princeton University Press, New Jersey.
Mas Colell, A., M. Whinston, and J. Green (1995). Microeconomic theory, Oxford University

Press, New York.
Varian, H. (1990). Intermediate microeconomics, a modern approach, Norton, New York.
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By operating on financial markets, investors modify the risk profile of their future
resources. Futures markets allow a farmer to safeguard against the risk associated
with fluctuating crop prices, and options make it possible to insure against sudden
price drops or, conversely, to profit from them. Interventions in these markets
are linked to incomes the investor hopes to receive from real activities: Labor
income, the sale of agricultural produce, revenue from a privately held, unlisted
company, and the like. However, current or future real resources are not the
only determinants of investor behavior: Two individuals with identical incomes
rarely choose the same portfolios. A priori, two other factors play a key role:
The investor’s assessment of risk, whether on her nonfinancial resources or on
the securities she can trade, and the extent of her risk tolerance – or her attitude
vis-à-vis risk. It is common to evaluate the risk of a random variable by its variance.
Is it justified? Thus, a first task is to model how an investor faced with a risky
environment behaves.

Section 1 of this chapter introduces some fundamental concepts, such as
stochastic dominance, von Neumann Morgenstern utility functions, and risk
aversion. The underlying assumption is that the investor’s preferences are based
on the probability distribution of future income.

The choice of a portfolio determines, in conjunction with other sources of
revenues, the agent’s overall future stochastic income. Thus, comparing two
portfolios is tantamount to comparing two stochastic revenue flows. This leads
to a description of investors’ criteria for investing in the stock exchange. Section 2
illustrates these criteria in the case where there is a single risky asset. A detailed
examination of investments in multiple securities is postponed until the next
chapter.

In a similar way as in Chapter 2, the notion of “subjective” opportunities for
arbitrage can be defined. Section 3 establishes a link between the absence of
such opportunities and the existence of an optimal portfolio. How do individuals
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determine the probability distribution of risky incomes? A probability, often called
subjective, appears in a von Neumann Morgenstern setup. Section 4 investigates
how Bayesian learning shapes the evolution of subjective expectations and their
possible convergence toward an objective probability.

Finally, we address the issue of information, which is an essential concept on
financial markets. As information, or signals, become available, the subjective
probability of events changes. The Blackwell criterion allows the informational
content of various signals to be partially ranked and their value to be identified.

1 Choice Criteria

Agents’ choices feature elements of consistency when circumstances are modified,
for example, when the securities payoffs change, when new assets are introduced,
or when an investor’s expected wealth is modified. We present here an analysis of
choice that accounts for this consistency: the agent’s preferences bear on the probability
distribution of future revenues.

The probability distribution of a future income c̃ is characterized by a function
F defined from IR into [0, 1] that specifies for each value c the probability that the
realized income is lower than this value:

F(c) = Pr(c̃ ≤ c).

The function F is nondecreasing and right continuous. The investor’s preference
relationship, denoted by �, ranks these distribution functions.

One natural hypothesis is that the investors’ preferences on these probabi-
lity distributions are increasing in the sense of first-order stochastic dominance.
A distribution F is said to first-order dominate a distribution G if, for any c,

F(c) ≤ G(c).

A necessary and sufficient condition1 for F to first-order dominate G is that for
any piece-wise differentiable increasing function v,∫

v(c)dF(c) ≥
∫

v(c)dG(c).

1 It can be seen that the condition is sufficient by letting v be equal to 0 on the interval (−∞, c] and
to 1 elsewhere. To verify that it is necessary, integrate by parts.
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In other words, if F dominates G, then any investor maximizing the mathematical
expectation of an increasing utility function of income prefers F to G.

First-order stochastic dominance yields a very incomplete ranking of probabi-
lity measures. Hence, the criterion is usually not very operational: Typically,
choices are on probability distributions that cannot be compared in terms of
stochastic dominance. To go beyond this measure, a very commonly used
formulation is the von Neumann Morgenstern criterion.

1.1 Von Neumann Morgenstern Utility and Risk Aversion

Given certain axioms, preferences over probability distributions can be represen-
ted by a function v, a von Neumann Morgenstern index, defined from IR into IR.
Investors classify random revenue flows c̃ according to the expected value of this
index Ev(c̃) = ∫

v(c)dF(c). In other words,

F � G ⇔
∫

v(c)dF(c) >
∫

v(c)dG(c).

Among all rankings of probability distributions, those of the von Neumann
Morgenstern form are quite specific. They correspond to a linearity of choices in
probability.

In this book we assume that the agents’ choices satisfy the von Neumann Morgenstern
hypothesis.

The concavity of the von Neumann Morgenstern utility index v reflects intuitive
concepts of risk aversion.

First, investors have risk neutral preferences if they are only interested in the
mathematical expectations of their incomes. As a result, they are indifferent
between the prospect of a stochastic income c̃ and its certainty equivalent, Ec̃.
Such preferences are represented by the linear index: v(c) = c.

Most often however, individuals prefer to a stochastic prospect, c̃, the sure
income, Ec̃, with the same mathematical expectation. Such investors are called
risk averse. This property is equivalent to the strict concavity of the function v.
Indeed, when individuals are risk averse, for any c1, c2, and π in ]0, 1[, they prefer
the sure income πc1 + (1 − π)c2 to the lottery “receive c1 with probability π or
receive c2 with probability 1 − π .” Thus,

πv(c1)+ (1 − π)v(c2) < v[πc1 + (1 − π)c2)],
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which is the definition of the concavity of v. Conversely, if v is strictly concave,
according to Jensen’s inequality,

Ev(c̃) ≤ v(Ec̃).

Furthermore, the inequality is strict when c̃ is not certain.
The risk premium is defined as the amount of money the agent is willing to pay

to be fully insured. Thus, this premium, ρ, satisfies the equality

Ev(c̃) = v(Ec̃ − ρ).

Local measures of risk aversion use a single number to describe the preferences
of an agent whose stochastic income is close to the value of the sure amount c.
Furthermore, often as a first approximation, only the variance of the income
matters to evaluate the risk premium. To see this, consider a small random
deviation dc̃ (small in the sense that any realization of dc̃ is less than some small,
positive ε). The expansion:

Ev(c + dc̃) = v(c)+ v′(c)Edc̃ + 1
2 v′′(c)Edc̃2 + o(ε2)

allows us to compare various types of deviations. A dc̃ with an expected value of
zero and a variance σ 2 translates into a utility loss (v′′ is negative) of |v′′(c)|σ 2/2.
From the consumer’s point of view, this is equivalent to a decline in sure income of

− v′′(c)
v′(c)

σ 2

2
.

This amount also reflects the risk premium that must be given an investor whose
sure income is c to compensate for accepting the risk dc̃. This calculation motivates
the definition of the coefficient of absolute risk aversion Ra(c):

Ra(c) = − v′′(c)
v′(c)

.

This coefficient is (twice) the amount the investor is prepared to pay for sure to
avoid increasing the variance of his income by one unit. One also often speaks of
risk tolerance , which is defined as the reciprocal of absolute risk aversion:

T(c) = 1
Ra(c)

= − v′(c)
v′′(c)

.

It is sometimes interesting to consider small deviations that are proportional to
the initial reference income: add to the sure income c the stochastic income dc̃
with expectation nil and variance σ 2c2. A similar calculation as above shows that
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from the individual’s perspective, this is equivalent to a decline in sure income,
computed as a proportion of initial income, equal to

− cv′′(c)
v′(c)

σ 2

2
.

This calculation motivates the definition of relative risk aversion Rr(c):

Rr(c) = − cv′′(c)
v′(c)

.

1.2 Standard von Neumann Morgenstern Utility Functions

The measures of risk aversion in general depend on the level of the reference sure
income c. Often, for simplicity, either absolute or relative risk aversion is assumed
to be constant. This leads to the following classes:

1 Constant absolute risk aversion (CARA), or exponential, utility:

v(c) = − exp(−ρc), for positive ρ.

Ra(c) = ρ, Rr(c) = ρc. Absolute risk aversion is constant and relative risk
aversion is increasing with income. The function is defined for any, positive or
negative, income.

2 Constant relative risk aversion (CRRA), or isoelastic, utility2:

v(c) =




c1−γ

1 − γ
, for γ ≥ 0, γ �= 1 or

log c.

The case of γ = 0 corresponds to a risk neutral investor. As γ tends toward 1,
we obtain the log. We have: Ra(c) = γ /c, Rr(c) = γ . Absolute risk aversion
is decreasing with income and relative risk aversion remains constant. These
functions are only defined for positive income.

3 CARA and CRRA utilities belong to the family of hyperbolic absolute risk
aversion (HARA) utilities, characterized by an affine risk tolerance:

v(c) = 1 − α

α

(
ac

1 − α
+ b

)α
, b ≥ 0.

2 The elasticity of the utility of consumption, log v, with respect to log c, is constant.
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It is important to only consider v on the domain that is relevant to the definition,
ac/(1 − α)+ b > 0, where it is increasing and concave.3 Risk tolerance,

T(c) = 1
Ra(c)

= c
1 − α

+ b
a

,

is affine. Absolute risk aversion is increasing whenα is less than 1 and decreasing
when α is greater than 1. The CARA and CRRA functions are limiting cases
(the exponential form is obtained by letting α tend to −∞ for b = 1, and the
isoelastic form when b = 0 and α < 1).

2 The Investor’s Choice

Uncertainty is modeled by a state of nature space, as in the previous chapter. The
random incomes from which an investor can choose depend on his nonfinancial
resources and on the available securities on the market.

2.1 Markets and Budget Constraints

There are two periods, t = 0, or today, when the decisions are made, and t = 1,
when all uncertainty is resolved. From the perspective of time 0, the uncertainty
at time 1 is represented by a finite number of possible circumstances: the states of
nature e, e = 1, . . . , E.

The investor may buy or sell on the stock exchange, as described in Chapter 2.
However, the risk-free security, which is to have a special role, is singled out and
indexed4 by ∗.

1 K risky financial assets, indexed by k, can be traded at t = 0 at price pk,
k = 1, . . . , K . A unit of the asset k is characterized by a stochastic payoff,
ãk = ak(e), e = 1, . . . , E, to which its possession confers a right at time 1, and

3 It is worth bearing in mind that, for whole values of α greater than 1, for example, the quadratic
case, α = 2, the function v is well defined over all IR. However, it is only increasing in c when
ac/(1 − α)+ b > 0.
4 The assumption that a risk-free security is available may be debatable, particularly if the investor’s
horizon is long (e.g., because of inflation). To handle a situation without such a security, one can
impose the constraint that the positions on this security be nil, z∗ = 0.
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which is determined by the realized state. ã designates the matrix K × E of
elements ak(e).

2 The riskless security yields one unit of currency regardless of the state of nature.
Its revenue vector, denoted by 1∗, is thus an E-dimensional row vector of ones.
Its price is p∗ = 1/(1 + r).

Trades are unconstrained: transaction costs are nil, short sales are allowed, and
there are no limits on buys or sales.

At time 0, before the markets open, the investor owns an initial resourceω0 and
a portfolio composed of z∗(0) units of riskless security and zk(0) units of the risky
security k, k = 1, . . . , K . He expects to receive an exogenous stochastic nonfinancial
income flow at time 1, ω̃ = (ω(e), e = 1, . . . , E), completely described by the
states of nature.

A portfolio (z∗, z), where z = (zk)k=1,...,K , costs p∗z∗ + p′z at t = 0 and yields
a future financial income in state e equal to z∗ +∑

k ak(e)zk. Thus, if the investor
final portfolio after trades is (z∗, z), his consumptions (c0, c̃) at times 0 and 1,
respectively, are given by

c0 + p∗z∗ + p′z = ω0 + p∗z∗(0)+ p′z(0), (3.1)

and in state e at time 1,

c(e) = ω(e)+ z∗ +
K∑

k=1

ak(e)zk, (3.2)

which, in vector notation, is

c̃ = ω̃ + z∗1∗ + z′ã. (3.3)

also noted, with a slight abuse of notation:

c̃ = ω̃ + z∗ + z′ã.

There are redundant securities when a given random income profile c̃ can
be obtained with an infinite number of different portfolios. Such a situation
is observed when the security payoffs, the (row) vectors 1∗ and ãk, are collin-
ear. With no loss of generality, one can then pursue the analysis with a subset,
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k = ∗, 1, . . . , K , of nonredundant securities.5 Formally, throughout this book, we
assume the following.

Hypothesis 3.1 (Nonredundancy) The K +1 row vectors 1∗ and (ãk)k=1,...,K are
linearly independent.

The investor is assumed unable to influence prices, either directly or indirectly –
and takes them as given.

The investor’s preferences over consumption at the two periods are separ-
able. For consumption in period 1, they are represented by a von Neumann
Morgenstern utility function v: The utility level associated to (c0, c̃) is given by

u(c0)+ E[v(c̃)],

where the symbol E designates the mathematical expectation taken over the
probability measure representing the investor’s expectations. His expectations are
formally represented by a probability distribution, π , over the states of nature,
so that

E[v(c̃)] =
∑

e

π(e)v(c(e)).

Actually, for the study of investment behavior, what counts is the derived
probability distributionψ on nonfinancial future income ω̃ as well as the revenues
yielded by securities ã. In other words, the states can be identified with the values
taken by (ω̃, ã).6

The investor chooses (z∗, z) so as to maximize

u(c0)+
∫

v(c̃)ψ(dω, da1, . . . , daK),

where c0 and c̃ are given by (3.1) and (3.2).

5 The redundant securities can be priced by arbitrage in terms of the selected K + 1 securities.
The eventual initial holdings in redundant securities also can be translated into the nonredundant
fundamental basis.
6 In the framework we have just presented, the distribution ψ is discrete, since incomes depend on
a finite number of states. The analysis can easily be extended to a continuum of states, making it
possible to handle the situation in which the distribution is absolutely continuous with respect to the
Lebesgue measure, as in models in which the distributions of incomes are normal.
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In the absence of randomness, this reduces to the consumption–savings
decision discussed in the introduction in Part 2. Here, the choice of (z∗, z) simul-
taneously determines consumption today and its complement (possibly negative)
savings, as well as the allocation of savings to various assets.

To see this more clearly, let us denote the value of the initial, financial and
nonfinancial, resources at date 0 by V0: V0 = ω0 + p∗z∗(0) + p′z(0). From the
budget constraint (3.1) at time 0, the value of the end-of-period portfolio, including
the investment in the risk-free security, is equal to savings V0 − c0. Thus, the
investor’s problem can be seen as choosing how much to save (or equivalently how
much to consume today) and allocating savings among the available securities.

This second problem is often studied separately, by considering the allocation
of a given amount of cash on the available securities: this is called the portfolio
choice. To focus on the portfolio choice, it suffices to adapt the model by assuming
no utility for current consumption (c0 is nil).

Finally, in the presence of a risk-free security, the choice between the risk-free
security and the risky ones has been much studied. This choice becomes clear
by eliminating the variable z∗ from the budget constraints as follows. Recall
that p∗ = 1/(1 + r). Drawing z∗ from (3.1) and plugging it into (3.2) gives the
difference between consumption and nonfinancial income in period 1:

c(e)− ω(e) = (V0 − c0)(1 + r)+
K∑

k=1

[ak(e)− pk(1 + r)]zk,

or, in vector notation,

c̃ − ω̃ = (V0 − c0)(1 + r)1∗ + z′[ã − p(1 + r)1∗]. (3.4)

The right-hand side is interpreted as follows: the first term is the value of savings
if it is all invested in the riskless asset, and the second is the income yielded by a
risky portfolio entirely financed by borrowing. The term ak(e)− pk(1 + r) is the
income of one unit of security k net of its cost, evaluated at time 1.

As an illustration, we examine a simple portfolio choice, in which there is only
one risky security.

2.2 The Demand for One Risky Security and Risk Aversion

The investor’s preferences determine his asset demand. A classic example, which
illustrates the usefulness of risk aversion measures, is how the investor’s demand
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for risky securities depends on his wealth. It is sometimes observed that this
demand increases with wealth, while the proportion of risky securities in the
portfolio decreases. When there is only one risky asset, this behavior can be
derived from simple properties of risk aversion.

Consider the following portfolio choice problem. An individual invests ω0 in
two securities, one risk-free and one risky. He expects no resources next period (the
analysis straightforwardly extends if he expects a sure resource). His preferences
are given by a von Neumann Morgenstern utility function v over second period
consumption. He is strictly risk averse: v is strictly concave, with a strictly negative
second derivative. Hence, the optimal portfolio maximizes E[v(z∗ + z1ã1)] under
the budget constraint z∗/(1 + r)+ p1z1 = ω0; or equivalently, eliminating z∗, z1

maximizes

E[v(ω0(1 + r)+ z1(ã1 − p(1 + r))].
This function is derivable and concave in z1, with a derivative given by

Ev′(c̃)(ã1 − p1(1 + r)),

where

c̃ = ω0(1 + r)+ z1(ã1 − p1(1 + r)).

Therefore, the first-order condition,

Ev′(c̃)(ã1 − p1(1 + r)) = 0, (3.5)

characterizes an optimal solution.
Note that an optimal portfolio may not exist. For example, if the excess return

is surely strictly positive, that is, if ã − p(1 + r) > 0, the derivative is always
positive: the investor is willing to take infinite position on the risky security by
borrowing. The existence problem is studied in the next section. We now discuss
the case where there is an optimal portfolio.

The derivative at z1 = 0 is equal to v′(ω0(1 + r))E[ã1 − p1(1 + r)]. This readily
gives the following:

The investor invests a positive quantity in the risky asset if and only if the expectation
of the excess payoff, E[ã1 −p1(1+r)], is positive, that is, if the expectation of the security
payoff is larger than its price discounted at time 1.

The intuition is the following: under the above condition, by investing margin-
ally in the risky security, the investor takes a small risk in exchange of a strictly
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positive expected return.7 Also, when Eã = p1(1 + r), it is optimal to invest
everything in the sure asset: Taking a position on the risky security does not
change the expected portfolio payoff but makes it risky. Therefore, by Jensen’s
inequality, this always lowers expected utility.

Whether the amount invested in the risky security is larger than the initial
wealth, in which case z0 < 0 and the investor borrows, depends on the distribution
of the excess return, and risk aversion. Theorem 3.1 assumes that an optimal
portfolio exists, and that the investor does not borrow any of the securities.
It examines how the demand for the risky asset varies with ω0.

Theorem 3.1 Assume that the optimal portfolio includes positive quantities of both
securities: the amount invested in the risky security is positive but less than the invested
wealth ω0.

1 If the index of absolute risk aversion is decreasing, the amount invested in the risky
asset z1 increases with ω0,

2 If the index of relative risk aversion is increasing, the share of wealth invested in the
risky asset declines with ω0.

Proof of Theorem 3.1 The first order condition (3.5) implicitly determines z1, the
demand for the risky asset, as a function of the parameters, in particular ω0.
The equation is of the form F(z1,ω0) = 0, where F is differentiable. To apply the
implicit function theorem in order to find how z1 varies with ω0, it suffices that
the partial derivative with respect to z1 is not nil. Indeed, this derivative is equal
to Ev′′(c̃)(ã1 − p1(1 + r))2, which is strictly negative by strict concavity of v.
Differentiating with respect to ω0, we obtain

Ev′′(c̃)(ã1 − p1(1 + r))2
dz1

dω0
+ Ev′′(c̃)(ã1 − p1(1 + r))(1 + r) = 0.

Since the coefficient of dz1/dω0 is negative, the sign of the derivative dz1/dω0 is
that of

Ev′′(c̃)(ã1 − p1(1 + r)).

To demonstrate that this expression is positive, we use the assumption of decreas-
ing absolute risk aversion and the first-order condition. Since z1 > 0 and

7 Note that this argument is not valid if the investor has risky nonfinancial resources.
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c̃ = ω0(1 + r)+ (ã1 − p1(1 + r))z1, we have, for ã1 < p1(1 + r),

− v′′(c̃)
v′(c̃)

= Ra(c̃) > Ra(ω0(1 + r)).

Multiplying this inequality by the positive expression (p1(1 + r)− ã1) gives

v′′(c̃)(ã1 − p1(1 + r)) > Ra(ω0(1 + r))v′(c̃)(ã1 − p1(1 + r)).

An analogous calculation yields the same result for ã1 > p1(1 + r). Taking the
mathematical expectation, the expression on the right-hand side is equal to zero,
under the first-order condition, which yields the desired result.

As to the second part of the theorem, we must show that the ratio p1z1/ω0 is
a decreasing function of ω0 or, taking logs, that

ω0

z1

dz1

dω0
< 1.

Using the expression for the derivative, this inequality can be written as

−ω0

z1
Ev′′(c̃)(ã1 − p1(1 + r))(1 + r) > Ev′′(c̃)(ã1 − p1(1 + r))2,

or, rewriting and using the budget constraint,

Ev′′(c̃)(ã1 − p1(1 + r))c̃ < 0.

This inequality follows from increasing relative risk aversion, using the same
argument as in the first part of the proof.

In the case of a constant risk aversion utility, the amount invested in the risky
asset is independent of the investor’s wealth. To see this, let v(c) = − exp(−ρc).
Using the expression for c̃, we have

v′(c̃) = ρ exp[−ρω0(1 + r)] exp[−ρz1(ã1 − p1(1 + r))].
Thus, the first-order condition is independent of ω0:

E(ã1 − p1(1 + r)) exp[−ρ(ã1 − p1(1 + r))z1] = 0,

and the optimal portfolio as well.
It turns out that Theorem 3.1 is not very robust: It cannot be generalized to

the case of several risky assets. The theoretical properties of the demand for risky
assets are very sensitive to the assumptions made on the utility functions.
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3 Subjective Expectations and Opportunities
for Arbitrage

As previously discussed, the existence of an optimal portfolio is not guaranteed.
From the preceding chapter, however, we may suspect that if an arbitrage oppor-
tunity can be exploited at any scale, no portfolio is optimal: to any (finite) portfolio,
the investor prefers another one with larger speculative positions. Our purpose
here is to explore the relationships between a well-defined investor’s behavior and
arbitrage opportunities.

To this end, it suffices to consider a portfolio choice problem (since the general
problem encompasses such a choice). To simplify the presentation, assume that
all income comes from savings at time 1 (ω̃ is nil). Also, there is a risk-free asset.
One dollar invested in the risk-free asset yields (1 + r) dollars tomorrow. The
subjective probability distribution of future income only bears on the payoffs of
the risky securities. Consequently, the investor’s criterion is

∫
v

(
z∗ +

K∑
k=1

ãkzk

)
ψ(da1, . . . , daK),

under the budget constraint,

z∗
1 + r

+ p′z = ω0,

1 the function v is continuously differentiable, strictly increasing, strictly concave
from IR+ into IR, and strictly positive;

2 the risky security payoffs are not negative: the probability distribution ψ is
defined on IRK+. Furthermore, its support ψ is not reduced to a single point.

As in the previous example, if the discounted price of a security is expected
by the investor to be less than its payoff with probability 1, then it is in the
investor’s interest to run up an unlimited debt in the sure asset to buy the risky
asset, regardless of the shape of her utility function. Similarly, if the discounted
price is higher, the investor will profit with probability 1 if she short sells the risky
asset and invests the proceeds of that sale in sure assets. These operations can
be made at any arbitrary large scale if there are no constraints when borrowing
sure assets or on short selling risky securities. From the investor’s point of view,
there is an opportunity for arbitrage. This leads to the following definition that
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is a transposition of the one presented in Chapter 2 to a framework that no
longer deals with states of nature, but rather with probabilities, the investor’s
beliefs.

Definition 3.1 The agent has an opportunity for arbitrage if there exists a portfolio
(z∗, z), such that:

z∗
1 + r

+ p′z ≤ 0, z∗ +
K∑

k=1

ãkzk ≥ 0,

with a strict inequality at date 0, or with positive probability at date 1.

The absence of opportunities for arbitrage imposes a consistency condition
between prices and expectations. Referring back to Chapter 2, let the states of
nature be in a one-to-one correspondence with the values taken by ã. There is
a finite number of states if the support of beliefs ψ is finite. Consequently, from
Theorem 2.1, there are no opportunities for arbitrage if, and only if, there exist
strictly positive state prices q(e) such that, for all k,

pk =
∑

e

q(e)ak(e). (3.6)

The sum of the state prices must be equal to 1/(1 + r) (applying this equation
to the riskless security). Therefore, the vector of prices (1 + r)p is a convex
combination with strictly positive weights of the payoffs ã = (ãk) that the investor
thinks possible. In mathematical terms, and in order to treat more general cases,
condition (3.6) can be put equivalently: the vector of prices ((1 + r)p) belongs to
the relative interior of the convex envelope of the values of ã that can be reached
with positive probability, that is, the relative interior of the convex envelope8 of
the support of the probability distribution ψ . This property is general and even
valid when the state space is infinite, as stated by Theorem 3.2 (even though we
only present an illustrative demonstration in a very simple situation9).

8 The convex envelope is the set of all convex combinations formed from points in the support of ψ .
In the vector space generated by these points, the convex envelope has a nonempty interior, which is
called the relative interior of the convex envelope. For example, consider the convex envelope of two
points, a and b, the segment [a, b], in a multidimensional space. Whereas the interior of the segment
is empty, the relative interior is nonempty, and is (a, b).
9 In the general case, the proof consists of applying a separation theorem in IRK to the convex envelope
of the support of ψ and the point p.



Anula Lydia: GABR: “chap03” — 2005/8/23 — 14:39 — page 83 — #15

Investors and their information 83

Theorem 3.2 The three following properties are equivalent:

1 The investor has no opportunities for arbitrage.
2 The investor’s program has a solution.
3 The price vector (1 + r)p belongs to the relative interior of the convex envelope of the

belief ’s support.

Condition 3 generalizes the existence of state prices to the probabilistic con-
text. The equivalence between Conditions 1 and 2 means that the absence of
opportunities for arbitrage from the point of view of an investor is equivalent to
his asset demand being well defined. This is a prerequisite for any study of the
stock market.

Proof of Theorem 3.2 We prove the theorem for the case of a single risky asset
(K = 1) and, without loss of generality, for r = 0. Given initial wealth ω0, the
choice of z1 yields the final income: ω0 + z1(ã1 − p1).

2 ⇒ 3 If the price does not belong to the interior of the convex envelope of the
support of the distribution ψ , we have either ã1 − p1 ≥ 0 or ã1 − p1 ≤ 0 with
probability 1. Since the probability distribution is nondegenerate (otherwise the
two assets would be redundant!), in the first case, it is optimal to increase z1 to
+∞, and in the second case to short sell it without limit.

3 ⇒ 2 On the other hand, assume that the price falls within the interior
of the convex envelope of the support of ψ . Let us denote the lower and the
upper bounds of this support by a1 and ā1, respectively. Thus, by assumption,
a1 < p1 < ā1. Since the utility function is not defined for negative wealth, the
investor chooses portfolios z1 such that

ω0 + (a1 − p1)z1 ≥ 0 and ω0 + (ā1 − p1)z1 ≥ 0.

The objective function is defined for z1 in a compact interval. Since it is continuous
(dominated convergence), it is bounded and reaches a maximum.

3 ⇔ 1 The third property directly implies that there are no opportunities for
arbitrage: Any nonzero portfolio yields a wealth less thanω0 with strictly positive
probability. Conversely, if there is an opportunity for arbitrage, let us say z̄ > 0,
then (ã1 − p1) is never less than 0, and strictly greater with positive probability.
Owing to the fact that the utility function is strictly increasing, there does not
exist an optimal portfolio zo: the portfolio zo + z̄ is strictly preferred to zo (the
same reasoning applies when the opportunity for arbitrage involves selling).
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Remark 3.1 The results in this section were derived under the assumption that
consumption is restricted to be positive or nil. Under this assumption, the set
of feasible portfolios is bounded. The preceding results do not always hold if
consumption has no lower bound. An optimal portfolio may not exist even in
the absence of opportunities for arbitrage if the investor is prepared to accept
unbounded losses. To analyze this type of situations, joint assumptions on the
utility function and the distribution of payoffs are needed (cf. Leland 1972).

4 Convergence of Expectations: Bayesian Learning

Beliefs10 are often assumed to be accurate and to reflect the “true” probability
according to which various events are drawn. How can investors acquire this
knowledge?

A realistic framework is learning, as illustrated by the following experiment.
An urn contains red and black balls. The total number of balls is known, but
the proportion of red and black ones is not. Will an individual who repeatedly
draws balls, with replacement after each draw, learn the proportion? To address
this question, assume that the individual has an a priori distribution µ of the
proportion ψ of red balls, and that he revises this distribution as the draws
progress. The evolution of the individual’s belief depends on the observations and
the manner in which they are processed to revise his a priori distribution.

We study an analogous situation in a financial market: Securities payoffs are
drawn from a distribution that is constant over time, which is called the “objective”
distribution. Consider an investor who does not know the objective distribu-
tion but has an a priori idea about it (this “idea” will be formalized below).
Furthermore, he observes a succession of independent draws from this distribu-
tion. Clearly, this situation is the most conducive to learning and the convergence
of beliefs. If agents’ beliefs do not converge toward a true distribution within this
framework, it is useless to attempt to broach more realistic, but more complex,
situations.

Payoffs ã are drawn from a distribution ψ∗. Now, consider an investor who is
aware of the existence of this objective probability, but who does not know
its value. The Bayesian approach allows this ignorance to be formalized: The

10 Sections 4 and 5 of this chapter are not indispensable for understanding the remainder of the book
and can be omitted during a first reading.
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investor postulates an a priori probability distribution on what he does not know,
the distribution ψ∗ in this case. This means that the a priori is a probability
distribution on payoffs distributions.

We shall make several assumptions allowing us to remain within the discrete
context:

1 the vector ã may take a finite number of distinct values;ψ∗(a) is the probability
that the value a will occur.

2 the investor only considers a finite number of income distributions, ψ , as
possible. His a priori judgment (also called beliefs or priors) is represented
by a discrete distribution µ0 that assigns the probability µ0(ψ) > 0 to the
distribution ψ .

3 all the distributions ψ over payoffs, like the objective distribution, are discrete.
We note A the (discrete) set of values of ã, the probability of which is strictly
positive in at least one of the contemplated distributions, that is, the union of
the supports of ψ .

If the investor is sure about the distribution and if he is correct, one has:
µ0(ψ

∗) = 1 (µ0 is then the Dirac mass on ψ∗). The question examined here
is whether his opinion will eventually converge to correct beliefs under Bayesian
learning.

From his priorµ0, the investor infers a probability of occurrence for the payoffs
in A. Let us denote byφ this probability over A. By composition of probabilities,11

φ(a) = Pr(a|µ0) =
∑
ψ

ψ(a)µ0(ψ).

At discrete points in time t = 1, . . . , traded assets yield revenues at drawn
independently from the objective probability distributionψ∗. The investor revises
his current beliefs on the basis of the new observation by applying the Bayesian
decision rule. Given the beliefs at time t,µt , and the derived distribution of payoffs,
φt , observing at yields the revised beliefs

µt+1(ψ) = Pr(ψ |t ,µt) = Pr(ψ and at|µt)

Pr(at|µt)
= Pr(at|ψ ,µt)Pr(ψ |µt)

Pr(at|µt)
.

Since

Pr(at|ψ ,µt) = ψ(at), Pr(ψ |µt) = µt(ψ), and Pr(at|µt) = φt(at),

11 In what follows, Pr means “probability of.”
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we obtain Bayes’s formula:

µt+1(ψ) = ψ(at)

φt(at)
µt(ψ). (3.7)

Theorem 3.3 Assume that the investor’s initial a priori belief assigns a non-nil
weight to the true probability: µ0(ψ

∗) > 0. When t tends to infinity, the sequence φt

converges toward the objective probability ψ∗, and the sequence of revised distributions
µt converges to the Dirac mass on the objective probability.

The assumption thatµ0(ψ
∗) > 0 says that the true probability is not excluded

a priori. This “grain of a truth” assumption is crucial: Beliefs evolve, but they only
assign a positive weight to those probabilities ψ that were initially considered
possible, as shown below.

Proof of Theorem 3.3 Consider ψ , with ψ �= ψ∗. The distributions ψ that the
investor thinks not to be possible at time 0 remains not possible afterward:
µt(ψ) = 0 for the values of ψ that do not belong to the support of µ0. We shall
demonstrate that µt(ψ) tends toward 0 if µ0(ψ) > 0. Since

∑
ψ µt(ψ) = 1,

where the sum is over all values of ψ such that µ0(ψ) > 0, this implies that
µt(ψ

∗) tends to 1, which is the desired result.
Only values for the payoffs a in the support of ψ∗ are observed. Applying

Eqn (3.7) to ψ∗ gives by induction that µt(ψ
∗) > 0 implies that µt+1(ψ

∗) > 0.
Consequently, dividing Eqn (3.7) element by element for ψ and ψ∗, we have

µt+1(ψ)

µt+1(ψ∗)
= ψ(at)

ψ∗(at)

µt(ψ)

µt(ψ∗)
.

Iterating this equation from time 0 to time t and taking logs:

log [µt+1(ψ)] − log[µt+1(ψ
∗)] − log[µ0(ψ)] + log[µ0(ψ

∗)]

=
t∑

τ=0

{log[ψ(aτ ] − log[ψ∗(aτ ]}.

It remains to show that the term on the right-hand side tends to −∞. After
dividing by t + 1, this term is equal to St :

St = 1
t + 1

t∑
τ=0

log
[
ψ(aτ )
ψ∗(aτ )

]
.

We prove that St tends toward some strictly negative constant, yielding the desired
result.
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St is the mean of the independent and identically distributed variables Xt =
log[ψ(at)/ψ

∗(at)], the expectations and variances of which are finite since at is
drawn independently from the distribution ψ∗ in each period. According to the
law of large numbers, St tends toward the mean of the distribution when t tends
toward +∞, that is,

St → Eψ∗
[

log
(
ψ

ψ∗

)]
=
∑

a

log
[
ψ(a)
ψ∗(a)

]
ψ∗(a).

Since ψ is different from ψ∗, the function ψ/ψ∗ is not constant. Jensen’s
inequality applied to the strictly concave function log yields

Eψ∗
[

log
(
ψ

ψ∗

)]
< log

[
Eψ∗

(
ψ

ψ∗

)]
.

Now,

Eψ∗
(
ψ

ψ∗

)
=
∑

a

ψ(a)
ψ∗(a)

ψ∗(a) =
∑

a

ψ(a) = 1.

Thus, St tends almost surely toward a strictly negative value, which is what we
sought.

5 The Value of Information

Investors are constantly receiving information of a varied nature on securities.
Their beliefs evolve according to this information. For example, in Section 4,
beliefs depend on the observed securities payoffs. In fine, what really matters
is whether investors benefit from these news. This is the question investigated
here. We take the economist’s view point: information has value to an individual
if it allows her to make “better” decisions, that is, decisions that increase her
utility.

We postulate a joint probability distribution on information (or signals) and on
the states of nature. As an illustration, let us consider an investor who receives a
newsletter with advance information on the business cycle ẽ (the “state of nature”)
and, by extension, on securities payoffs. This newsletter sends a signal,12 denoted

12 As usual, s̃ denotes the random variable, and s its realization. A signal here refers to the whole
variable s̃.
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by s̃, which can take a finite number of values, s = 1, . . . , S. The joint distribution
of (ẽ, s̃) is known. In particular, after learning that s̃ = s, investors revise the
probabilities of the states according to Bayes’s formula:

Pr(e|s) = Pr(e, s)
Pr(s)

.

The realized value of the signal, observed before the state materializes (e.g., rainfall
readings prior to the harvest), influences the investment decision of the newsletter
reader. Are the resulting choices better for her? Are some newsletters better than
others?

A signal can convey more or less information regarding the realization of the
variable of interest. If the random variable s̃ is independent of ẽ, then the joint
probability is the product of the marginal probabilities, and the signal is of no
use for forecasting the business cycle, and in fine the securities payoffs. There is
a natural partial ordering of signals, defined by Blackwell, which reflects their
quality.

Definition 3.2 Blackwell The signal s̃, which can take S values, is more inform-
ative than the S̃′-valued signal s̃′ if there exists a positive S′ × S matrix M such that, for
any state of nature,

Pr(s̃′ = s′|e) =
∑

s

M(s′, s) Pr(s̃ = s|e), (3.8)

with ∑
s′

M(s′, s) = 1. (3.9)

To interpret this definition, notice that according to the last equality, M(·, s)
defines a probability distribution on S′ that is independent of the state of nature e.
M is a Markov matrix. A person receiving the signal s̃ can thus always put herself
in the same position as one receiving the signal s̃′. For this, it is sufficient that she
draws a signal s̃′ under M(·, s). Having received s, she then “forgets” s and faces
the same conditional distribution as if she had only observed s̃′.

Naturally, a signal s̃ is always at least as informative as any signal independent of
the state. Indeed, if the signal s̃′ is independent of ẽ, we have Pr(s̃′ = s′|e) = Pr(s′).
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It is sufficient to set M(s′, s) = Pr(s′) since then∑
s

M(s′, s) Pr(s̃ = s|e) = Pr(s′)
∑

s

Pr(s̃ = s|e) = Pr(s′).

More interestingly, adding “noise” to a signal always makes it less informative.

Example 3.1 Signal s̃′ is a noisy signal of s̃ if

s̃′ = s̃ + ε̃,

where ε̃ is a random variable independent of ẽ and s̃. To show that s̃ is more
informative than s̃′, write

Pr(s̃′ = s′|e) =
∑

s

Pr(ε̃ = s′ − s) Pr(s̃ = s|e).

Setting M(s′, s) = Pr(ε̃ = s′ − s), Eqns (3.8) and (3.9) obtain.

Theorem 3.4 The relationship “more informative than” is transitive.

This property is easy to demonstrate: It suffices to observe that the product of
two Markov matrices is a Markov matrix.

The rationale for introducing the relationship “more informative than” draws
on the following property. Given a choice, an economic decision maker prefers
the most informative signal. To show this, let C be her choice set. If she chooses
z, let u(e, z) be her final utility when ultimately, the state is e. We assume that the
set C is a compact, convex subset of IRK , and the function u is continuous and
concave with respect to z.

For example, consider an investor with wealthω0 to invest in K securities whose
payoffs depend on a finite number of states: ãk = ak(e), e = 1, . . . , E. The choice
z represents the portfolio and the function u is given by

u(e, z) = v
(
ω0(1 + r)+

∑
k

zk[ak(e)− pk(1 + r)]
)

,

where r is the risk-free rate.
Assume that she receives the newsletter s̃. When the news is s, and she uses the

received information in an optimal fashion, the ensuing expected utility is V(s):

V(s) = max
z∈C

∑
e

u(e, z) Pr(e|s̃ = s).

In the same way, we can define V ′ associated with another signal s̃′. The quality
of the two signals can be compared before knowing the actual realization of the
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signals. This means that we compare the expected utility derived ex ante, EV(·)
and EV ′(·).

Theorem 3.5 Consider a risk-averse investor choosing her action in a convex set C that
is independent of the signal. Assume that the signal s̃ is more informative than the signal
s̃′. Her ex ante expected utility upon receiving s̃ is at least as large as when she receives
s̃′.

Proof of Theorem 3.5 Let z′(s′) be the investor’s decision upon receiving the
signal s′. By definition,

EV ′ =
∑

s′

{∑
e

u[e, z′(s′)] Pr(e|s̃′ = s′)
}

Pr(s̃′ = s′).

Using the property

Pr(s̃ = s|e) Pr(e) = Pr(e|s) Pr(s),

equality (3.8) can be rewritten as

Pr(e|s̃′ = s′) Pr(s′) =
∑

s

M(s′, s) Pr(e|s̃ = s) Pr(s̃ = s).

Thus, we obtain

EV ′ =
∑

s

(∑
e

{∑
s′

u[e, z′(s′)]M(s′, s)
}

Pr(e|s̃ = s)
)

Pr(s̃ = s). (3.10)

According to condition (3.9), M(·, s) defines a transition probability on S′ given s.
The term in braces, that is, {∑s′ u[e, z′(s′)]M(s′, s)}, yields the utility that the
agent will receive in state e if s̃′ was drawn from this distribution, conditional on
s̃ = s. Recall that C is convex. The average decision, z(s), defined by

z(s) =
∑

s′
z′(s′)M(s′, s),

is thus in C. Applying Jensen’s inequality, the concavity of the function u with
respect to z′ yields ∑

s′
u[e, z′(s′)]M(s′, s) ≤ u[e, z(s)].
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Hence (3.10) gives

EV ′ ≤
∑

s

{∑
e

u[e, z(s)] Pr(e|s̃ = s)
}

Pr(s̃ = s).

The term in braces is the agent’s expected utility if she chooses the portfolio z(s)
when the signal s̃ is equal to s. By construction, this term is less than or equal to
the optimal value V(s). We obtain the desired result: EV ′ ≤ EV .

To illustrate, consider again the example of a newsletter that provides advance
information on securities payoffs, or buy and sell recommendations. The value
of a signal to the investor can be defined as the amount he is prepared to pay
ex ante, before having any information, to receive it. This value yields an overall
ranking of the information, that is, of the newsletters, depending on the person
in question. In light of Theorem 3.5, the value of a publication increases as it is
more informative.

We shall not address here the many difficulties raised by the economics of
information: It is easy to imagine a market for confidential newsletters. Can
several newsletters be bought? How can the newsletter be sold, rather than made
freely available to all participants in the economy? Is the information liable to be
manipulated?

BIBLIOGRAPHICAL NOTE

The modeling of attitudes toward risk has a long tradition that derives from the
basics of probability theory. The book by von Neumann and Morgenstern (1944)
laid out the axioms of expected utility. Applications were developed, especially
by Rothschild and Stiglitz (1970, 1971). The book by Fishburn (1979) provides an
overview of this model. Since then, the literature has diverged from the frame-
work devised by von Neumann and Morgenstern, frequently in most imaginative
fashions: Camerer’s (1995) review of the literature covers a large part of the
field.

The book by Hirshleifer and Riley (1992) provides a very comprehensive over-
view of the role played by information in choices made under uncertainty. The
comparison of signals in terms of the information they contain was initiated by
Blackwell (1953).
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Exercises

3.1 Precautionary savings Assume a consumer with wealth ω0 today and expecting a
(stochastic) wage ω̃ during the next period. His preferences over consumption in the
present, c0, and in the future, c̃, are separable, represented by u(c0) + Ev(c̃), where u
and v are strictly increasing, concave, and twice differentiable functions. No borrowing is
allowed and savings can be invested only at a risk-free rate r.

1 Check that current consumption c∗ is optimal if it maximizes

u(c0)+ Ev[ω̃ + (ω0 − c0)(1 + r)]

subject to 0 ≤ c ≤ ω0.
2 Give the first-order conditions satisfied by the optimal consumption c∗. Are they

sufficient?
3 Now assume that 0 < c∗ < ω0. We wish to evaluate the impact of risk in future wages

on c∗.
(a) If v is quadratic, show that c∗ only depends upon the expectation of wages.
(b) Let ω̃ = E[ω̃] + σ ε̃, where ε̃ has zero mean and variance 1, and denote c∗(σ )

the optimal solution. Determine dc∗/dσ by differentiating the first-order condition
obtained in question 2. Show that dc∗/dσ is positive if v′′ is decreasing, and negative
if v′′ is increasing.13 In which case can we speak of precautionary savings?

13 The following property can be used: if f is an increasing, integrable function, then the covariance
of f (ε̃) and ε̃ is positive, provided it is defined.



Anula Lydia: GABR: “chap03” — 2005/8/23 — 14:39 — page 93 — #25

Investors and their information 93

Application: If v(c) = c1−γ /(1 − γ ), under what conditions is v concave? Do current
savings increase or decrease with σ , that is, with the risk in future wages?

3.2 Various forms of arbitrage The purpose of this exercise is to study some variants of the
definition of arbitrage and to connect the associated notion of absence of opportunities for
arbitrage with the existence of a solution to an individual’s investment program.

The setting is the usual two-period model characterized by a finite number of states of
nature and K securities with a payoff matrix ã = (ak(e)), k = 1, . . . , K , e = 1, . . . , E.

We call an arbitrage opportunity with immediate payoff a portfolio z such that14

z′ã ≥ 0 and p′z < 0.

We call an arbitrage opportunity with deferred payoff a portfolio z such that

p′z = 0 and z′ã > 0.

Notice that an opportunity for arbitrage as defined in Chapter 2 is either with immediate
or deferred benefits.

1 Provide examples (with E = 2 or 3 and K = 2) featuring only immediate, or only
deferred, opportunities for arbitrage.

2 Let || || be some norm on IRE . Consider the set Z of portfolios such that z′ã ≥ 0 and
||z′a|| = 1. Now assume that there are no opportunities for arbitrage (in the sense of
Chapter 2). Show that the minimum of p′z on Z is strictly positive.

3 Consider an individual who invests ω0 in the K securities. His preferences, represented
by a von Neumann Morgenstern utility function v, are defined over nonnegative security
incomes c̃z = z′ã. The function v is continuous. Assume that the feasible consumption
set is not empty: there are portfolios z that satisfy the budget constraint pz′ = ω0
whose payoffs are nonnegative, c̃z ≥ 0. Show that in the absence of arbitrage oppor-
tunities, whether with immediate or deferred payoffs, the consumer’s problem has a
solution.

4 In some cases, portfolios containing arbitrarily large quantities of assets can be optimal
for the investor. Provide an example. Give a sufficient condition for this phenomenon
not to occur. Comment.

5 Conversely, assume that there is an investor whose optimal portfolio yields positive
incomes: c̃z(e) > 0 for any e. Show that there are no opportunities for arbitrage,
whether with immediate or deferred payoffs, when there is a risk-free asset.

14 In the case of vectors, ≥ denotes component-by-component inequality, > component-by-
component inequality with at least one strict inequality, and � strict inequality of all components.
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This chapter examines the portfolio choices of investors who allot a given amount
of wealth to various securities. Determining how much wealth to invest is studied
in the subsequent chapters. “Rational” investors select a portfolio that best suits
their objectives and their needs. Their demands for financial securities are derived
from preferences represented with a von Neumann Morgenstern utility criterion,
as discussed in Chapter 3. We are especially interested in how the selected portfolio
is related to attitudes toward risk (possibly risky), future nonfinancial incomes,
and assessment on securities payoffs.

Section 1 examines a particular case, referred to as the mean–variance analysis,
that merits a detailed examination. Under some specifications, an investor ranks
portfolios solely on the basis of the expectation and variance of their returns. Thus,
given his budget constraint, he selects a portfolio that is mean–variance efficient,
meaning that the expected return cannot be increased without also increasing
the variance. An examination of all mean–variance efficient portfolios provides a
first approach to the notion of risk diversification, the basis of many widely used
models in finance. When a risk-free security is available, the two “funds” theorem
is obtained: Mean–variance efficient portfolios are combinations of the risk-free
security and a single portfolio of risky securities, analogous to a mutual fund. The
specific composition of the risky fund is independent of the investors’ attitudes
toward risk, as long as these investors have the same beliefs on the expectation and
the variance of the securities returns. Thus, the optimal composition of the risky
fund represents an ideal diversification of risky investments. Attitudes vis-à-vis
risk only come into play in the determination of the respective amounts invested
in the risk-free security and the fund.

No such clear cut results hold in general: Section 2 analyzes the demand for
financial securities with an unrestricted von Neumann Morgenstern criterion.
Finally, two specific cases, that of a quadratic utility function or of CARA and
normal returns, are studied in more detail. They illustrate one of the themes
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underlying portfolio choice, speculative and hedging demand, and provide a link to
the mean–variance analysis.

1 Mean–Variance Efficient Portfolios

This section presents the mean–variance framework. Whereas it can be linked
to a von Neumann Morgenstern model (see the Section 3), this framework is
used in practice for convenience. Indeed, it is simpler to work exclusively on
the expectation and variance of a random variable rather than on its entire
distribution.

The mean–variance hypothesis: An investor ranks portfolios on the basis of the
expectations and variances of their payoffs. The ranking is increasing in expectation
and decreasing in variance.

Note that we do not fully specify the investor’s attitude toward risk: In particular,
we do not address how he arbitrates between the expectation and the variance of
the payoff.

Under the mean–variance hypothesis, the investor selects a portfolio that is
mean–variance efficient, meaning that the expected payoff cannot be increased
without also increasing the variance. Of course, the expectation and the variance
are evaluated by the investor, using his own beliefs.

As defined in Chapter 3, recall that a portfolio (z∗, z) with an initial value of
ω0 = p∗z∗ + p′z yields a stochastic payoff in period 1:

c̃ = z∗ +
K∑

k=1

zkãk = z∗ + z′ã.

The expectation and the variance of the portfolio payoff are thus, respectively,
given by z∗ + Ez′ã and var(z′ã). The set of mean–variance efficient portfolios is
found by solving the following family of programs parameterized with a scalar M1:

min var(z′ã)
z∗ + Ez′ã ≥ M

p∗z∗ + p′z = ω0.

1 The analysis conducted in this chapter is valid when the number of states of nature is infinite,
provided that the variance var(ã) is finite.
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The parameter M is interpreted as the smallest expected payoff that the investor
has set as a target. The solution to this problem is the portfolio(s) with the smallest
variance meeting this target.

Thus, the mean–variance efficiency criterion does not determine a unique
portfolio. Indeed, to derive the demand for securities, one needs to specify
the investor’s attitude toward risk, which in turn dictates the trade-off between
the expectation and variance of the payoff. However, any solution to the above
program – any efficient portfolio – features the key property of risk diversification,
regardless of the level of risk aversion.

We first demonstrate that the analysis can be conducted on the basis of the
return on each dollar invested. Then we characterize efficient portfolios in two
stages, starting with the situation in which no risk-free security is available.

1.1 Portfolio Composition and Returns

The set of all mean–variance efficient portfolios is homogeneous of degree 1 in
wealth ω0. Indeed, starting with a solution (z∗, z) to the program for the param-
eters (ω0, M), (λz∗, λz) solves the program for (λω0, λM) for any positive λ.
This naturally leads us to work per dollar invested, as is done in finance. To
this purpose, the rate of return of a security describes the payoff obtained from
investing one dollar in the security, and the composition of a portfolio describes
how much of each dollar is invested in each security (rather than the number of
shares of each security in a portfolio). Formally, this is equivalent to a change of
variables as follows:

Definition 4.1 The gross rate of return of a security is the stochastic payoff that
one dollar invested in this security today pays at time 1:

R̃k = ãk

pk
, k = ∗, 1, . . . , K .

A portfolio composition is a vector (x∗, x), such that x∗ +∑K
k=1 xk = 1, where xk

is the fraction of the portfolio value invested in k.

Notice that the rate of return of a risk-free security is constant, given by
R∗ = (1 + r). Frequently, the net returns equal to the gross returns minus 1 are
used: r̃k = R̃k − 1. We often abbreviate “rate of return” into “return.”
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Let us rewrite the investor’s problem with these variables. The value of the
portfolio (z∗, z) is ω0 = p∗z∗ + p′z. If ω0 is not nil, the portfolio composition is
given by (x∗, x):

x∗ = p∗z∗
ω0

, xk = pkzk

ω0
, k = 1, . . . , K .

Thus, the portfolio is characterized by its value and its composition. Moreover,
the associated stochastic payoff satisfies

c̃ = z∗ + z′ã = ω0(x∗R∗ + x′R̃).

As for a single security, the gross return of a portfolio is equal to its random
payoff per dollar invested. According to the expression above, the gross return of
a portfolio whose composition is (x∗, x) is given by

x∗R∗ + x′R̃ = x∗R∗ +
K∑

k=1

xkR̃k,

or, in words,
The return of a portfolio is the linear combination of the returns of the component

securities weighted by their respective shares in the portfolio composition.
Letting 11K represent the K-dimensional column vector consisting entirely of

ones, the mean–variance efficiency can be written in terms of the just defined
variables.

Definition 4.2 The portfolio with composition (x∗, x) is mean–variance efficient if it
solves:

min var(x′R̃) s.t.

{
x∗R∗ + Ex′R̃ ≥ m

x∗ + 11′
K x = 1.

for some value of m.

The parameter m is interpreted as the smallest expected return per dollar
invested that the investor has set as a target, and the solution to this problem
yields the portfolio(s) with the smallest variance meeting this target.
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1.2 Diversification

Assume that no risk-free security is available. What is the best way to combine
investments so as to minimize risks? The variance of a portfolio returns is simply
expressed as a function of the variance–covariance matrix � of the returns of
risky securities. This matrix is given by � = (γhk), where γhk is the covariance
between the returns of securities h and k. The variance of the return of a portfolio
of composition x is2

var(x′R̃) = x′�x.

Consider first the “degenerate” case in which all the securities have the same
expected return, R. In this case, the expected returns of all portfolios are identical
and equal to that value. A portfolio is thus mean–variance efficient if and only if
its variance is lowest. We are seeking x, the solution to

min x′�x s.t. 11′
K x = 1,

If 2µ is the Lagrange multiplier associated with the constraint 11′
K x = 1,

x = µ�−111K ,

where µ is computed so as to satisfy the constraint.
Thus, there exists a unique optimal composition. For example, assume that

all returns are independent and have the same variance: The variance–covariance
matrix is proportional to the identity matrix. The optimal composition is then
given by 11K/K : The same amount, 1/K , should be invested in each security.
This is diversification. Otherwise, without independence or identical variance,

2 x is a K-dimensional column vector and � is a (K × K)matrix. We have

γhk =
E∑

e=1
π(e)[R̃h(e)− ER̃h][(R̃k(e)− ER̃k].

and can write

� = E[(R̃ − ER̃)(R̃ − ER̃)′],
where the ′ denotes transposition. The variance of the return of a portfolio composed of (x∗, x) is

var(x′R̃) = Ex′(R̃ − ER̃)(R̃ − ER̃)′x,

or x′�x. If we assume that there is no redundancy, the matrix � has an inverse. Otherwise, there
would exist a non-nil vector x such that x′(R̃ − ER̃) = 0, so that a portfolio of risky securities would
replicate the risk-free security.
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σ

x ∗

R∗

m

Figure 4.1 The two-fund theorem.

the optimal composition reflects differences between the variances of the security
returns and their correlations.

In the general case in which expected returns differ across securities, it is
necessary to arbitrate between the expectation and the variance of the return.
For a given target on expected return, there exists a portfolio composition that
minimizes risk. A graphical representation is helpful. Figure 4.1 plots the set of
couples (standard error, expectation) associated with each possible portfolio in
a (σ , m)-space. The couples associated with efficient compositions are on the
frontier of that set, and constitute what is called the efficiency frontier.

1.3 The Efficiency Frontier in the Absence of a Riskless Security

Assume that there are at least two securities with different expected returns. The
problem to be solved is written as

min x′�x s.t.

{
Ex′R̃ = m,

11′
K x = 1,
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for some values of m in IR. In contrast to the preceding formulation, the inequality
on the expected return is replaced by an equality. For each target m, a solution is a
portfolio with the smallest variance whose expected return is exactly m. Since there
are two securities with distinct expected returns, the domain defined by the two
constraints is not empty, regardless of the value of m (we are using the assumption
that there are no limits on short sales). Imposing an equality constraint on the
expected returns simplifies the math. Extending this solution to the formulation
with inequalities, which is associated with the economic problem, is trivial.

Since the function to be minimized is a convex quadratic form, bounded below
by zero, and the constraints are linear, the solution exists and is characterized by
the first-order necessary and sufficient conditions. Letting 2λ and 2µ, respectively,
represent the multipliers for the expected return and the budget constraints, these
conditions are

�x = λER̃ + µ11K . (4.1)

They give, together with the two constraints, a linear system of K + 1 equations
in the K + 1 unknowns (x, λ,µ). To solve this system, x can be expressed as
a function of the multipliers from the first-order condition (4.1) because under
the assumption of no redundancy, the matrix � has an inverse. Plugging this
expression into the constraints gives

ER̃′�−1ER̃λ+ ER̃′�−111Kµ = m,

11′
K�

−1ER̃λ+ 11′
K�

−111Kµ = 1.

This is a symmetric linear system with a strictly positive determinant. Inverting
it3 yields

λ = dm − b
�

and µ = −bm + c
�

.

The optimal portfolio is simply obtained by using (4.1) again. We keep this
calculation for later and first focus on finding the expression for the least variance
as a function of m. For this, premultiply the first-order condition by x′, yielding

σ 2 = λm + µ,

3 We set d = 11′
K�

−111K , b = 11′
K�

−1ER̃, c = ER̃′�−1ER̃, and� = dc − b2. It is trivial to verify that
� is strictly positive provided there are two securities with different expected returns.
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where σ 2 = x′�x is the value of the variance of the efficient portfolio. Inserting
the expressions obtained for λ and µ yields

σ 2 = dm2 − 2bm + c
�

,

or

(
�

d

)
σ 2 −

(
m − b

d

)2

= �

d2 .

This is the equation for a hyperbola in the (standard error, mean) (σ , m) plane.
The standard error is lowest at m = b/d, where its value is 1/

√
d. In terms of

the initial problem, where we sought the portfolio with the smallest variance
generating an expected return of at least m (we are reverting to the formulation
with inequality rather than equality), only the section of the hyperbola in which
the expected return exceeds b/d is of interest. For all values of m below b/d,
we wish to retain the least-variance portfolio. Any risky portfolio entails a level
of risk equal to at least the minimum standard error 1/

√
d: The nondiversifiable

minimum risk. An investor who is prepared to accept a risk exceeding that minimal
level can obtain a higher expected return.

1.4 Efficient Portfolios: The Case with a Risk-Free Security

Now assume that a risk-free security exists. The graphic representation of the new
efficiency frontier can easily be found from its version with only risky securities.
We will subsequently derive it analytically.

For one dollar to invest, x∗ dollars can be put into the risk-free security (standard
error = 0, mean = R∗), and (1−x∗) = ∑K

k=1 xk dollars into some risky portfolio
with standard error σ̂ and mean m̂. This operation yields a portfolio with standard
error and mean given by

σ = |1 − x∗|σ̂ , m = x∗R∗ + (1 − x∗)m̂.

Consider first an investment x∗ in the risk-free security that is less than one,
implying that the value of the risky part of the portfolio is positive. Graphically,
for a given (σ̂ , m̂), the point (σ , m) describes the ray originating at the point
representing the risk-free security (0, R∗) and passing through (σ̂ , m̂). Now, if we
consider all possible risky portfolios, (σ̂ , m̂) varies within a zone delimited by
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the hyperbola in Figure 4.1 and the set of rays describes the cone resting on the
efficiency frontier.

Consider now an investment x∗ greater than 1: The cone supported by the
branch of the hyperbola that is symmetric with respect to the m-axis is obtained.

Mean–variance efficient combinations are located on the upper frontier of
this cone: it is the ray that is tangent to the hyperbola that originates at the
point representing the risk-free security. The point of tangency corresponds to a
portfolio made only of risky securities x∗. This shows that all efficient portfolios
are linear combinations of x∗ and the risk-free security.

Theorem 4.1 The two-fund theorem Assume there is a riskless security. For
given expected returns and covariance matrix, all mean–variance efficient portfolios
can be made up from two pooled investment funds: The risk-free security and a single
risky fund.

These results can easily be derived analytically. Let (x∗, x) be a portfolio com-
position, where x is the risky component and x∗ the risk-free component. Efficient
compositions are solutions to

min x′�x s.t.

{
x∗R∗ + Ex′R̃ ≥ m,

x∗ + 11′
K x = 1,

and the first-order conditions are written as

�x = λER̃ + µ11K and 0 = λR∗ + µ, (4.2)

whence, eliminating µ, we obtain

�x = λ(ER̃ − R∗11K). (4.3)

Assume first that λ is non-nil and that the expected return constraint is binding.
We immediately see that the risky component of the portfolio is independent of
the target expectation m and proportional to

x∗ = α�−1(ER̃ − R∗11K), (4.4)

where α is set so as to normalize x∗. The expected return m determines the
amount x∗ invested in the risk-free security. Thus, the optimal portfolio consists
of x∗ invested in the risk-free security and (1 − x∗) in portfolio x∗.

If λ is nil, then so are µ and x. We invest everything in the risk-free security,
which only works if the target expectation is less than R∗ – in this case, the variance
is minimum, equal to zero.
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Remark 4.1 In practice, the return of the riskless security, R∗, is less than b/d.
This is the case pictured in Figure 4.1. All efficient portfolios contain (positive)
investments in risky securities, and the amount invested in them increases with
the portfolio expected return. It is theoretically possible for R∗ to be greater than
b/d. Then, x∗ is greater than 1 for all efficient portfolios, and investors take short
positions on risky securities. Here again, the greater the absolute value of the
position in risky securities, the greater the expected return.

2 Portfolio Choice under the von Neumann
Morgenstern Criterion

We revert to the framework introduced in Chapter 3, assuming that the investor’s
tastes are represented by a von Neumann Morgenstern utility function, Ev(c̃).
The function v is increasing, concave, and twice differentiable everywhere. Since
a portfolio (z∗, z) yields a stochastic payoff in period 1,

c̃ = z∗ +
K∑

k=1

zkãk = z∗ + z′ã,

the portfolio choice is described by the following program:

An investor chooses a portfolio (z∗, z)maximizing

Ev(ω̃ + z∗ + z′ã)

subject to the budget constraint,

p∗z∗ + p′z = ω0.

It is convenient to define the “indirect” utility function, V , derived from the
“primal” utility function and containing the decision variables (z∗, z):

V(z∗, z) ≡ Ev(ω̃ + z∗ + z′ã).

The investor’s program is then written as

max
z∗,z

V(z∗, z), s.t. p∗z∗ + p′z = ω0. (4.5)

In contrast to the mean–variance framework, this program is not in general
homogeneous with respect to wealth. By construction, the function V inherits



Anula Lydia: GABR: “chap04” — 2005/8/23 — 14:39 — page 104 — #11

104 Chapter 4

the properties of being increasing and concave from the function v (note, how-
ever, that the domain of portfolios over which V is defined may depend upon
the matrix of incomes ã). Thus, this problem has the traditional structure of
a consumer’s utility maximization subject to a budget constraint. There is one
important difference: the domain of maximization may be unbounded because
sales are allowed without restriction. Therefore, the existence of a solution is not
guaranteed. When security prices offer opportunities for arbitrage, the investor
benefits by taking short positions on an expensive security to finance a purchase
of an inexpensive one. Without limits on trades, no optimal solution exists, as
shown in Theorem 3.2.

Remark 4.2 Working directly with future contingent income, rather than using
the intermediary of the portfolio, is possible. It is convenient if markets are
complete and without arbitrage opportunities. The vectors of security payoffs
generate the entire space of contingent incomes (E = K +1). As seen in Chapter 2,
working directly with disposable income in each state of nature is equivalent to
dealing with contingent goods whose prices are equal to the state prices. Thus, we
end up with a formulation that is identical to that of the consumer in traditional
microeconomic theory. Also, dropping possible redundant securities, portfolios
are in a one-to-one correspondence with future incomes. When markets are
incomplete, which is a possibility we do not want to preclude, the set of attainable
incomes is constrained. Using future incomes as variables forces us to account for
E − K − 1 additional constraints, and it is just as easy to work with portfolios.

The investor’s program (4.5) consists of maximizing a concave function on a
convex set. Thus, the first-order conditions characterize the solution. Letting λ be
the multiplier associated with the budget constraint at time 0, they are written as

Ev′(c̃) = λp∗,

Ev′(c̃)ãk = λpk, k = 1, . . . , K . (4.6)

As expected, these conditions can be satisfied only if there are no opportunities
for arbitrage. Indeed they yield the investor’s “implicit” state prices.4 To see this,

4 These state prices are those for which the investor would chose the same contingent income profile
if all contingent markets were to exist.
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writing expectation as a sum, (4.6) gives

E∑
e=1

π(e)v′[c(e)]ak(e) = λpk, k = ∗, 1, . . . , K .

This shows, comparing with Theorem 2.1,

If an optimal portfolio exists, there are no opportunities for arbitrage, and the
positive vector q defined by

q(e) = π(e)v′(ce)λ

is a vector of state prices. It satisfies the equalities

E∑
e=1

q(e)ak(e) = pk, k = ∗, 1, . . . , K .

If markets are complete, this last system of equations is of full rank and state
prices are unique. All investors’ vectors of marginal utilities for the contingent
goods are thus proportional to each other.

To find a solution, note that completing the first-order conditions with the
budget constraint, a system with K + 2 equations for solving K + 2 variables
(z∗, z, λ) is obtained. Eliminating the multiplier λ and using the equality p∗ =
1/(1 + r), an optimal portfolio is thus characterized by

Ev′(c̃)[ãk − (1 + r)pk] = 0, k = ∗, 1, . . . , K ,

p∗z∗ + p′z = ω0. (4.7)

3 Finance Paradigms: Quadratic and CARA Normal

In two specifications widely used in finance, quasi-explicit expressions can be
derived for savings and the demands of securities. The determinants of the demand
for financial securities can be easily interpreted. Furthermore, a link is established
with the mean–variance criterion.

In the first specification, a quadratic utility function is assumed:

v(c) = c − α

2
c2,

where α is sufficiently small so that the function is increasing in c in the relevant
domain.



Anula Lydia: GABR: “chap04” — 2005/8/23 — 14:39 — page 106 — #13

106 Chapter 4

The identity Ec̃2 = (Ec̃)2 + var(c̃) allows us to write

Ev(c̃) = E(c̃)− α

2
(Ec̃)2 − α

2
var(c̃),

or

Ev(c̃) = v(Ec̃)− α

2
var(c̃). (4.8)

In the second specification, referred to, for short, as CARA normal, utility
exhibits CARA:

v(c) = − exp(−ρc),

with ρ positive, and the distribution of payoffs is normal. Using the standard
formula for the expectation of a log-normal variable, the expected utility of
income during the second period is written as

Ev(c̃) = − exp
{
−ρ

[
Ec̃ − ρ

2
var(c̃)

]}
= v

[
Ec̃ − ρ

2
var(c̃)

]
. (4.9)

In both cases, the agent’s utility is increasing in the expectation of future income Ec̃
and decreasing in its variance var(c̃). It is independent of the other moments of
future income.

The expectation and variance of income associated with the purchase of port-
folio (z∗, z) can be easily computed, using the expression c̃ = ω̃ + z∗ + z′ã. The
linearity of the expectation and the bilinearity of the covariance give

Ec̃ = Eω̃ + z∗ + z′Eã,

var(c̃) = z′ var(ã) z + 2z′ cov(ã, ω̃)+ var(ω̃).

In both the quadratic and CARA-normal cases, the optimal portfolio is the
solution of a program:

max V(z∗, z) = f [Ec̃, var(c̃)], s.t. p∗z∗ + p′z = ω0,

for some function f , where Ec̃ and var(c̃) are given by their expressions in terms
of (z∗, z).

The important point to note here is that the total income, not only the financial
income, matters. In the presence of risky nonfinancial income, the optimal portfo-
lio is generally not mean–variance efficient because the variance of total income,
ω̃ + z∗ + z′ã, differs from that of financial income, z∗ + z′ã. However, when
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the nonfinancial income is risk-free (or uncorrelated with the securities payoffs), the qua-
dratic and CARA-normal specifications both lead the investor to choose a mean–variance
efficient portfolio.

3.1 Hedging Portfolios

Definition 4.3 A portfolio that minimizes the variance of total income in period 1 is
called a hedging portfolio.

The variance only depends on the risky securities in the portfolio, and the
hedging portfolio zh minimizes

var(ω̃ + z′ã) = z′ var(ã)z + 2z′ cov(ã, ω̃)+ var(ω̃).

This portfolio is the one that would be chosen by an individual who is infinitely
averse to variance in income (α or ρ equal to +∞ in the quadratic and CARA-
normal models, respectively). Thus, its value is

zh = −var(ã)−1 cov(ã, ω̃). (4.10)

This result has a geometric interpretation. Note that we are only interested in
the variance of incomes. Thus, their expectations can be subtracted so as to
work exclusively on centered incomes, that is, in the (E − 1)-dimensional space
of variables with zero expectation. In this space, the covariance is a scalar product
with associated norm as the square root of the variance, that is, the standard error.
The centered incomes that are attainable with these portfolios define a subset
spanned by the centered risky security payoffs, ãk − (Eãk), in a K-dimensional
subspace.5 Hedging consists of choosing an income in this subspace that reduces
the variance of total income to the greatest possible extent. This amounts to a
projection. By definition, the projection of a vector onto a subspace is the closest
vector of that subspace. Income is thus decomposed into the sum of its projection
and a vector that is orthogonal to the subspace. Using the variance as the square
of the distance between random variables, we can write for any centered x̃:

x̃ = projã x̃ + x̃⊥, with projã x̃ = cov(x̃, ã) var(ã)−1(ã − Eã),

5 Owing to the assumption of no redundancy, the vector made of one, 1∗, is independent of the
vectors ãk, k = 1, . . . , K . Thus, by centering, the dimension of the spanned space is not reduced, and
remains equal to K .
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where

1 projã x̃ is a linear combination of the payoffs ãk − Eãk and can thus be attained
by a portfolio.

2 x̃⊥ is in a subspace that is orthogonal to security payoffs (by construction, its
covariance with ã is equal to 0). It is not correlated with security payoffs and
consequently cannot be insured by the market.

Applying this result to nonfinancial income ω̃ − Eω̃, its projection onto security
payoffs is from (4.10), which is exactly the opposite of the payoffs of the hedging
portfolio, that is, −zh′(ã − Eã). Therefore, after hedging, final income is uncor-
related with security payoffs.6 If markets are complete, K = E − 1, the investor
can completely insure herself against nonfinancial risks: By selling the portfolio
that duplicates nonfinancial income, the residual variance is nil. When markets
are incomplete, some of the nonfinancial risks typically remain uninsurable on
the markets.

3.2 The Demand for Risky Securities

The calculation of the demand differs slightly in the quadratic and CARA-normal
cases.

Let us begin with the quadratic case. Recall the first-order conditions (4.7) for
the K risky securities:

Ev′(c̃)[ãk − (1 + r)pk] = 0,

which can be also written as

Ev′(c̃)Eãk + cov[v′(c̃), ãk] = (1 + r)pkEv′(c̃).

Since v′(c̃) = 1 − αc̃, we have

Ev′(c̃) = v′(Ec̃) and cov[v′(c̃), ãk] = −α cov(ω̃ + z′ã, ãk).

Stacking up these equations gives

v′(Ec̃)[Eã − (1 + r)p] − α[var(ã)z + cov(ã, ω̃)] = 0.

6 This can be confirmed by calculating the following:

cov[ã, ω̃ − Eω̃ − z′
h(ã − Eã)] = cov(ã, ω̃)− var(ã)zh = 0.
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Factoring out v′(Ec̃) yields

z = var(ã)−1
{
−cov(ã, ω̃) + v′(Ec̃)

α
[Eã − (1 + r)p]

}

or, using the expression for risk tolerance T(c) = v′(c)/α (see Section 1 in
Chapter 3)

z = var(ã)−1{−cov(ã, ω̃)+ T(Ec̃)[Eã − (1 + r)p]}. (4.11)

The CARA-normal case yields the same equation, but the calculations are
simpler, starting directly from the investor’s problem. The investor maximizes
v{Ec̃ − ρ/2[var(c̃)]} subject to the budget constraint. Substituting z∗ from the
budget constraint as a function of z, the first-order condition in z yields Eqn (4.11),
using the fact that risk tolerance is equal to 1/ρ for CARA utility functions.

Thus, the investor’s demand for securities appears as the sum of two
portfolios:

1 The first is the hedging portfolio.
2 The second is proportional to var(ã)−1[Eã − (1 + r)p]. It is called speculative

because it coincides with the demand of an investor with no risky nonfinancial
income to hedge (ω̃ constant). By intervening in the market, he is taking some
risk. When security payoffs are not correlated and have the same variance, the
speculative portfolio is proportional to Eã− (1+ r)p, the vector of the expected
security payoffs in excess of discounted prices (the discounting is necessary
because prices are paid at time 0 and payoff received in the next period.) The
investor buys a security if the expected payoff is larger than the discounted price
and sells it if it is lower.

Thus, in the two specifications just examined, the portfolio choice responds to
two goals: risk reduction and speculation. Clearly, the relative weights assigned
to each of these elements depend not only on the amount of initial risk to hedge
and the opportunities reflected by the securities, but also on risk tolerance: The
speculative part increases with the investor’s risk tolerance.

The difference with the mean–variance case merits emphasis. The two-fund
theorem is only applicable to speculative demand: Speculators with the same
expectations choose the same portfolios, and they behave according to the
mean–variance model. Instead, the composition of the hedging portfolio depends
on individual nonfinancial incomes and usually varies from one investor to the
other. Overall, in this model, any difference in portfolio composition must be
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attributable to variations in hedging requirements or to heterogeneous beliefs on
the securities payoffs.

Remark 4.3

1 The expression (4.11) for the optimal portfolio is not entirely explicit in the
quadratic case, since risk tolerance depends on total expected income, and thus
on the investment on the risk-free security and ultimately on the interest rate.

2 When we move beyond these two simple specifications, the first-order con-
ditions in (4.6) are no longer linear in z and the demand for securities
simultaneously reflects hedging needs and a desire for profitable investments –
though it is usually not feasible to distinguish between these two elements.

BIBLIOGRAPHICAL NOTE

Mean–variance analysis, founded by Markowitz (1952), is very popular in finance.
The presentation here is similar to that in Ingersoll (1987). The volume edited by
Diamond and Rothschild (1978) contains applications and critical insights on the
von Neumann Morgenstern theory.
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Exercises

4.1 The mean-variance criterion Consider a stock market with two risky securities
(k = 1, 2). Their returns (per dollar invested) are denoted by R̃k, k = 1, 2, with
mathematical expectation and standard deviation mk and σk, respectively. Let ρ be
the correlation coefficient between R̃1 and R̃2, that is, ρ = cov(R̃1, R̃2)/(σ1σ2).
There is also a riskless security (k = ∗) that yields R∗ = (1 + r) per dollar
invested.

Let R̃ be the return of a portfolio of composition x, that is,

R̃ = x∗R∗ + x1R̃1 + x2R̃2,
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in which xk represents the fraction invested in k (k = ∗, 1, 2):

x∗ + x1 + x2 = 1.

There is no condition on the sign of the xk, implying that short selling of any
security is allowed. Finally, denote the mathematical expectation and the standard
deviation of R̃ by m and σ , respectively.

1 Show that all portfolios that consist exclusively of risky securities define a curve
in the plane (σ , m). Represent this curve by assuming m1 = 2, m2 = 1, σ1 =
2, σ2 = 1, in the cases ρ = 1, ρ = 1/2, ρ = 0, and ρ = −1. Identify
the part of the curve that can be reached when short sales are not allowed.
Comment.

2 Assume that ρ = 1/2 and m∗ = 1/2. Find the equation of the efficiency
frontier. What is the composition of the mutual fund of risky securities chosen
by any investor? Comment.

3 Characterize the demand of securities of an investor with preferences
represented by a utility function U(m, σ) = m − ασ 2,α > 0.

4.2 Maximizing utility and the mean–variance criterion Under some circumstances,
the quadratic utility function leads to the choice of mean–variance efficient port-
folios. However, it has two drawbacks: First, the possible values for income
must be restricted to the domain on which the function is increasing (recall
that a concave quadratic function is surely decreasing for sufficiently high values
of its argument). But most of all, absolute risk aversion increases with the
level of wealth in the case of the quadratic function, which violates current
observations.

An alternative rationale for mean–variance analysis makes use of assumptions
that are not on the form of the utility function, but rather on the distribution of
portfolio returns.

I The normal case
An investor invests wealthω0 to acquire a portfolio z comprised of K securities.

With the usual notations, p′z = ω0, and the portfolio yields a random financial
income of z′ã = ∑K

k=1 zkãk at time 1.
The investors’ preferences over financial incomes are represented by a

von Neumann Morgenstern utility index v: IR → IR – a strictly increasing, strictly
concave, and twice continuously differentiable function.
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Let g denote the probability density function of the standard normal
distribution:

g(x) = 1√
2π

exp
(

−x2

2

)
.

To ensure that the integrals are well defined, we assume that there exists a number
M such that, for all m and σ , the functions f (x) = v(x), v′(x) or v′′(x) satisfy

lim
x→±∞ |x2f (m + σx)g(x)| ≤ M.

1 Check that the choice of a portfolio only depends on the mean and variance
of its payoffs. Denoting by (m, σ) the couple (mean, standard error) associated
with the portfolio z, define

V(m, σ) = Ev(z′ã).

Show that

∂V
∂m

= Ev′(z′ã) and
∂V
∂σ

= σEv′′(z′ã).

Demonstrate that the function V is concave in (m, σ). What is the form of the
indifference curves of V in the (σ , m) plane?

2 Compute the optimal portfolio for a utility function with CARA ρ > 0:

v(x) = − exp(−ρx).

Assume that there exists a risk-free security. How do investor’s choices vary
with their risk aversions?

II Non-normal distributions
The preceding analysis relies on two properties: (1) Normal distributions

are characterized by two parameters, and (2) any linear combination of the
components of a jointly normal vector has a normal distribution.

The mean–variance analysis extends to families of random variables whose
distributions depend on two parameters and that are stable by linear combina-
tion. There are many such families besides the multivariate normal distribution:
They are called elliptical distributions. We examine here an example. Let (α̃, β̃)
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be a couple of real random variables with density function h(α,β), where β̃ is
strictly positive with probability 1.

1 Consider the family of random variables ã, whose conditional distribution given
(α,β) is a normal distribution with mean αM and variance β�2, for a couple
(M,�) of IR × IR+.
(a) Demonstrate that the family is stable by linear combination.
(b) Compute the unconditional expectation and variance of ã. Show that, if

Eα̃ �= 0, the unconditional expectation and variance characterize the
distribution within the family studied. Does this property extend to the
multivariate case?

2 Consider an investor with CARA ρ. In the specific case in which α = 1 and β̃
has an exponential distribution with parameter µ,

h(β) = µ exp(−µβ),
compute the indirect utility function V(m, σ), where (m, σ) represent the
unconditional mean and standard error of a portfolio payoff. Specify the domain
over which it is defined. Derive the portfolio demand. Compare it with the
normal case above.

4.3 Speculative and hedging demands Let a security be priced p at time t = 0 with
an expected payoff at t = 1 (future price + dividend) denoted by ã. The risk-
free interest rate between t = 0 and t = 1 is r. We consider an investor whose
preferences are represented by a strictly concave von Neumann Morgenstern
criterion v on income at date 1.

1 The investor’s initial wealth is composed of w0 units of money. If she purchases
z shares of the security at t = 1, her expected wealth at t = 1 is

w̃ = (1 + r)w0 + (ã − (1 + r)p)z.

Write the first-order conditions characterizing the demand of security. Show
that the demand is
(a) nil if (1 + r)p = Eã;
(b) positive if (1 + r)p < Eã;
(c) negative if (1 + r)p > Eã.

2 Now assume that the investor initially has w0 units of money and z0 of the
security. Using 1, decompose her demand into a speculative and a hedging
component.
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How can risky future resources be best shared when agents have differing attitudes
toward risk? Traditionally, this question has been broached in two manners:
A normative approach and an institutional approach. What are the features of an
optimal allocation of risk? What types of markets or institutions allow such an
optimum to be achieved, and under what conditions?

Characterizing the optimal allocation of risky resources among economic
agents leads us to make a distinction between individual idiosyncratic risks
(car accidents, fires, noncontagious diseases, etc.) and macroeconomic risks
(business cycles, storms, natural disasters, epidemics, etc.). Individual idiosyn-
cratic risks, by definition, have no impact on the aggregate resources in the
economy. The optimal allocation of individual risks then implies mutualization,
as shown in Section 1: The idiosyncratic risks are pooled, so that ex post there is
no microeconomic risk left.

The implementation of optimal allocations in a decentralized way is examined
in Section 2. It is again bringing to the forefront the issue of markets completeness.
Indeed, if trades are unconstrained, an optimal risk-sharing allocation can result
from the decentralized operation of a complete system of contingent markets
(or Arrow–Debreu markets). In the absence of complete markets, optimality can
nevertheless be achieved with a set of well-designed markets. Both primary securi-
ties based on individuals risky resources and options on aggregate wealth should
be available. This property provides one possible explanation for the impressive
proliferation of derivatives in recent years.

However, markets do not establish themselves! Their smooth functioning
may be impaired due to incentives problems (unemployment insurance may
reduce recipients’ job search effort) and to privileged information by one of
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the contracting parties (a used car seller is better informed than the potential
buyers on the car; alife insurance purchaser has some information on his health
status; a financial market expert knows how to interpret firms data, etc.). Market
failures are briefly described in Section 3, the final section.

1 The Optimal Allocation of Risk

Risk disappears as soon as the outcome of the anticipated event materializes and is
known. Thus, risk sharing is only meaningful before the observation of the actual
occurrence. An insurance contract illustrates this type of risk sharing. It specifies
how much will be paid out as a function of whether an accident occurs and the
level of damages. Similarly, trading an option induces a specific allocation of risk
between the buyer and the seller that is linked to the evolution of the price of the
underlying security.

For this type of a contract, which is contingent on the occurrence of a specific
event, to be operational, it is essential that the event be observable with no
possibility of contestation and that it be beyond manipulation by any of the
parties to the contract. As before, we shall conduct the analysis by representing
the contingencies with states of nature. These states are assumed exogenous, hence
not manipulable, and perfectly observable by all parties. An allocation of risk
specifies the amounts allotted to each of the parties in every possible state: It is
said to be contingent on the states of nature. Once the state has been realized,
the transfers specified in the contract are implemented with no possibility of
default.

1.1 The Model

There is a single good and two dates: Today, t = 0, when the contingent exchange
contracts are signed, and tomorrow, t = 1, when they are settled. In this section,
as well as throughout this chapter, the focus is on allocating risky resources;
hence, to simplify, individuals do not consume today.

The data are

1 the set E of possible states of nature at t = 1, assumed to be finite for simplicity:
E = {1, . . . , e, . . . , E};
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2 the probability distribution on E , denoted by π ; E can always be chosen
such that π(e) > 0, for all e. All economic agents have the same
beliefs: The probabilityπ is known to all. This assumption specifically precludes
certain actors having access to insider information;

3 global resources available in each state: ω(e) if e occurs, ω(e) > 0;
4 agents, indexed by i, i = 1, . . . , I. They value income and are risk averse or risk

neutral. Their preferences are represented by a von Neumann Morgenstern
utility function, vi for agent i, where vi is concave and strictly increasing.

Definition 5.1

1 An allocation (c̃i)i=1,...,I specifies the consumption c̃i = ci(e) ≥ 0 of each individual
i in each state e.

2 It is feasible if it satisfies the scarcity constraints:

I∑
i=1

ci(e) = ω(e) ∀e. (5.1)

3 It is optimal if it is feasible and there is no other feasible allocation (c̃′i)i=1,...,I that
provides greater utility to one agent without reducing that of any other:

E[vi(c̃′i)] ≥ E[vi(c̃i)] ∀i,

E[vi(c̃′i)] > E[vi(c̃i)] for some i,

⇒
I∑

i=1

c′i(e) > ω(e) for at least one state e.

This notion of optimality is viewed ex ante because the utility levels are evalu-
ated before the realized state is known. As explained previously, ex ante optimality
is the relevant notion in insurance. In contrast, ex post optimality evaluates wel-
fare in each state after it is known. When there is only a single good, as in the
current case, this concept is irrelevant: Once the state is known, any allocation of
the total available resources is optimal. In other words, any waste-free allocation
is optimal ex post.

1.2 Insuring Individual Idiosyncratic Risks

If individuals are strictly risk averse, an optimal allocation satisfies a very specific
property, known as the mutuality principle (it was first obtained by Borch (1960)
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in the early 1960s). This principle asserts that individuals’ incomes are identical
across states with identical aggregate resources. Therefore, individuals bear risks
only when unavoidable.

Theorem 5.1 Mutuality principle Assume that beliefs are identical and
individuals are strictly risk averse. An optimal allocation (c̃i)i=1,...,I satisfies

ω(e) = ω(e′) ⇒ ci(e) = ci(e′) ∀i.

Proof of Theorem 5.1 Let (c̃i) be an optimal allocation. First, to develop the intu-
ition, consider the case in which the aggregate resource is not risky: ω(e) = ω,
for all e. If the consumption of some individuals is risky, consider an alternative
allocation in which, in every state, everyone receives the expectation of con-
sumption levels in the reference situation: c′i(e) = E(c̃i), for all i and all e. This
allocation is feasible. Since (c̃i) is feasible, condition (5.1) holds:

∑I
i=1 ci(e) = ω,

for all e. Thus, taking expectations,
∑I

i=1 c̃′(e) = ω is satisfied. Furthermore,
each individual whose allocation was risky is made better off because she obtains
the same expected consumption as before, but without risk. This contradicts the
optimality of the initial allocation (c̃i).

The argument extends to the case in which the aggregate resource varies
across states. For a given possible value of ω, let E ′ denote the (not empty) set
of states in which aggregate resources equal ω. If some individual’s consumption
is not constant in E ′, we can modify the allocation in E ′ by giving everyone the
expectation of her consumption in E ′:

c′i(e) = E[c̃i|ω(e) = ω] ∀e ∈ E ′.

The new allocation is feasible, and

E[vi(c̃′i)|ω(e) = ω] = vi[E(c̃i|ω(e) = ω)].

By applying Jensen’s inequality to the strictly concave functions vi, we have

E[vi(c̃′i)|ω(e) = ω] = vi{E[c̃i|ω(e) = ω]} > E[vi(c̃i)|ω(e) = ω],

for individuals whose consumption is not constant in E ′. Since the allocation
over states not in E ′ remains unaltered, their level of utility has strictly increased.
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Nothing has changed for the other individuals. Therefore the initial allocation
was not optimal.

This result provides the rationale for insuring idiosyncratic risks. Assume,
for example, that there is always the same proportion of ill people within a pop-
ulation.1 If the productivity of all healthy individuals is equal, the per capita
wealth remains constant regardless of the identity of the ill. According to
the mutuality principle, each person’s consumption must be constant and, in
particular, independent of his health status. This type of risk sharing is exactly
what a mutual company seeks to achieve.

As the demonstration makes clear, the mutuality principle is only valid when
everybody shares the same beliefs. To illustrate this point, let us look at an example
with two individuals and two states. Consider the extreme case in which the first
individual assigns a zero probability to the second state, and conversely for the
second individual. Even if the amount to be shared is identical in the two states,
an optimal arrangement will allot all of the resource to the first individual in
state 1 and all to the second in state 2. The existence of bets is often associated
with differences in beliefs, as at races for example. A bet can be interpreted as a
contingent contract on a random outcome. The betters’ total resources remain
constant: There is no macroeconomic risk. If two individuals have different beliefs,
say, on the physical condition of horses, they may both believe that it is in their
interest to take an additional risk when entering into a bet (on top of any simple
pleasure in gaming).

1.3 Optimality: Characterization

If individuals are risk averse, thanks to the mutuality principle, optimal income
levels depend on the state only though the available aggregate resources in that
state. They are described by some functions, say Ci for each i: ci(e) = Ci(ω(e)).
These functions determine how the macroeconomic fluctuations affect individual
incomes. They are often called sharing rules. This section determines some prop-
erties of these rules. We first characterize optimal allocations with possibly risk
neutral individuals.

The set of feasible allocations is convex and utilities are concave. Thus, as
in traditional microeconomic theory, the set of optima can be described by

1 This assumption is approximately true for a large population subject to independent health risks.
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assigning weights to individuals and maximizing the weighted sum of their utilities
under the feasibility constraint. If all consumption levels are strictly positive,2

the first-order conditions are necessary and sufficient. Whence:

Theorem 5.2 Let (c̃i)i=1,...,I be a feasible allocation, with ci(e) > 0 for all i and all e.
It is optimal if, and only if, there exist weights (λi)i=1,...,I ,µ(e), e ∈ E , all of which are
positive, such that

λiv′i[ci(e)] = µ(e) ∀i, e. (5.2)

or, equivalently, if

v′i[ci(e)]
v′i[ci(e′)] is independent of i ∀e, e′. (5.3)

Proof of Theorem 5.2 At an optimum, it is impossible to increase the utility level
of one individual, for example, agent 1, without lowering that of others. Thus,
an optimal allocation solves:

max E[v1(c̃′1)], s.t.




I∑
i=1

c′i(e) = ω(e) ∀e,

E[vi(c̃′i)] ≥ v̄i ∀i ≥ 2.

Letting λi represent the multipliers associated with the individuals constraints i,
i ≥ 2, and λ1 = 1, the allocation solves

max
I∑

i=1

λiE[vi(c̃′i)], s.t.
I∑

i=1

c′i(e) = ω(e) ∀e.

In other words, it maximizes a weighted sum of utility levels under the scarcity
constraints. Conversely, it is clear that any solution to such a program is an

2 A utility function vi satisfies the Inada condition if limc→0 v′i(c) = ∞. Under this condition, for all
investors, a “corner” solution is precluded at an optimum and the analysis can be restricted to strictly
positive ci in all states.

If a utility function is not defined on IR+, it is sufficient to replace the condition “ci(e) > 0” by the
condition “ci(e) belongs to the interior of the consumption domain.”
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optimum. Letting µ(e)π(e) denote the multiplier associated with the resource
constraint in state e, the necessary first-order conditions are

λiv′i[ci(e)] = µ(e) ∀i, e.

They are sufficient because the program is convex.

This theorem indicates how, given the preferences of all individuals, the
individual consumptions should vary with the state, that is, with the fluctuations
in aggregate resources, in order to reach optimality. Two examples first serve as
an illustration.

Example 5.1 Risk neutrality The optimality conditions (5.2) obtain when indi-
viduals are risk averse or risk neutral (but recall that the mutuality principle only
holds when they are all strictly risk averse). Assume that agent 1 is risk neutral:
u1(c) = c, for all c positive or not. The optimality conditions applied to agent 1,
λ1 = µ(e), for all e, imply thatµ(e) is state independent. Thus, for the remaining
individuals, v′i[ci(e)] is also constant. If they are risk averse, their marginal utility
v′i is strictly decreasing in consumption. Therefore, their consumption is constant
across the different states. This means that individual 1 insures the others. The set
of optima is thus easy to describe: Any optimum can be reached by allotting a sure
level of consumption to each agent other than agent 1, who receives whatever is
left over.

Example 5.2 CARA Let all agents have CARA: vi(c) = − exp(−ρ ic)/ρ i,
for all i. Let ρ be the harmonic mean of the ρ i’s:

1
ρ

=
∑

i

1
ρ i .

For reasons that will become clear, the index ρ is called a measure of aggregate risk
aversion. The optimality conditions are written as

λi exp[−ρ ici(e)] = µ(e) ∀i.

Or, taking logs,

log λi − ρ ici(e) = log[µ(e)] ∀i. (5.4)
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Dividing by ρ i and summing over i while accounting for the scarcity constraint,
µ(e) is expressed as a function of aggregate wealth:

∑
i

log λi

ρ i − ω(e) = 1
ρ

log[µ(e)].

Plugging this expression into (5.4) gives

ci(e) = log λi

ρ i + ρ

ρ i

[
ω(e)−

∑
i

log λi

ρ i

]
∀i.

Taking expectation gives that log λi/ρ i = E(c̃i), which finally allows us to write
the following:

If all individuals are characterized by CARA, optimal allocations have the following
form:

ci(e) = E(c̃i)+ ρ

ρi [ω(e)− E(ω̃)] ∀i, e,

∑
i

E(c̃i) = E(ω̃).

At the optimum, the risks associated with the fluctuations in available resources
thus are allocated independently of the relative weights assigned to agents in
the social welfare index: Each individual receives a share of the variation of
ω(e) around the mean, share that is proportional to his risk tolerance.3 The
sharing rule is linear: Ci(ω) = E(c̃i) + ρ/ρ i[ω − E(ω̃)]. The set of all optima
is described by letting the distribution of Eω̃ among agents, that is, the E(c̃i),
vary. This separability between the distribution of the fluctuations and that of
the expectation of the resources is specific to the situation where risk aversion is
independent of the income level.

What can be generalized?

Property 5.1 Assume that all agents are strictly risk averse. At any optimal alloca-
tion, individual consumption levels increase with aggregate resources: The sharing rules,
Ci for i, are all increasing.

This property states that all agents participate both in aggregate gains and in
aggregate losses. The precise shape of the sharing rules depends on the preferences
of all individuals, and one cannot hope for more general properties.

3 Other utility functions also give rise to linear sharing rules, as characterized by Wilson (1968).
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Proof of Property 5.1 The marginal utilities v′i are all strictly decreasing. Thus,
according to condition (5.2), we have

µ(e) < µ(e′) ⇔ ci(e) > ci(e′) ∀i, (5.5)

and similarly replacing inequalities by equalities everywhere. This implies that
for any two states e and e′, consumption levels in state e are all either greater
than, less than, or equal to those in state e′. Now the scarcity constraints hold.
Thus, if ω(e) > ω(e′), we are necessarily in the first case, and we obtain

µ(e) < µ(e′) ⇔ ω(e) > ω(e′), (5.6)

and similarly by replacing inequalities by equalities. Owing to (5.5) again, this
gives the result.

2 Decentralization

How can an optimum be reached? In many situations, individuals have a claim
on a share of risky aggregate resources. It is unlikely that this initial allocation
be optimal. We investigate here which kind of decentralized institutions allow
optimality to be reached.

2.1 Complete Markets

Initially each individual i is entitled to ωi(e) if state e materializes. Thus, the
aggregate resources available in state e are equal to ω(e) = ∑

i ω
i(e).

Let there be a complete set of contingent (Arrow–Debreu) markets: One for
each state of nature. These markets are open ex ante, before the state is known.
Recall that, by definition, one unit of a security contingent on e provides its owner
with a claim to one unit of money if e materializes and nothing otherwise. Its
price, denoted q(e), is the state price, already seen in the study of valuation by
arbitrage. Investor i’s budget constraint at time 0 is written as∑

e

q(e)zi(e) = 0,

where zi(e) is the number of contracts contingent on state e purchased. Con-
sequently, i’s consumption in state e is ci(e) = ωi(e) + zi(e). The definition
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of a competitive equilibrium in Arrow–Debreu markets is defined as in classical
microeconomics.

Definition 5.2 The price vector q = (q(e)) and individuals’ portfolios (zi)i=1,...,I

constitute an equilibrium if

1 for all i, zi = (zi(e)) is a portfolio demanded by i given the prevailing prices:

zimaximizes
∑

e

π(e)vi(ωi(e)+ zi(e)) subject to the budget constraint,

∑
e

q(e)zi(e) = 0;

2 demand is equal to supply: ∑
i

zi(e) = 0 ∀e.

Formally, this equilibrium is the standard Walrasian equilibrium in which con-
tingent goods rather than physical goods are exchanged. An application of general
results ensures that

1 there exists an equilibrium associated with the initial income distribution
(ω̃i)i=1,...,I ;

2 every equilibrium allocation is optimal.

The analysis is easily transposed to a complete markets structure, without
necessarily requiring the existence of Arrow–Debreu securities. The link between
state prices and the value of any security is given by arbitrage:

pk =
∑

e

ak(e)q(e), (5.7)

in which as usual ak(e) is the payoff of one unit of security k in state e.
Note that state prices are defined up to a multiplicative constant. They can be

normalized by ∑
e

q(e) = 1.

As seen in Chapter 2, the normalized state price vector can be interpreted as
a risk-adjusted probability distribution and the price of any asset is equal to the
mathematical expectation of its payoffs, computed with this probability.
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2.2 State Prices, Objective Probability, and
Aggregate Wealth

Equilibrium state prices, or equivalently the risk-adjusted probability, of course,
depend on the true probability distribution but other factors play a role. We ana-
lyze here more closely the relationship between the risk-adjusted probability and
the objective probability. For this, it is convenient to write the first-order condition
associated with agent i’s maximization problem:

π(e)v′i[ci(e)] = ν iq(e), (5.8)

with ν i the multiplier associated with i’s budget constraint. Thus, the conditions
(5.2) that characterize optimality are satisfied, which is not surprising since an
equilibrium allocation is optimal. Furthermore, comparing (5.8) and (5.2) shows
that the multipliers µ(·) (up to a multiplicative constant) associated with the
scarcity constraints and the risk-adjusted probability are related by

q(e) = π(e)µ(e).

Recall that with strictly risk averse individuals, by (5.6), the multipliers µ(e) are
a function of the available aggregate resource ω(e) in state e, a function that is
decreasing. Thus, according to the above formula, a state price depends both on
the probability of occurrence of that state and on the available aggregate resource.
Since the multiplier µ decreases with wealth:

If individuals are strictly risk averse and aggregate wealth is uncertain, then
state prices are not proportional to the objective probability, or equivalently the
risk-adjusted probability differs from the objective probability: It is corrected by
a factor that puts more weight on states with less wealth.

This correcting factor depends on the agents’ level of risk aversion. When markets
are complete, state prices both reflect the probability of occurrence of the states
and the relative scarcity of resources across them.

2.3 The Role of Options

The decentralization of an optimum through Arrow–Debreu markets remains
somewhat abstract. An optimal allocation can also be reached as an equilibrium
in a more realistic market structure. This is the case if agents are able to exchange
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options on aggregate wealth alongside primary assets linked to each individual’s
risky income.

To show this property we start with two results that are interesting in their
own right. The first makes explicit the role that options can effectively play
as a truly new instrument for sharing risks. The second result pertains to the
decentralization of an optimum under a spanning condition.

By truly new instrument, we mean that the option cannot be replicated by a
portfolio made of preexisting securities. Therefore, it generates new opportunities
for trade. This is not the case whenever the option can be valued by arbitrage.
Then, because the option can be replicated, its use can only be explained as a
matter of convenience, say in a dynamic context, and by a possible reduction in
transaction costs. In contrast, the following theorem shows that, in a market that
is incomplete a priori, options can “complete” the markets.

Theorem 5.3 Consider a security yielding a payoff ã taking L values: a1 >

a2 > · · · > aL > 0, aL �= 0. Let there exist L − 1 call options with strike prices
a2, . . . , aL, respectively. Then any random income c̃ contingent on the security payoff ã
can be replicated by a portfolio comprising the security and the L−1 options: There exists
z = (z1, . . . , zL) such that

c̃ = z1ã +
∑


=2,...,L

z
(ã − a
)+. (5.9)

This theorem can be understood as follows. The only relevant events are the
possible values of the security payoff. In other words, there are L relevant states,
one for each value a
 of ã. The theorem states that any income contingent on
these states can be obtained from a portfolio comprising the security and the L−1
options: The L − 1 options complete the markets.

Proof of Theorem 5.3 It is sufficient to demonstrate that the options and the
security generate complete markets. Since there are L states and L securities,
we only need to show that the payoffs are linearly independent. Putting first the
options, with exercise prices in decreasing order, and last the security, the matrix
of asset payoffs is 


a1 − a2 0 · · · · · · 0
a1 − a3 a2 − a3 · · · · · · 0

. . . . .
a1 − aL a2 − aL . . 0

a1 a2 . . aL


 ,
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which is upper diagonal. Since none of the terms in the diagonal is nil, this matrix
has an inverse.4 This proves that the assets payoffs are linearly independent.

To state our second result, we need to define an equilibrium at date 0 in an
arbitrary market structure. Let us as usual describe the securities by their payoffs,
(ã1, . . . , ãK). Given prices p = (pk), investor i’s budget constraint at time 0 is
written as

∑
pkzk = 0. If individual i buys portfolio z, he obtains consumption

c(e) = ωi(e)+
∑

k

zkak(e),

in state e.
A competitive equilibrium at prices p is defined as in classical microeconomics,

by requiring that each investor demands a portfolio zi that maximizes his utility
subject to his budget constraint, and that markets are balanced:∑

i

zi = 0.

Theorem 5.4 Spanning Given E and an initial income distribution (ω̃i)i=1,...,I ,
let (c̃∗i)i=1,...,I be an equilibrium allocation associated with complete markets. Consider
a set of K securities with payoffs ã spanning this allocation, that is, for which,

For all i there exists a portfolio zi such that c̃∗i = ωi + zi′ ã.

Then (c̃∗i) is also an equilibrium allocation in an economy in which only the K
securities ã are exchanged.

Proof of Theorem 5.4 Let (q(e)) be the equilibrium state prices associated with
the allocation (c̃∗i)i=1,...,I . By arbitrage, the security prices are, by (5.7),

pk =
∑

e

ak(e)q(e) ∀ k.

Consider now the economy with the K securities at prices equal to p. Individual i
can buy any portfolio z that satisfies the budget constraint

∑
k pkzk = 0. Swapping

the summation signs, this budget constraint can be written as∑
e

q(e)
[∑

k

zkak(e)
]

= 0.

4 In the case where aL is equal to zero, a similar property holds, provided the last call option is chosen
with exercise price aL − 1, instead of aL.
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By buying portfolio z, agent i gets consumption:

c(e) = ωi(e)+
∑

k

zkak(e),

in state e. Thus, the consumption levels that agent i can attain by trading the K
securities necessarily satisfy the budget constraint of the economy with complete
markets: ∑

e

q(e)[c(e)− ωi(e)] = 0. (5.10)

Conversely, any consumption bundle satisfying this equation and spanned by the
securities is attainable in the K securities economy.

Now, since (c̃∗i)i=1,...,I is an equilibrium allocation in complete markets, c̃∗i is
i’s preferred consumption among those satisfying Eqn (5.10). Since c̃∗i is spanned
by the K securities payoffs (ã), it is surely i’s preferred choice when only these
K securities are exchanged. Therefore, agent i demands any portfolio z∗i that
yields c̃∗i. Furthermore, the feasibility condition,

∑
i c̃∗i − ω̃i = 0, ensures that∑

i z∗i = 0. It follows that the price p together with the portfolios (z∗i)i=1,...,I

form an equilibrium for the economy with market structure (ã).

The condition that the agents’ net trades c̃i − ω̃i belong to the vector space
spanned by security payoffs is called the spanning condition . If there are as many
linearly independent securities as there are states of nature, this condition is always
satisfied regardless of the initial distribution of wealth or the allocation considered.
Markets are complete, and the result is trivial. Theorem 5.4 is of interest when
there are fewer securities than states of nature.

We can now state the final result. Let us call a security representing agents’
risky wealth a primary security – for example, one that provides a claim to the
profits ω̃i of a firm created by entrepreneur i.

Theorem 5.5 Assume that the traded securities include the primary securities ω̃i

for each i and options on aggregate resources, and that individuals are risk averse. Then
any equilibrium allocation obtained with complete markets is also an equilibrium for this
system of markets.

Proof of Theorem 5.5 An equilibrium allocation (c̃∗i)i=1,...,I in complete markets
is optimal. Therefore, individuals’ consumptions are a function of aggregate
wealth: c̃∗i = Ci(ω̃). According to Theorem 5.4, it is sufficient to show that,
for any i, the net trade Ci(ω̃) − ω̃i belongs to the vector space spanned by the
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securities payoffs. This is true since the securities exchanged include the primary
securities ω̃i, and the function of aggregate wealth Ci(ω̃) is spanned by the options
according to Theorem 5.3.

The availability of the primary securities and of the options on the aggregate
resources ensures that an equilibrium allocation with complete markets is spanned
whatever the preferences. For some specific preferences profiles, such as those
with constant risk aversion, the optimal sharing rules are linear in the aggregate
resource (see Example 5.2). In this case, trading the primary securities suffices to
satisfy the spanning condition.

3 Market Failures

Is it realistic to assume the existence of a system of complete competitive markets?
In the case of individual risks, obviously not, since there would only be a single
seller per market! However, we have seen how mutualization allows this problem
to be partly solved. As to collective risks, the essential question is to establish
whether markets can function properly. Now, differences (or asymmetries) in
the availability of information that plague situations of uncertainty cast doubt
on the applicability of traditional competitive mechanisms. We present some
illustrative examples here.

Information and Insurance Contracts

Let us return to the framework of individual risks that can, theoretically, be
insured by a mutual company. Issues related to information actually prove quite
serious. A priori, individuals are not identical. Some feature a higher probability
than others of having an automobile accident or falling sick. This probability
depends on numerous factors but, all in all, can be separated into an “innate”
component that is beyond anyone’s control (I have slow reflexes, I have a genetic
predisposition to diabetes, etc.) and another component reflecting efforts made
to avoid the injury (I stick to the speed limit, I don’t eat too much sugar, etc.).

The relative importance of these two components varies with the situation,
but it is rare that both do not play some role. The latter component, called moral
hazard, makes full insurance suboptimal. The former leads to adverse selection and
complicates the analysis of competition.
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An insurance company seeks to identify the needs of its clientele as nearly as
possible and to offer contracts by class of risk. It may draw on statistical data. The
variable of interest, the likelihood of an accident, is unobservable but frequently
correlated with observable characteristics (age, sex, profession) on which the
contracts are made contingent. If an insurer does not attempt to select, another
one will do so, and lure away some of the customer base. For example, assume
that a car insurer offers an undifferentiated insurance that returns the “mean” of
benefits paid out if the clientele is representative of the population mean. Another
insurer can offer a contract with a lower premium but a higher deductible, and
thus draw away the “better” drivers (this is called a market skimming strategy).
The first insurer will only be able to attract the worst drivers and in consequence
will lose money. Thus, by offering a sufficiently broad range of contracts, insurers
provide an incentive to individuals to self-select by revealing some of their own
characteristics. It can be demonstrated that under this type of competition, an
equilibrium may fail to exist. This suggests instability, and may provide a rationale
for regulation making it possible for everyone to obtain insurance.

The Hirshleifer Effect

This effect, named after the author who first formulated it, describes the negative
impact that the premature release of information may have on the allocation of
risks. Consider the case of an entrepreneur who contemplates a potential invest-
ment. A group of investors interested in this project may benefit from participating
in the firm. Indeed, if these investors are risk neutral, the entrepreneur can sell
them the firm for a price equal to the mathematical expectation of the anticipated
revenues.

Now assume that everyone in the economy, the entrepreneur and investors,
learn how much revenue will be generated before settling the contract. An
exchange now is necessarily settled at the known value. From an ex ante point of
view, the entrepreneur is no longer insured: He is worse off while investors are
not better off. Advanced information here is detrimental.

The Market for Lemons (Akerlof)

A more puzzling phenomenon even occurs if only the entrepreneur knows how
much revenue will be generated – in contrast to the investors who are aware,
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however, that she has this inside information. Consequently, the entrepreneur will
wish to keep the firm if the price she can receive for it is below the expected sure
revenue. Thus, the investors know that any price that is accepted (or proposed) by
the entrepreneur exceeds that revenue, and consequently they no longer have an
interest in investing. Even if a formal market were to exist, it would not function.
This mechanism may explain why some reputable but insufficiently transparent
stock exchanges have been abandoned. It is also one of the arguments put forward
to promote laws against insider trading.

For markets to fulfill their roles, it is necessary to organize the dissemination
of available information so that eventual differences in knowledge do not create
an unfair advantage to insiders and discourage investors. This is the basis for
regulations that describe the information that must be provided to stockholders.
This also explains the existence of bodies that gather and release information on
firms that use markets. These bodies are called rating agencies5 since they “rate”
the risk attached to bonds issued by firms.

The market failure just described has been first illustrated with “the market for
lemons,” explaining the decline in interindividual sales of used cars to the benefit
of institutions that guarantee the sales.

Further problems linked with information are investigated in Chapter 7.

BIBLIOGRAPHICAL NOTE

Arrow (1964) was the first to show that, if agents’ expectations are correct, it is
sufficient in an economy with several goods that a limited number of contingent
tradable assets be available on spot markets open in every period to support the
optimum. Borch introduced the mutuality principle in a seminal article published
in 1960. His book (1992) examines insurance in many areas (reinsurance, life
insurance, etc.). Wilson (1968) derives some properties for the sharing rules and
examines the validity of the mutuality principle in more general contexts. The
previously quoted book by Diamond and Rothschild (1978) groups basic articles
on uncertainty, covering issues ranging from modeling preferences to market
failure when agents possess private information.

The role of options in mitigating the absence of some markets is broached
by Ross (1976). The presentation here follows Demange and Laroque (1999),
who study some extensions. The problems created by market incompleteness are
legion.

5 The three most well known are Fitch, Moody’s, and Standard and Poor’s.
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Exercises

5.1 Reinsurance contracts Consider two insurance companies i = 1, 2. Company
i’s reserves are equal to Ri at t = 0. It will reimburse a (stochastic) level of claims
x̃i at t = 1. The interest rate is assumed to be nil. Hence, company i’s future
revenues at t = 1 are ω̃i = Ri − x̃i.

Company i’s utility is measured by a von Neumann Morgenstern utility
function vi. Thus, without reinsurance, company i’s utility level is equal to
E[vi(ω̃i)].
1 Assume that x̃1 and x̃2 are independent. At t = 0, the companies agree to sign a

reinsurance contract along the following terms: If the claims payable at t = 1 are
x1 and x2, respectively, firm 1 will pay y(x1, x2) and firm 2 (x1 +x2)−y(x1, x2),
where y is a function remaining to be defined.
(a) Define an optimal contract y and provide the first-order conditions.
(b) Verify that y only depends on (x1, x2) through the sum x1 + x2. What is

this property called?
(c) What can you say about the monotonicity properties of these two

companies’ revenues with respect to the total level of damages (x1 + x2)?
2 If vi(c) = ac − b(c2/2), for i = 1, 2, show that the optimal contracts are

linear. Interpret the form of the optimal contracts as being composed of a fixed
transfer and the repurchase of a fraction of the damages.

5.2 Exchange rate risk Consider an economy consisting of a single entrepreneur
and a consumer/speculator, respectively, indexed by i and s. There is a single risky
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good, available at times 0 and 1. Agents’ tastes bear on their final wealth in terms
of the good at time 1.

The consumer/speculator is risk neutral: He maximizes the mathematical
expectation of his wealth c̃s. Initially, at time 0, he owns a quantity ωs,ωs > 1,
of the good. This good can be stored at no cost from one period to the next (the
quantity stored S is nonnegative).

The entrepreneur has no wealth at t = 0 and is risk averse. He has a
von Neumann Morgenstern vi(ci) utility function, concave, increasing, twice con-
tinuously differentiable, and defined on IR. He has access to a production technol-
ogy: An investment of x, x > 0, in period 0 yields a quantity g(x) in period 1, with
g increasing, concave, and twice differentiable on IR++. We assume that g′(1) < 1,
g(0) = 0, and limx→0 g′(x) = ∞. The good is produced for export and sold for
foreign currency, at an exchange rate, τ̃ , that may be stochastic. The income, in
terms of domestic goods, of producing g(x) for the foreign market is thus τ̃ g(x).

1 Borrowing and lending is unlimited between times 0 and 1. Let r be the asso-
ciated interest rate; zi represent borrowing by i and zs lending by s. Write and
solve the two agents’ programs in terms of the interest rate.

2 Assume that the exchange rate is fixed at τ = 1. Show that the equilibrium
interest rate is equal to zero and describe the allocation of resources.

3 From now on, the exchange rate is stochastic: τ̃ takes the values 1
2 and 3

2 with
equal probability.

Show that, for all r, the entrepreneur’s production and utility levels are lower
than under a fixed exchange rate regime.6 What is the equilibrium interest rate?

4 Assume now that a forward market for currency has been created. At time 0,
a contract can be bought or sold, one unit of which provides a claim to τ units
of the domestic good at time 1.

Denote p f the price of this contract, and zif and zsf the demands of domestic
agents on this market. Write out the two agents programs. Describe an
equilibrium on the credit and forward markets. Compute the equilibrium.
Comment.

5 The production is in fact risky: An input x yields the random quantity g(x)ε̃,
where ε̃ is positive with mean 1.

6 The following property is useful: If f is an increasing, integrable function, then the covariance of
f (τ̃ ) and τ̃ , provided it is defined, is positive.
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Assume that the interest rate is nil, that p f equals 1, and that the
entrepreneur’s utility is represented by a mean–variance criterion:

vi(c̃i) = Ec̃i − ρ i

2
var(c̃i).

Compute the entrepreneur’s supply of foreign currency on the forward market
for a given level of input x as a function of the variance of the exchange rate
and the covariance between this rate and sales. Can this be interpreted as the
sum of a hedging and a speculative supply?

6 To spread the risks associated with production, a market is created for a new
security. One unit of this security procures a claim to ε̃ at date 1. What is the
equilibrium price of this asset? Write out the entrepreneur’s program in this
institutional setting and the corresponding first-order conditions. Why do the
financial market and the forward currency market not constitute a complete
set of markets (to simplify, assume that ε̃ can take a finite number of values, n).
What is required to complete these markets? In your opinion, would this make
it possible to raise investment levels to those observed in the fixed exchange-rate
regime of question 2?

5.3 Incomplete markets and stock exchanges Consider an economy with a single
consumption good. There are two periods, t = 0, 1, and, at time 1, two states of
nature, e = 1, 2.

There are two consumers in this economy, i = 1, 2. The initial resources of
individual 1 are constant over time and independent of the state of nature: He
receives 1 at period 0 and 1 at period 1 in each state. Individual 2, a farmer, owns
1 at period 0. The value of his crop is only positive if climatic conditions are
propitious, in state 2: At date 1, he has nothing in state 1, and 2 in state 2.

The agents’ tastes are represented by a von Neumann Morgenstern utility
function that remains invariant over time. For agent 1, u1(x) = v1(x) = x, and
for agent 2, u2(y) = v2(y) = log y. Furthermore, agents have a preference for
the present: At time 0, they discount the future with the factor δ, 0 < δ < 1.

Finally, the probability that state 1 occurs is π , and that of state 2 is 1 − π .
These probabilities are known to the agents.

1 Write the consumers’ utility functions. Compute the risk aversion indices and
comment on the shape of the functions.

2 Determine the Pareto optima (to simplify, assume that the sign on individual 1’s
consumption is unrestricted: Negative consumption corresponds to a provision
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of services). Compute the associated system of contingent prices, using good 0
as the numeraire.

3 Now assume that a single security is available. It is riskless: One unit of the
security procures an unconditional claim on one unit of the good at time 1.

Define the competitive equilibrium. Without calculation, determine the
price of the security at time 0 in terms of good 0.

Compute the equilibrium allocation for π = 1
2 , δ = 1

3 .
Is this a Pareto optimum?

4 The farmer, individual 2, decides that his business is too risky and chooses to
go public. When the corporation is established, he swaps his right to receive
two units of the good in state 2 for the entirety of the stock. The shares of the
company are negotiable on the exchange at time 0.

Define and compute the competitive equilibrium. Why is it Pareto optimal?
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What is the purpose of a stock exchange? The answer to this question depends on
whom you ask. To some, it’s a way for those who already have enough money to
get more; to others, it’s a way for companies to raise fresh capital to finance their
activities; to yet others, it is a tool with which capitalists settle their accounts or
reorganize their control of the productive system, and so on. All of these answers
have an element of truth, but they neglect what economists would probably
consider the essential function of stock exchanges. Stock exchanges allow the risks
associated with productive activities to be spread among investors. In this way, they guide
firms into taking risks that are most in keeping with the desires of market participants.

Stock exchanges underlie the institution of incorporated companies, allowing
large risks to be distributed among many contributors of funds. The market allows
the initial providers of funds to divest themselves of the firm by reselling their
shares at any time. It provides liquidity by giving a public market for stocks. On this
basis it facilitates investment. But it also severs the link between the stockholder,
who can resell her share and may thus have a short investment horizon, and the
manager of the firm who, at least initially, is reliant on the long-term viability of
his labors.

Our goal in this chapter is to formalize and examine the risk distribution role
that stock exchanges fulfill. This is done in the extremely simple framework of an
exchange economy without production, with only one time period, and under
symmetric information. By symmetric information, we mean that all investors
are equally (or symmetrically) informed: Not only do they all share the same
representation of states of the world and of the incomes accruing in these states,
just like in models of arbitrage, but they also attribute the same probability to the
occurrence of these states.

We first describe how the prices of risky securities are formed on competitive
stock exchanges in which all investors hold mean–variance efficient portfolios.
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This is known as the CAPM. It yields well-known relationships between the
expected returns of risky assets and their “beta” in equilibrium. Mean–variance
efficiency is a strong assumption that is subsequently put into perspective.

The final section uses a full description of the economy: agents’ attitudes
toward risk, uncertainty over the available primary resources, and preference
for the present. Current consumption, portfolio choice, and the prices of all
securities, risky and risk-free are jointly determined at equilibrium. This is known
as the CCAPM. Not only are some relationships between risk premia derived
as in the CAPM, but also their level. Finally, special attention is given to the
determination of the risk-free rate, and its relation with the fluctuations in the
economy. This study will be developed in Chapter 8.

1 The Amounts at Stake

The main features of the US households balance sheet accounts at the end of the
year 2003 are described in Table 6.1.

To make sense of these large numbers, it is useful to recall that the US Gross
Domestic Product, a measure of the overall production of the year, was equal
to 11 trillion dollars in 2003. The net worth of the households is approximately
equal to 4 years of production.

Of this total net worth, tangible assets – homes and durable goods,
18.4 trillions – represent slightly less than a half, in fact, less than a quarter if
we deduct from their gross value the credits – mortgages and consumer credits,
9.3 trillions – that were contracted when acquiring them.

A large fraction of the wealth, approximately three-quarters, is therefore held
in financial assets. Of these, a third, pension fund reserves and equity in noncor-
porate businesses, is illiquid. The remainder is made of money, credit instruments
(treasury bonds, municipal securities, corporate, and foreign bonds issued by
institutions and firms to finance their activities), and corporate equities. The last
two categories are liquid when they are listed on an exchange market.

Most of the young, small companies are not listed on a stock exchange. Their
shares cannot be traded by the public at large. A firm seeking outside equity capital
and a public market for its stock holds an initial public offering (IPO), which is the
first sale of stock to the public. The IPOs represented on the three main US stock
exchanges (Nasdaq, Nyse, and Amex) a total of 105 billions dollars in 1999, 113
in 2000, and 44 in 2001, respectively (source: CommScan EquiDesk). The sharp
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Table 6.1 Households balance sheet accounts in the United States
amounts outstanding at the end of 2003 (in trillions of dollars)

Assets Liabilities

Assets 52.8 9.6
Tangible assets 18.4

Real estate 15.0
Consumer durable goods 3.4

Financial assets 34.5 9.6
Deposits 5.2
Mortgages 0.1 6.7
Other credit market instruments 2.1 2.6
Life insurance reserves 1.0
Pension fund reserves 8.8
Corporate equities 6.4
Mutual fund shares 3.0
Equity in noncorporate businesses 5.9
Others 1.9 0.3

Net worth 43.2

Source: http://www.federalreserve.gov/releases/Z1/Current/

decrease is linked to the telecommunications crash. Investors purchasing stocks
in IPOs generally accept considerable risks for the possibility of large gains.

The world market capitalization of US listed companies in 2003 was
31.3 trillions. These include capitalization abroad, for example, 2.4 on the London
Stock exchange, 3.0 on the Tokyo Stock Exchange, and only 14.1 on one the three
main US stock exchanges. Finally, the average daily dollar value of trading in 2003
was 38.5 billions (source: NYSE).

All these data reflect the importance of stock exchanges.

2 The Stock Exchange

The description of the stock exchange resembles that in the previous chapters
(see Section 2.1 of Chapter 3). The market is open at time t = 0 (today), and the
future is compressed into a single period, t = 1. Risk is represented by a finite set
of states of nature, indexed by e, e = 1, . . . , E.
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2.1 The Securities

There are K risky securities, indexed with k, k = 1, . . . , K . One unit of the security
is defined by the payoff to which it yields a claim in the future in the different
states: ãk = (ak(e))e=1,...,E . The (K ×E)matrix of payoffs from the risky securities
is denoted by ã. These payoffs are exogenous. They do not depend on currently
established prices on the stock exchange, and are fixed prior to and independently
of the equilibrium determination.

There is also a risk-free security, indexed by ∗, that allows investors to lend or
borrow without risk. The risk-free security is defined by a∗(e) = 1, for all e. Recall
that from Chapter 3 securities can be taken to be not redundant.

Trade is unconstrained: transaction costs are nil, short sales are allowed, and
there are no limits on buys or sales.

2.2 Investors

There are I investors, i = 1, . . . , I, who participate in the market. Each investor
owns an initial portfolio of securities, (zi∗(0), zi(0)), and income ωi

0 at time 0
(income at date 0 includes both nonfinancial income and dividends paid by the
initial securities holdings). Furthermore, at time 1, agent i receives a stochastic
nonfinancial income flow that is completely described by the states of nature:
ω̃i = ωi(e), e = 1, . . . , E. This income may come from activities external to
financial markets, from labor, or from an unlisted private company. Like the
revenues yielded by securities, non financial income is exogenous.

Let the prices of the risk-free and risky securities at time t = 0 be p∗ = 1/(1+r)
and pk, k = 1, . . . , K , respectively. Investor i’s portfolio, (zi∗, zi), together with the
initial expenditure (or consumption) ci

0 at time 0, satisfies the budget constraint

ci
0 + p∗zi∗ + p′zi = ωi

0 + p∗zi∗(0)+ p′zi(0), (6.1)

and leads to an expenditure plan c̃i = ci(e), e = 1, . . . , E, in state e at time 1:

ci(e) = ωi(e)+ zi∗ +
K∑

k=1

ak(e)zi
k. (6.2)

Investors’ portfolio choices depend on their beliefs. We assume here that these
beliefs are identical (or homogeneous), which is usually referred to as the
assumption of symmetric information.
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Hypothesis 6.1 Symmetric information Agents share identical beliefs: They all
attribute the same probability π(e) to the occurrence of state e, e = 1, . . . , E.

By definition,
∑E

e=1 π(e) = 1 and, without loss of generality π(e) > 0, for all e
(one can drop the states that would have a zero probability of occurrence).

The tastes of the typical investor are represented by a von Neumann
Morgenstern utility function that is separable between expenditures during the
two periods:

Ui(ci
0, c̃i) = ui(ci

0)+ δE[vi(c̃i)].
The mathematical expectation is computed using the probability distribution π .
The functions ui and vi are increasing, concave, and twice continuously differenti-
able. vi is the instantaneous von Neumann Morgenstern utility index for incomes
at time 1.

2.3 Equilibrium

A competitive equilibrium on the stock market is defined in a standard way, by
requiring that the aggregate demand of all securities is equal to the aggregate
supply. The aggregate quantity of risk-free security is denoted by z∗:

z∗ =
I∑

i=1

zi∗(0).

The portfolio that comprises all risky securities listed on the exchange is called the
market portfolio. It will play an important role in the analysis. It is denoted by zm,
indexed by the superscript m, defined by

zm
k =

I∑
i=1

zi
k(0), k = 1, . . . , K . (6.3)

Definition 6.1 A competitive equilibrium on the security (stock) market is given by a
set of portfolios (zi∗, zi)i=1,...,I , an interest rate r, and a price vector p in IRK , such that

1 For all i, i = 1, . . . , I, (zi∗, zi) is agent i’s optimal portfolio, that is, the portfolio that
maximizes his utility under the constraints (6.1) and (6.2), when the rate r, and prices
p, are treated as given;
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2 The demand of securities is equal to the available supply:

I∑
i=1

zi∗ = z∗,
I∑

i=1

zi =
I∑

i=1

zi(0) = zm. (6.4)

Note that by construction of the investors programs, aggregate expenditure at
date 1 is equal to the aggregate (financial and nonfinancial) incomes:∑

I

c̃i =
∑

i

ω̃i + z∗ + zm′ã.

It is easy to see that the definition of an equilibrium implies that aggregate
consumption is equal to aggregate income1 at t = 0:∑

i

ci
0 =

∑
i

ωi
0.

Just like in general equilibrium models, there is typically no analytical solution
for equilibrium prices. In the quadratic or CARA-normal frameworks, the prices
of risky securities have a quasi-explicit expression as a function of the fundament-
als and of the equilibrium interest rate. This allows us in turn to examine the
determination of the interest rate and the distribution of risks. We begin with the
even simpler case in which agents’ nonfinancial incomes are riskless.

3 The CAPM

In this section, all investors choose a mean–variance efficient portfolio. If risk
aversion and preference for the present are not specified, equilibrium cannot be
completely described. We nonetheless obtain relationships between the returns
of the various securities at equilibrium – these are called the CAPM relationships.
A complete determination of equilibrium, including the risk-free interest rate, is
left for the following section.

1 This follows from Walras’s law. There are K + 2 goods traded at time 0, the consumption good and
the K + 1 securities. We normalize prices using the consumption good as the numeraire. The prices
of the K + 1 securities are expressed in terms of the good at time 0. When the budget constraints at
time 0 are identically satisfied, the equality of the demands for the K + 1 securities to their supply
(condition 2 of Definition 6.1) implies the equality of aggregate income to aggregate expenditure at
date 0.
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3.1 Returns

The equilibrium prices of securities, or equivalently their returns, possess very
unique features. Indeed, since investors have the same beliefs and there exists a
risk-free asset, the risky part of their portfolios all have the same composition
according to the two-fund theorem (Chapter 4). Consequently, at equilibrium,
this composition is necessarily that of the portfolio comprising all risky securities
listed on the exchange – the market portfolio. This observation allows a simple
description of the fundamental relationships of the CAPM on the returns of risky
securities.

Let xm denote the composition of the market portfolio and R̃m its return.
The share of security k in the portfolio is the ratio of its capitalization to total
capitalization:

xm
k = pkzm

k

p′zm .

The return to the market portfolio is the ratio of the payoff to which it provides a
claim to its “price,” total market capitalization:

R̃m = zm′ã
p′zm =

K∑
k=1

pkzm
k

p′zm R̃k.

It is equal to a weighted sum of the returns of individual securities, the weights
being the shares of the securities in total market capitalization.

Theorem 6.1 CAPM relationships Assume that all investors have the same prob-
ability distribution on the securities payoffs and choose a mean–variance efficient portfolio.
If the net return to the risk-free asset is r, the equilibrium returns satisfy

E(R̃k)− (1 + r) = βk{E[R̃m] − (1 + r)}, k = 1, ..., K , (6.5)

where

βk = cov(R̃k, R̃m)

var R̃m
.

The risk premium associated with the ownership of one dollar in security k is
defined as the difference between its expected return and the risk-free return.
In the CAPM, according to (6.5) the risk premium is the product of the security’s
beta with the risk premium on the market portfolio. Note that the risk premium
of the market portfolio is not determined by the CAPM. Both from the empirical
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and theoretical points of view, the premium can be assumed to be positive (as we
shall see later on). The β captures all the security specific characteristics that play
a role in determining its risk premium, in relation to the market risk premium.
The formula implies that any “idiosyncratic”risk that is uncorrelated with the
return of the market portfolio does not modify the β. If the correlation between
the returns of a security and of the market portfolio is nil, the expectation of the
return of this security is equal to the risk-free return, however great the return
variance. The beta is negative for a security payoff that varies against the market.
Such a security allows the market risk to be hedged, which explains why the
security return is lower than 1 + r.

Indeed, the risk premium of the market portfolio can be interpreted as the
price of risk, and any security risk is valued by multiplying this price by the
quantity of market risk as measured by the beta it contains. This partly explains
the popularity of this model. A priori, under the mean–variance hypothesis, the
description of the model includes the covariances of the returns of all securities,
that is, K × (K +1)/2 parameters. If the equilibrium relationship is approximately
satisfied, then all that is required to determine the expectation of the equilibrium
returns of the securities is the price of risk and the K values of the betas – a much
smaller number of parameters.

The relationship in (6.5) is often represented graphically in the (beta, expected
return) space. Under the assumptions of Theorem 6.1, points (βk, ERk), associated
with the different securities, are aligned on the market line, of intercept (1 + r)
and slope E(R̃m) − (1 + r). Many empirical studies have sought to test this pre-
diction of the model. One of the difficulties is that it is based on the mathematical
expectation of returns, which in turn derive from investors’ unobservable beliefs
on payoffs. Thus, it is necessary to make assumptions on beliefs, which makes
interpretation of the results difficult (cf. Copeland and Weston 1983). Another
difficulty relates to the definition of the market portfolio. Should all securities,
domestic and international, be included? More generally, the CAPM assumes
that all investors’ risky incomes can be exchanged on the market, a very strong
assumption. We shall relax it in the next section.

In financial practice, this model is often used as an indicator of the (temporary?)
under- or overvaluation of securities. The procedure is as follows. Betas are con-
sidered more stable than expected returns. They are estimated from past empirical
covariances. Current mathematical expectations of returns are estimated on the
basis of various pieces of information, for example, regarding future payouts.
Then a linear regression is performed, which provides the market line. The posi-
tion of the (βk, ERk) of a specific asset k “above” the estimated market line suggests
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an underevaluation: compared with other securities with a similar amount of
risk that cannot be diversified (i.e., same β), the expected return of the secur-
ity is larger. Similarly, a position “below" the estimated market line suggests an
overevaluation of asset k.

Proof of Theorem 6.1 If beliefs are identical, all investors choose the same com-
position for the risky shares in their portfolios, which satisfies the equation
(Section 2.2, Chapter 3):


x = λ[E(R̃)− (1 + r)11K ]. (6.6)

At equilibrium, it must coincide with that of the market portfolio. Whence


xm = λ[E(R̃)− (1 + r)11K ].
Recall that 
xm is the vector the kth element of which is the covariance of the
return of security k with that of the market portfolio xm, or cov(R̃k, R̃m). Row k
of the equation is written as cov(R̃k, R̃m) = λ[E(R̃k)− (1 + r)].

To eliminate λ, we premultiply the expression above by the transposition of
xm which, using the equality xm′11K = 1, yields

var(R̃m) = λ[E(R̃m)− (1 + r)].
Carrying λ, we obtain the fundamental equation of the CAPM.

3.2 Equilibrium Prices

The CAPM relationships, which are in terms of returns, can easily be rewrit-
ten in terms of prices. This is more in keeping with the practice in economics:
Agents (investors) are active on markets and derive utility from goods (stochastic
future incomes from securities). They base their demand on prices that adjust to
balance the markets. To study general equilibrium and the determination of the
risk-free rate, it will, in fact, be necessary to look at prices. Thus, to compare more
easily with the next section, it is worthwhile to state the CAPM relationships with
prices. The market portfolio distributes all risky financial incomes and its price
equals total capitalization, or

R̃m = ãm

pm with ãm = zm′ã and pm = p′zm.
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Using this expression and the definition of the return, R̃k = ãk/pk, we substitute
into Eqn (6.5) of the CAPM and rearrange to obtain:

pk = E(ãk)

1 + r
− cov(ãk, ãm)

var(ãm)

[
E(ãm)

1 + r
− pm

]
, k = 1, . . . , K . (6.7)

The price of a risky security is equal to the discounted expectation of its revenues
minus a term, the risk premium, is analogous to that in the previous section. Given
the premium on the market portfolio, E(ãm)/(1 + r) − pm, and the risk-free
rate r, mean–variance analysis allows prices (or risk premiums) to be determined
for individual securities. The complete equilibrium model will allow us to better
understand the determinants of the risk premium on the market portfolio and of
the risk-free rate, including the extent of the risks to be shared, the investors’ risk
aversions, and the preferences for the present.

4 The General Equilibrium Model and
Price Determination

Let us return to the model in Section 2. We want to jointly determine current
consumption, portfolio choice, and the prices of all securities, risky and risk-free,
at equilibrium. The paradigms of finance introduced in Chapter 4 will allow us to
do that.

It is useful to recall the problem that investors solve. They choose a portfolio
(zi∗, zi) that maximizes their utility:

Ui(ci
0, c̃i) = ui(ci

0)+ δE[vi(c̃i)],
under the budget constraint

ci
0 + zi∗

1 + r
+ p′zi = ωi

0 + p∗zi∗(0)+ p′zi(0),

in the knowledge that their future income will be

c̃i = ω̃i + zi∗ + zi′ã.

The model is one of the paradigms of finance: either individuals utility in period 1,
vi, are all quadratic or they are all CARA and the vectors (ã, ω̃i) are normally
distributed. In both cases, the first-order conditions associated with the demand
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for securities lead to Eqn (4.11) from Chapter 4:

var(ã)zi = −cov(ã, ω̃i) + Ti[E(c̃i)][E(ã)− (1 + r)p]. (6.8)

4.1 Prices of Risky Securities

Owing to the shape of the demands, the prices of risky securities can easily
be expressed as a function of the risk-free interest rate. Inspecting (6.8) reveals
that the sum of the individual demands is equal to that of a single investors
whose future income would be the sum of individual incomes and whose risk
tolerance is the sum of individuals’ risk tolerances. It is then sufficient to write that
at the equilibrium price this aggregate (or representative) investor demands the
market portfolio. More precisely, define the economy risk tolerance by

T(c) =
I∑

i=1

Ti(ci).

In the quadratic case, vi(c) = c−αic2/2, this expression is a function of aggregate
demand:

Ti(ci) = − v′i(ci)

v′′i(ci)
= 1
αi − ci,

and

T(c) = 1
α

− c, where c =
∑

i

ci and
1
α

=
I∑

i=1

1
αi . (6.9)

In the CARA case, vi(ci) = − exp(−ρ ici) and the economy risk tolerance is

1
ρ

=
I∑

i=1

1
ρ i .

Summing over individual demands for risky securities, we have

var(ã)
I∑

i=1

zi =
I∑

i=1

{Ti[E(c̃i)][E(ã)− (1 + r)p] − cov(ã, ω̃i)}.

As previously stated, we obtain the expression for the demand of an investor
whose utility function is quadratic or CARA (with coefficient α or ρ)
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and whose nonfinancial income equals total nonfinancial individual incomes
ω̃ = ∑I

i=1 ω̃
i:

var(ã)z = T[E(c̃)][E(ã)− (1 + r)p] − cov(ã, ω̃),

where variables with no index represent quantities for the whole economy.
The equilibrium condition on securities imposes that, at time 1, consumption

is equal to the whole available resources in each state, including financial and
nonfinancial incomes, so that

c̃m =
i∑

i=1

c̃i = ω̃ + z∗ + zm′ã. (6.10)

Observing that cov(ã, c̃m) = var(ã)zm + cov(ã, ω̃) gives the following
theorem.

Theorem 6.2 In the paradigmatic cases of finance, when utility functions are quad-
ratic or CARA with normally distributed risks, the equilibrium prices of risky securities
are given by

pk = Eãk

1 + r
− cov(ãk, c̃m)

(1 + r)T(Ec̃m)
, k = 1, . . . , K , (6.11)

where cm and T(Ec̃m) are the economy aggregate consumption and risk tolerance,
respectively.

This model is called the CCAPM. In comparison with the CAPM, it constitutes
an important advance for analysis.

First, instead of providing mere relationships between the prices of various
securities, the model links these prices to (more fundamental) underlying move-
ments in consumptions and incomes. The price of risk is determined based
on the fundamental characteristics of the economy, represented here by mac-
roeconomic fluctuations in consumption. Indeed, the price of a risky security
is equal to the discounted expectation of the dividends to which it provides a
claim, minus a risk premium that is proportional to the correlation between the
security payoff and aggregate risk in the economy as represented by domestic
consumption c̃m.

Second, it applies to a more general situation, in which the fluctuation in future
resources are not all attributable to financial incomes: as made clear by (6.10),
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aggregate consumption also includes nonfinancial incomes. The risk premium
on the market portfolio, which can be computed from (6.11), depends on these
nonfinancial incomes:

Eãm

1 + r
− pm = cov(ãm, c̃m)

(1 + r)T(Ec̃m)
,

This explains why the risk premium can be assumed positive since the overall
resources and the financial ones are likely to be positively correlated. This is
true of course in the special case of the CAPM where fluctuations are all due to
financial incomes since then c̃m = ãm.

Buyers of a security benefit from the risk premium to compensate them
for assuming the risk. It is greatest for securities that are perfectly correlated
with aggregate risk, and nil when these risks are orthogonal. When a secur-
ity’s dividends are negatively correlated with aggregate risk it can be used to
hedge against macroeconomic risk, and its price exceeds the discounted value of
the dividends associated with it. The risk premium is lower to the extent that
there are agents in the economy who are very risk tolerant. In particular, if there
is a risk neutral agent with a linear von Neumann Morgenstern utility function,
then T[E(c̃)] is infinite and the prices of all securities are equal to the discounted
value of the mathematical expectation of their dividends.

4.2 The Allocation of Risks

Now that we have derived the prices of the risky securities, it remains to evaluate
the allocation of risks, and to determine the interest rate.

We start by computing the agents’ portfolios of risky securities and future risky
incomes at equilibrium. By a simple substitution of the price into i’s demand (6.8):

zi = var(ã)−1
{

Ti[E(c̃i)]
T[E(c̃)] cov(ã, c̃m)− cov(ã, ω̃i)

}
. (6.12)

To focus on the distribution of risks, it is sufficient to consider the difference of
incomes from their means, as in Chapter 4 when we were examining the hedging
portfolio. This allows us to eliminate zi∗, which is still unknown at this point.
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This yields2:

c̃i − E(c̃i) = ω̃i − E(ω̃i)− cov(ω̃i, ã)var(ã)−1(ã)− E(ã)]

+ Ti[E(c̃i)]
T[E(c̃)] cov(c̃m, ã) var(ã)−1[ã − E(ã)]. (6.13)

As before, this equation is interpreted using the projection associated with the
variance. Recall that, if x̃ is normalized, we can write

x̃ = projã x̃ + x̃⊥, with projã x̃ = cov(x̃, ã)var(ã)−1[ã − E(ã)].
And Eqn (6.13) can be rewritten as

c̃i − E(c̃i) = [(ω̃i − E(ω̃i)]⊥ + Ti[E(c̃i)]
T[E(c̃)] projã[c̃m − E(c̃m)]. (6.14)

The distribution of risks at equilibrium can then easily be interpreted:

1 The first term, [ω̃i − E(ω̃i)]⊥, is the risk associated with fluctuations in non-
financial incomes that is not insurable on the market and that the agent must
assume.

2 The second term is proportional to the risk affecting total income in period 1
and which, through the securities, is tradable. This risk is split among market
participants in proportion to their risk tolerance.

4.3 Determination of the Interest Rate

While many of the qualitative properties of the distribution of risks at equilibrium
derive from the equations given above, the allocation of resources is not fully
determined: We still need to determine the risk-free interest rate (or equivalently
the price of the risk-free security) and the level of the individual investments in the
risk-free security. This yields consumption at time 0 and expected consumption
at time 1 for all agents. Indeed, in the quadratic case, it is only when the values of
the expectations E(c̃i) are known that we can derive risk tolerances and the distri-
bution of market capitalization in the economy. In the CARA-normal case, where
this tolerance is constant, the interest rate is required for determining the level of
security prices.

2 Recall that cov(ã, b̃) = cov(b̃, ã)′.
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The complete solution of the model and the missing risk-free interest rate can
be obtained through the demand for the risk-free security, which is characterized
by the first-order condition:

u′i(ci
0) = (1 + r)δE[v′i(c̃i)], (6.15)

and the equilibrium condition: ∑
i

zi∗ = z∗. (6.16)

In the general case, there is no explicit analytical solution. However, the CARA-
normal case allows for a quasi-explicit solution. This particular case is simpler
because there is no interaction between the allocation of risks at equilibrium and
the determination of the interest rate. Indeed, the undiscounted prices of the
risky securities, p(1 + r), agents’ risky portfolios, and the allocation of risks are
all independent of the equilibrium on the risk-free market (in Eqs (6.11), (6.12),
and (6.13), risk tolerances are independent of agents’ mean consumption). Thus,
knowing the allocation of risks, we can compute the risk-free interest rate using
the demand and supply equation for the risk-free security.

Note that, according to Walras’s law, the equilibrium condition (6.16) on
the risk-free market (under equilibrium for risky securities) is equivalent to the
income–expenditure equality at time 0∑

i

ci
0 =

∑
i

ωi
0 = ω0.

For all i, we assume that

ui(ci) = vi(ci) = − exp(−ρ ic).

Then, the logarithm of the first-order condition (6.15) can be written as

ci
0 = − 1

ρ i log[δ(1 + r)] + E(c̃i)− ρ i

2
var(c̃i).

The value of the variance of future consumption depends directly on the existing
market structure, which follows from (6.14). Using the same notation:

var(c̃i) = var(ω̃i⊥)+
(
ρ

ρ i

)2

var(projã c̃m).
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Summing over the is and rearranging the terms, the equilibrium condition∑
i ci

0 = ω0 yields

log(1 + r) = − log(δ)+ ρ

[
E(c̃m)− ω0 −

∑
i

ρ i

2
var(ω̃i⊥)− ρ

2
var(projã c̃m)

]
,

which provides the value of the equilibrium interest rate.
This rate depends on the difference between the mathematical expectation of

total incomes in the two periods, agents’ preferences for the present and levels
of risk aversion, and on how risks are distributed. In the particular case under
consideration, the effects attributable to the mathematical expectation of incomes
are separable from those attributable to their variance: The impact of the income
differential is analyzed like in the certainty case.

In the absence of risks, the interest rate equals the psychological discount rate
if incomes are identical in both periods; it is greater if expected future incomes are
greater (otherwise, individuals would wish to borrow). As to risks, the interest
rate decreases with the variance of future nonfinancial incomes, measured as the
sum of the variance of agents’ future nonfinancial incomes weighted by their risk
aversions. This is brought on by precautionary savings. Ceteris paribus, a rise in
future risks entails excess savings, and the rate must fall to balance the market.3

This effect depends on the possibilities for diversification of risks and on the degree
of completeness of markets. It is at its greatest when there is no market. Here,
creating a new security that allows for a better distribution of risks increases the
interest rate.4

According to Eqn (6.11), the price of a risky security depends on the interest
rate, the correlation between its return and macroeconomic consumption, and
the economy-wide risk tolerance (which is constant and equal to 1/ρ here): It does
not directly depend on the number and the nature of the securities exchanged.
Thus, in this model, the impact of the degree of completeness on prices operates
exclusively through the risk-free interest rate.

BIBLIOGRAPHICAL NOTE

The CAPM was developed by Sharpe (1964) and Lintner (1965). Copeland and
Weston (1983) present a review of several empirical studies. The existence of

3 This property is closely linked to the form of the utility function, as we shall see when examining
the spot curve in Chapter 8.
4 The demonstration of this property is a little convoluted, so it is given in an appendix to this chapter.
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equilibrium does not follow from application of traditional equilibrium models:
At least in the CARA-normal case, portfolios are not constrained to yield positive
returns, so that the restriction to a bounded set of portfolios is not a simple matter.
The interested reader may refer to the article by Nielsen (1990). Ross (1978) was
the first to question the assumption that investors’ future income is fully tradable
on the market. The general theory of incomplete markets is laid down in the
book of Magill and Quinzii (1996).

Copeland, T. and J.F. Weston (1983). Financial theory and corporate policy, Addison Wesley
Publishing Company, Boston.

Lintner, J. (1965). “The valuation of risky assets and the selection of risky investments
in stock portfolios and capital budgets,” The Review of Economics and Statistics, 47(1),
13–37.
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Exercises

6.1 Financial markets and normal incomes Consider, at t = 0, the market for a security
yielding a (stochastic) income ã at t = 1. There are two kinds of investors (also called
traders):

1 I “rational” traders: individual i, i = 1, . . . , I, demands zi units so as to max-
imize E[ui(c̃i)], where ui is a von Neumann Morgenstern utility function and
c̃i = w̃i + (ã − p)zi (thus, there are no initial holdings of securities).

2 “noise” traders who satisfy occasional liquidity or investment needs. Their demand is
assumed independent of the price and denoted by x̃.

We make the following assumptions:

(a) (w̃1, . . . , w̃n, ã, x̃) is normal,
(b) x̃ is independent of the other variables and its expectation is nil,
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(c) ui(c) = − exp(−ρic), where ρi > 0. We denote aggregate risk aversion by ρ. It is
given by

1
ρ

=
∑

i=1,...,n

1
ρi .

1 Recall why, under these assumptions, individual i maximizes

vi(c̃i) = E(c̃i)− ρi

2
var(c̃i).

Compute his security demand zi(p). Verify that his utility gain,

vi(c̃i)− vi(w̃i),

is equal to

ρi

2
var[zi(p)ã)],

and that5

E[ui(c̃i)] = E[ui(w̃i)] exp[−(ρizi(p))2var(ã)/2].
2 Assume that there are no noise traders: x̃ = 0. Compute the equilibrium price. Show that

vi(c̃i) = vi(w̃i)+ ρi

2
var

[
E
(
ρ

ρi w̃ − w̃i|ã
)]

,

where c̃i is his consumption at equilibrium. Recall that, if (η̃, ε̃) is normal, then

E(η̃|ε̃) = E(η̃)+ cov(η̃, ε̃)
var(ε̃)

[ε̃ − E(ε̃))].

3 If x̃ is not nil, then the price becomes a stochastic variable, p̃, that depends on the
realization of x̃. It is defined by ∑

i=1,...,n

zi(p̃)+ x̃ = 0.

Calculate p̃.
4 Let initial endowments be sure: w̃i, i = 1, . . . , n, are not random. What is the sign

of p̃ − E(ã)? Compute the expectation of E[ui(c̃i)] for agent i (the expectation being
taken ex ante before the realization of x̃). Does he benefit from the activities of noise
traders? Why?

5 Be careful to distinguish between u and v.
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5 Compute the level of E[ui(c̃i)] when w̃i is risky. What new effect created by x̃ appears?
Explain your results.

Note: For questions 4 and 5, use the following equation (the Rao equation). If ε̃ is
normally distributed, then,

E[exp(−ε̃2)] = 1√
1 + 2var(ε̃)

exp
{
− [E(ε̃)]2

1 + 2 var(ε̃)

}
.

6.2 Risk sharing, the CAPM, and complete markets Consider an economy with two investors
indexed by A and B. There is a single risky good, and agents’ tastes concerning their final
wealth c̃ are represented by von Neumann Morgenstern utility functions:

uA(c) = c − ac2/2,

uB(c) = c,

where a is a small positive number.
There are two risky securities in this economy. These two assets, 1 and 2, each yield 1

dollar with probability 1
2 and nil with probability 1

2 . The events that determine the yields
of these two securities are independent. Initially, agent A has two units of asset 1 in her
portfolio, while agent B has one unit of asset 2.

1 Write the utilities of the two agents as a function of their portfolio (z1, z2).
2 Determine the competitive equilibrium price that will be established when a market is

opened on which security 1 can be traded for security 2. Compute the portfolios and the
distribution of risks at equilibrium.

3 Now, instead of opening a market for only the two securities 1 and 2, imagine that the
market is for three items, these two securities plus a risk-free asset 3 yielding one unit of
good in all states of nature. Determine the characteristics of the competitive equilibrium.
Compute the βs associated with assets 1 and 2.

4 Are markets complete in questions 2 and 3? In what sense can the equilibrium be
considered optimal?

6.3 CAPM and differences in beliefs

I At t = 0, a security yielding a stochastic revenue ã at t = 1 is put up for sale. The total
number issued is normalized at 1. There are n investors active in this market (the issuer no
longer participates). They each dispose of an initial wealth ω, part of which they can also
invest at the risk-free rate r. Their preferences over wealth c̃ at time 1 are represented by a
mean–variance function:

E(c̃)− ρ

2
var(c̃), (6.17)
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where the parameter ρ is the same for everyone. They all estimate the standard error of ã
as σa, but differ in their beliefs on its mathematical expectation. n1 investors expect Eã to
be equal to a1, the n2 others believe it to be equal to a2. This is known by all, but nothing
motivates them to revise their estimates.

1 Let p be the security price. Define and compute the equilibrium.
2 Now assume that it is group 1 whose beliefs are correct. Verify that their utility level

exceeds that of the agents in group 2.

II Now consider an infinite time horizon, t = 0, 1, . . . :

1 the risky security has an infinite life span and, at the beginning of the period t, pays out
a dividend d̃t for each unit held,

2 the dividends are independent and identically distributed,
3 at each time t, n new investors arrive on the market. Their preferences are given by (6.17)

and they possess wealth ω, that they can invest in the risky asset and a risk-free asset
yielding r. During the subsequent period, t + 1, they receive dividends and interest on
their portfolio, sell it, and leave the market.

1 Now assume that all investors anticipate the same mathematical expectation d and the
same standard error σd for the dividend. Show that there exists an equilibrium price that
is constant at all times.

2 Now assume that at each time t the n new investors are divided into two groups.
(a) the n1 in group 1 correctly evaluates the mathematical expectation of d̃ as d,
(b) the n2 = n − n1 in group 2 evaluates it at d + εt , where εt is the realization of a

stochastic variable ε̃t at time t.
The variables ε̃t are independent and identically distributed over time with mean

ε and standard error σε . They are also independent of the dividends d̃t . At time t,
the realization εt is known by all, but the future values ε̃τ , τ > t, are not.

– How do you interpret the cases ε = 0, ε > 0, ε < 0?
– Show that the price at t necessarily depends on εt .
– We seek an equilibrium in which the price pt at t is a function of the realization of
εt : pt = P(εt), where the function P is independent of time. We denote the expectation
and the standard error of P(ε̃) by p and σp, respectively.

Define and characterize the equilibrium.
If ε = 0, what is the impact on the mathematical expectation and the standard error

of the price of the beliefs of individuals in group 2?
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Appendix

Without loss of generality, it is sufficient to show that

−
∑

i

ρ ivar(ω̃i⊥) ≤ −ρ var
(∑

i

ω̃i⊥
)

,

which implies that, when the ω̃i⊥ are orthogonal to the space spanned by the
incomes from securities (left-hand side), the interest rate is lower than when ω̃i⊥
belongs to that space. We seek to verify this inequality for all correlation structures
of the ω̃i⊥ and for all values of ρ i, with

1
ρ

=
∑

i

1
ρ i .

In light of the homogeneity in (ρ i), we can fix ρ at 1. Thus, we wish to show that
the quantity

A =
∑

i

ρ ivar(ω̃i⊥)− var
(∑

i

ω̃i⊥
)

is positive or nil. The first-order condition for a minimum of A in (ρ i), subject to
the constraint 1 = ∑

i 1/ρ i (multiplier λ) is

var(ω̃i⊥) = λ

(ρ i)2
.

Whence,

ρ i =
√

λ

var(ω̃i⊥)
, λ =

[∑
i

√
var(ω̃i⊥)

]2

,

and, for the values of (ρ i)minimizing A,

A∗ =
[∑

i

√
var(ω̃i⊥)

]2

− var
(∑

i

ω̃i⊥
)

.

This can also be written as

A∗ =
∑

i,j

[√
var(ω̃i⊥)

√
var(ω̃j

⊥)− cov(ω̃i⊥, ω̃j
⊥)
]

,

which is always positive and only cancels when all the ω̃i⊥ are collinear, with
correlation equal to +1.
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In previous chapters, economic agents all shared the same view of the uncertain
prospects confronting them. Their beliefs on the future payoffs yielded by the
securities were all identical, represented by the same probability distribution.
While the assumption of identical beliefs is plausible enough when risks are
clearly identified and the understanding of the environment is objective, it fails to
capture many situations. This chapter analyzes trades between individuals who
may have distinct assessments of future events. These differences arise for instance
because of inside information.

Section 1 examines how the theories developed so far, arbitrage and equilib-
rium, can be adapted to the case in which agents have differing beliefs. As a result, no
equilibrium exists if these beliefs are too divergent (in a sense to be made precise).
The analysis pertains to the short term, in which individuals infer nothing from
observations on prices or trades: Their beliefs are fixed.

Beliefs are, however, likely to change over time. Subsequent sections examine
the impact of the arrival of new information – be it information provided by
newsletters, by the observation of payoffs, or prices – on the evolution of beliefs
and on trades. The analysis differs depending on whether the information is public
or private to the agents (in which case the information is called asymmetric).

We start by studying the impact of an early public disclosure of informa-
tion. It comes through two basic channels. On the one hand, information may
improve production decisions and, therefore, increase the resources available in
the economy. On the other hand, playing in the opposite direction, informa-
tion revealed before the opening of insurance markets may impair risk sharing.
Section 2 describes these mechanisms, starting with the benchmark situation in
which information has no impact (the no-trade result).

When information is private, the analysis becomes particularly involved
because prices may convey part of this private information. The mechanism
at work can be described as follows. A trader receiving private information on
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the future value of a security before trade adjusts his demand accordingly. As a
result, aggregate demand, and hence the market clearing price, depend on the
various news received by traders. Thus, price has some informational content that
can be used by the market participants who are aware of this. Under the rational
expectations hypothesis, traders make the best use of all relevant information.
Section 3 introduces the general concepts and addresses the fundamental ques-
tion of whether prices reveal all private relevant information under the rational
expectations hypothesis. Section 4 illustrates the argument in the CARA-normal
model. Equilibria can be computed, the transmission of private signals through
prices be analyzed, and the impact of insiders assessed.

Most of the previous analysis is conducted in a setup where securities payoffs,
and the associated risks, are exogenous. In many situations, uncertain variables
not only depend partly on exogenous events but also on the decisions of eco-
nomic agents. For example, savings and investment change the distribution of
securities payoffs in the future, but expectations on these payoffs also affect sav-
ings and investment. The last section relaxes the assumption that the distribution
of risks is exogenously given. This is the framework in which the notion of rational
expectations was introduced by Muth (1961). An example illustrates the interac-
tions between information, investment in risky activities, and the functioning of
markets.

1 Short-Term Equilibrium

The following setup resembles those in the preceding chapters with one nota-
ble difference: Homogeneous expectations are not assumed. Agents can have
differing perceptions of the distribution of securities payoffs.1 Beliefs that are
too far apart, in a sense yet to be defined, preclude the existence of an equilib-
rium: Different investors, all of them certain of their convictions, may want to
assume diametrically opposed and inconsistent positions. The characterization
of well-defined optimal portfolios through the absence of arbitrage opportunities
presented in Chapter 3 proves very useful for clarifying this point. This analysis is
short term, in the sense that participants do not revise their beliefs as a function
of their observations on prices or exchanged quantities.

To simplify, in this section, as well as throughout this chapter, the focus is on
portfolio choices: Investors do not consume today.

1 The beliefs of the various agents are fixed here, unlike in the following sections.
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1.1 Investors

Consider an investor i. His wealth today consists of an initial portfolio zi(0) of K
risky securities and he will receive a risk-free, nonfinancial income ωi at date 1.
Thus, all uncertainty is associated with the securities payoffs (ãk).

The financial market is competitive. As usual, the prices of the K risky securities
are denoted by p = ( pk), and the return on the risk-free security is r. The final
portfolio after trade, (zi∗, zi), satisfies the budget constraint at time 0:

zi∗/(1 + r)+ p′zi = p′zi(0),

and yields consumption at time 1:

c̃i = ωi + zi∗ +
K∑

k=1

ãkzi
k.

Plugging the value of zi∗ from the initial budget equation into future income gives

c̃i = ωi + (1 + r)p′zi(0)+
K∑

k=1

[ãk − pk(1 + r)]zi
k.

For now, the model is standard. However, assume that expectations on the revenue
yielded by securities (ãk) are specific to each investor: Formally investor i’s expectations
are represented by a probability distributionψ i on IRK .

Investor i’s preferences on income in period 1 are represented by a
von Neumann Morgenstern utility index, vi. Thus, investor i demands a portfolio
zi = (zi

k) of risky securities maximizing

Eivi
(
ωi + (1 + r)p′zi(0)+

K∑
k=1

[ãk − pk(1 + r)]zi
k

)
,

where Ei denotes the mathematical expectation computed with the probability
measure corresponding to investor i’s expectations.

Let us assume that, for all i, i = 1, . . . , I:

1 the utility function, vi is continuously differentiable, strictly increasing, and
strictly concave from IR+ into IR;

2 ωi + zi′(0)ã is strictly positive with probability 1;
3 the support of the probability distribution ψ i is bounded in IRK . Furthermore,

it is not reduced to a single point.
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According to condition 1, utility is only defined for a positive income: The
investor has to choose a portfolio that ensures a positive income. Thanks to
condition 2, the investor can simply retain his initial portfolio. This condition is
satisfied provided that the investor owns positive quantities of the securities and
the securities payoffs are nonnegative, which is the case with stocks for instance.
Condition 3 requires that the individual is not too overconfident: He is not sure
that the payoffs will take a given specific value. This assumption is quite natural.
An individual who is sure about the future payoffs value is willing to take infinitely
large positions whenever securities prices differ from his expected (discounted)
payoff, which is not realistic.

1.2 Equilibrium

A natural definition of equilibrium is as follows:

Definition 7.1 A competitive equilibrium on the securities market is given by a set of
portfolios (zi)i=1,...,I , an interest rate r, and a price vector p in IRK , such that

1 for each i, zi is demanded by agent i at price p and rate r;
2 demand is equal to supply:

I∑
i=1

zi =
I∑

i=1

zi(0).

The first equilibrium condition requires that each investor’s problem has a solu-
tion. From Section 3 of Chapter 3, the existence of such a solution is linked
to (subjective) arbitrage opportunities. A portfolio z is an arbitrage opportunity for
investor i if, under the distributionψ i, its income is nonnegative and strictly positive
with positive probability, that is,

K∑
k=1

[ãk − pk(1 + r)]zk ≥ 0,

with positive probability of strict inequality under ψ i.
If the price of a security, discounted at time 1, is expected to be below its payoff

(at time 1) with probability 1, then it is in the investor’s interest to borrow without
limits in the risk-free security to buy the former, regardless of his utility function.
Conversely, if the price is higher, the investor will profit with probability 1 from
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short selling the risky security and investing the yield of that sale in the sure
security. The argument extends to any portfolio: An investor i who has an arbitrage
opportunity, has no “optimal” portfolio. As shown in Chapter 3, more can be said.

For simplicity, let us assume from now on that each investor thinks possible
only a finite set of circumstances, that is, the support of ψ i has a finite number
of points for every i. Let �i be the set of convex combinations with strictly
positive weights of the payoffs in the support of beliefs ψ i. Then, according to
Theorem 3.2, the three following properties are equivalent:

1 Investor i has no arbitrage opportunities;
2 Investor i has an optimal portfolio;
3 The price vector discounted at time 1, (1 + r)p, belongs to2 �i.

Since at equilibrium, each investor has an optimal portfolio, an equilibrium may
exist only if agents’ expectations demonstrate a high degree of consistency: The
equilibrium price must be such that agents concur on the absence of profitable
arbitrage at that price. It turns out that this is sufficient.

Theorem 7.1 Let the support ofψ i be finite for each i, but not reduced to a single point.
Then a necessary and sufficient condition for the existence of equilibrium on financial
markets is that there is at least one price p for which no investor has an opportunity of
arbitrage: The intersection of the�i is nonempty.

Proof of Theorem 7.1 As just said, the condition is necessary by Theorem 3.2.
We show that it is sufficient in the simple case of a single risky security.

Take the intersection of the convex envelopes of the supports of the expecta-
tions of agents present in the economy. Each support is an interval, so that
this intersection, which by assumption is nonempty, is also an interval, denoted
[a1, ā1], with a1 < ā1.

Note that the aggregate demand for the security is defined and continuous at
all discounted prices p1(1 + r) in (a1, ā1). It is thus sufficient to show that it tends
toward +∞ when the price tends toward its lower bound, and toward −∞ when
the price tends toward its upper bound.

To see this, consider a sequence pn
1(1 + rn) converging to a1 and let us examine

the corresponding sequence of security demands zn
1 for an agent whose lower

bound of the expectation support equals a1. By construction, there is at least one

2 Without finite support, the property is that the vector (1 + r)p belongs to the relative interior of
the convex envelope of the support of the beliefs.



Anula Lydia: GABR: “chap07” — 2005/8/23 — 14:39 — page 161 — #6

Trade and information 161

such agent. His demand satisfies (dropping the individual’s index)

E(v{ω + [ã1 − pn
1(1 + rn)]zn

1}) ≥ E(v{ω + [ã1 − pn
1(1 + rn)]z}),

for any admissible z. We claim that the sequence (zn
1) is not bounded. By contra-

diction, if it is bounded, it has a finite accumulation point z̄. Then, by continuity,
the aforementioned inequality is satisfied at z̄ for p1(1 + r) = a1. Thus, z̄ is the
asset demand at price p1, which contradicts Theorem 3.2. Thus, the sequence
has no accumulation point. Since it is bounded from below, it tends toward +∞.
Now the demand of agents whose expectations supports include an element less
than a1 is bounded. Therefore aggregate demand tends toward +∞ when the
price tends toward its lower bound. A similar argument applies when the price
tends toward the upper bound ā1.

The existence of an equilibrium presupposes that the agents’ beliefs, more
precisely, the supports of their beliefs, are compatible. This condition is satisfied
for instance when the investors’ forecasts are very fuzzy or when the set of
securities payoffs that they deem possible is large, such as when all the supports
contain an interval [0, ā], for large ā. The existence condition only involves the
supports: As to the probability distributions, they can widely differ as long as the
convex envelopes of the supports are compatible. Then prices reflect differences
of opinion between investors.

In the previous discussion, the payoffs yielded by the risky securities are exo-
genous and independent of the prices at which the securities are traded. There are
many instances in which future payoffs may be influenced by today’s price. The
preceding analysis can be easily extended when the dependence of expectations on
prices is given exogenously. Then the probability distribution of payoffs depends
on the current price. The demand for the security is well defined for prices, eval-
uated at time 1, that belong to the interior of the convex envelope of the support
of future payoffs (which itself is a function of said prices). In order to ensure that
the security demand remains a continuous function of prices, expectations have
to be assumed to vary continuously with prices. This type of assumption is very
natural: If a price movement today would create a quantum shift in the prospects
of the security yield, it is highly unlikely that the demand would be a continuous
function of the price.

Why would the market participants have persistently different expectations?
A typical case involves some having inside information on the prospects of a firm.
The market price may reveal more or less information, depending on the behavior
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of informed agents – which may be the reason why expectations depend on the
current price. The remainder of this chapter touches on all these themes.

2 Public Information and Markets

The information that continually arrives on markets influences investors’ beliefs
and changes the equilibrium price and the allocation of risks in the economy. Its
impact greatly depends on when it becomes available and whether it is private or
public in nature.

Section 3 addresses the situation in which information is private, diffuse, and
dispersed among various stakeholders. Here instead, information is public –
known to all. More precisely, all participants are assumed to have identical beliefs,
both before and after the realization of the signal: They assign the same a priori
probabilities of occurrence to security payoffs, they observe the same signals and
revise their beliefs in the same fashion upon observing the signals. To sum up,
information is symmetric at every stage, and this fact is known to all.

As in Chapter 3, the arrival of information is modeled with a signal. The
information does not come as a surprise to the participants in the market: Indeed,
according to the definition of the states of nature, the existence of the signal and
the values that it may take are all incorporated in the states of nature. Figure 7.1
illustrates the framework: There are three states of nature at t = 1, designated
with two letters, either u for “up” or d for “down,” and an “up” in the first
subperiod is necessarily followed by another “up.” At t = 1

2 , interim, the first
letter is determined. This may be hidden until t = 1, or the information may be
revealed, with the announcement of s̃ at the interim date. Is this type of public
signal liable to modify and improve the allocation of resources throughout the
economy?

New information typically changes the distribution of perceived risks. Also, and
perhaps more importantly, information enlarges the decision space by allowing
the economic agents to take actions based on the value taken by the signal at
the interim date. We start by examining, as a benchmark, a situation in which
information is not socially beneficial. According to a general result known as
the “No-Trade Theorem,” if complete markets are opened before the informa-
tion is revealed and if the information does not modify the available aggregate
resources in the economy in each state of nature, participants have no incentive to
exchange: The absence of trade is an equilibrium. Although the setup is specific,
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s = u

e = uu

e = du

e = dd

~

s = d~

t =t = 0 t = 11
2

Figure 7.1 Information: The signal s̃ is announced at t = 1
2 .

it is instructive to understand the argument, which is described in Section 2.1.
Next, some examples illustrate how the two effects of information – change in
the perception of risks and change in the decision space – interact.

2.1 Ex ante Complete Markets and Public Information in an
Exchange Economy

Consider the situation as studied in Section 1 of Chapter 5, in which a risky
aggregate resource, ω̃, is to be shared among I individuals. At t = 0, contingent
contracts are signed, and at t = 1, the state is observed and resources are distrib-
uted according to the contracts. In addition, some information arrives between
the two dates. Formally,

1 at time 0, ex ante, all agents assign the same probability distribution to states.
The initial contingent allocation (c̃i = ci(e)) is optimal.

2 at time 1
2 , interim, a public signal, which is the realization of a random variable

s̃, is observed (e.g., the level of rainfall before a harvest). Can risk sharing be
improved upon in light of this signal before the state materializes?
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The joint distribution of (ẽ, s̃) is known to all. After observing the realization
s of s̃, individuals revise the probabilities of the states according to the Bayesian
formula (using the obvious notation):

π(e|s) = Pr(e, s)
Pr(s)

.

A fundamental result is that, starting with an ex ante optimal allocation, new
information does not create mutually beneficial exchanges.

Theorem 7.2 Consider an allocation of a risky resource that is Pareto optimal ex ante.
Let s̃ be a signal the realization of which is announced publicly interim at time 1

2 . Whatever
the value of the signal, there are no trades that benefit everyone.

Proof 3 of Theorem 7.2 The proof proceeds by contradiction. Let (c̃i)i=1,...,I be the
initial Pareto optimal allocation. Assume that, when the value of the signal is s0,
there exist trades that are beneficial to all. Let �ci(e, s0) be agent i’s trade when
the signal is s0. For all i,

E[vi(c̃i +�ci(ẽ, s0))|s0] ≥ E[vi(c̃i)|s0],
with at least one strict inequality.

Consider the allocation contingent on both e and the signal s, denoted by (c̃i +
�̃ci) in which, in addition to (c̃i), the beneficial trades�ci(e, s0) are implemented
after s0, and nothing is changed after a signal distinct from s0: �ci(e, s) = 0,
for all i if s �= s0. Expected utility conditional on s0 is increased while utility
conditional on s, s �= s0, is unchanged. Thus, taking expectations ex ante

E[vi(c̃i + �̃ci)] ≥ E[vi(c̃i)] ∀i, (7.1)

with at least one strict inequality.
Define the allocation (c̃i′) contingent on state e by

ci′(e) = E[ci(e)+�ci(e, s̃)|e] ∀i, e.

It is feasible. In addition, according to Jensen’s inequality

vi[ci′(e)] = vi{E[ci(e)+�ci(e, s̃)|e]} ≥ E[vi[ci(e)+�ci(e, s̃)]|e].

3 The following demonstration deals with the primal allocation of incomes. We could also use the
price system as sketched below after Corollary 7. 1.
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Ex ante, we take the mathematical expectation of these inequalities.
By composition of the conditional expectations,

E[vi(c̃i′)] ≥ E[vi(c̃i + �̃ci)],
whence, using (7.1),

E[vi(c̃i′)] ≥ E[vi(c̃i)],
with at least one strict inequality. This yields the desired contradiction, since the
allocation (c̃i) is Pareto optimal.

If all individuals are strictly risk averse, a stronger property obtains. Not only
are there no trades that benefit all, but every trade harms at least one individual.

The previous result can be straightforwardly applied to examine the effect of
information on the equilibrium allocation in an exchange economy with complete
markets. As in the study of the decentralization of a Pareto optimal allocation of
Section 5.2 of Chapter 5, consider a private ownership economy, where trader i
owns a claim ω̃i on date 1 resources. All the traders share the same beliefs. Markets
are opened at time 0. Prior to the outcomes of operations and the resolution of
uncertainty at t = 1, information on final securities payoffs is revealed at time 1

2 .
Does the arrival of information induce trade at time 1

2 ?
Since markets are complete, there is no loss of generality in considering a com-

plete set of Arrow–Debreu securities.4 The formal description of the model is as
follows:

1 At time 0, there are competitive markets for the Arrow–Debreu securities. All
individuals share the same beliefs π where π (e) designates the ex ante probab-
ility of state e occurring. Investor i with initial endowment (ωi(e)) maximizes
his expected utility

∑
e π(e)v

i(ωi(e) + zi(e)) subject to the budget constraint∑
e q(e)zi(e) = 0. An equilibrium is a price system q = (q(e)) such that the

demand for securities is equal to zero.
2 Information arrives at time 1

2 , represented, as before, by a signal, and markets
are reopened.

Now, since markets are complete, risk sharing after the trades at time t = 0
is Pareto optimal. The following is then a direct consequence of Theorem 7.2.

Corollary 7.1 “No-Trade” Theorem Consider an equilibrium obtained at time 0
with a complete system of markets. Let s̃ be a signal the realization of which is announced

4 The result extends easily to the case where the traders have nonzero initial portfolios.
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publicly at time 1
2 . The absence of trades, whatever the realization of the signal, is an

equilibrium at time 1
2 .

While there is no trade when the information is revealed, prices do change!5

Indeed, let (c̃i) be the contingent allocation that is in equilibrium both at time 0
and at time 1

2 . Marginal utilities are proportional to equilibrium state prices (q(e)).
At time 0, for all i, there exists λi > 0, such that

q(e) = λivi′[ci(e)]π(e) ∀e,

where π(e) designates the ex ante probability of state e occurring. Similarly,
at time 1

2 , the marginal utility of an Arrow–Debreu security satisfies:

Q(s)(e) = λivi′[ci(e)]π(e|si),

in which π(e|s) is the probability of occurrence of state e conditional on the
received public signal. Therefore, the state price is multiplied by the ratio
π(e|s)/π(e):

Q(s)(e) = q(e)π(e|s)
π(e)

. (7.2)

The fundamental reason for this result is that initial complete markets induce
a Pareto optimal distribution of risky resources. The new information makes
certain events known earlier. But, it does not allow total resource availability to be
altered (in an exchange economy), nor does it offer the possibility of relevant new
contingent contracts between agents since, markets being complete, they were
optimal as of time 0. As we saw in Theorem 7.2, whatever the value of the
signal, there are no trades that benefit everyone. If agents again exchange at
an equilibrium at time 1

2 , then no one must lose from these trades.

2.2 The Impact of Information: Production and
Incomplete Markets

Two crucial aspects of an early disclosure of information are missing from the pre-
vious analysis: First, as examined in Chapter 3, more information enables investors
to make better decisions, thereby possibly increasing the resources available in the

5 It is paradoxical to discuss prices when there is no trade! In fact, instead of prices, one should talk of
marginal rates of substitution.
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economy; second, playing in the opposite direction, information revealed before
the opening of insurance markets may impair risk sharing.

An early arrival of information is usually associated with the possibility of
taking better informed decisions. For instance, looking at Figure 7.1, suppose
that an irreversible physical investment has to be decided interim. In the absence
of information, this decision is based on the initial knowledge: It cannot depend
on the (unknown) value of the signal. Instead, in the presence of information,
different decisions can be made when the signal u or d is revealed in the first
subperiod. If u means a larger return on the investment than d in the second
subperiod, then a larger investment will be carried out in the u than in the
d case. Since the decision under ignorance is always possible, in a large number of
models with production and irreversible investments, the early arrival of inform-
ation enlarges the set of feasible productions. Thus, any optimum of the economy
without information is Pareto dominated by an optimum of the economy with
information. When markets are ex ante complete, information is likely to be
profitable.6

We have already pointed out the Hirshleifer effect, according to which premature
revelation of information is detrimental to risk sharing, when markets are incom-
plete. Consider the case of the owner of a business with uncertain revenues. In the
absence of information, she can share the risk with a group of investors who are
interested in the project by issuing shares on the stock exchange. For example,
if these investors are risk neutral, the entrepreneur can sell them the firm for a
price equal to the mathematical expectation of the anticipated revenues. If the
uncertainty is resolved before going to market, there is no longer any risk to
share. The sales price is equal to the ex post value of the firm, and the initial owner
reaps all the rewards in the event of success and bears all the losses in the event of
failure.

Therefore, in general, it is essential to know whether the information induces
a change in the resources available in the economy, by a better targeting of invest-
ments for example, or whether the economic interplay causes a redistribution of
fixed resources whose level is inalterable as of the moment at which the signal is
known, as in an exchange economy. It is also crucial to specify whether the signal
arrives before or after the opening of markets.

6 The comparison is valid for the optima but not necessarily for the equilibria because the arrival of
information may change the distribution of wealth. As in a standard economy, it is not sure that the
(any) equilibrium of the economy with information Pareto dominates an equilibrium of the economy
without information.
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To illustrate this point, let us reexamine and expand the example described by
Hirshleifer a little.

An entrepreneur must determine production y at t = 0 before knowing the
output’s selling price, ã. Production costs are c( y), where c is an increasing and
convex function. The profit is ay − c( y) if the realized price is a. The individual
entrepreneur who is the sole proprietor of the firm chooses a value of y so as to
maximize E[u(ãy − c( y))]. Recall that, according to Theorem 3.5, a signal s̃ on ã,
prior to the choice of y, is always beneficial. There is a frictionless market for
lending and borrowing; to simplify, the risk-free interest rate is assumed to be nil.

The firm is listed on a stock exchange at time t = 0. If the market is risk
neutral, the value of the firm is equal to the expected profit, or qy − c( y), where
q = E(ã). In the absence of information, since the entrepreneur can costlessly
cover all bases, it is optimal for her to sell the firm off entirely and choose the
output level y0 so as to maximize

qy − c( y).

Now assume that there exists a public signal concerning ã, and denote

q(s) = E[ã|s].
Production levels, trade, and the entrepreneur’s utility are derived in three

situations that differ according to the date at which the entrepreneur receives the
signal.

1 Information arrives after production decisions and trades. In this case, the
distribution of risks is optimal before reception of the signal, and everyone’s
utility level remains unchanged. The entrepreneur has already sold all of her
firm and received qy − c( y), the value of the firm adjusts to q(s)y − c( y).
Production equals y0.

2 Information arrives after the entrepreneur has committed the production, y,
but before the trades. The value of the firm is given by q(s)y − c( y). The
entrepreneur still wishes to sell off the firm completely, since she can costlessly
hedge against residual risk. However, unlike in the previous case, she assumes
the risk associated with variability in the price q(s) as a function of the signal.
The information is detrimental to her. In fact, for all y fixed, the concavity of v
implies

E[v(q(s)y − c( y))] ≤ v(E[q(s)y − c( y)]) ≤ v[qy − c( y)].
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The production level y1 is chosen ex ante to maximize

E[v(q(s)y − c( y))].
It is below7 y0. The poorer performance of markets in the allocation of risks
causes production to be lower.

3 The signal arrives before the production decision and trades. Like before, the
entrepreneur sells the firm in full. If the signal is s, she chooses production y(s) to
maximize v(q(s)y−c( y)), yielding the utility level: V(s) = v(q(s)y(s)−c[ y(s)]).

Two effects are operating here. The entrepreneur now bears a risk related to
fluctuations in the stock exchange, but can eventually increase output to benefit
from higher prices, at least if production is sufficiently flexible. To understand
this mechanism, consider two extremes. If production is inflexible, y = y0,
and only the Hirshleifer effect is operational. The entrepreneur is penalized
by the information that undermines her hedging opportunities. Conversely,
according to Theorem 3.5, if the entrepreneur is risk neutral and production
is flexible, the stock market serves no purpose for her, while the information
allows her to better adjust production to the sales price. We have, for all
values of s,

E[qy − c( y)|s] ≤ maxy E[qy − c( y)|s] = maxy q(s)y − c( y)

and, taking expectations ex ante, if y(s) represents optimal investment when the
signal is s,

E[qy − c( y)] ≤ E[q(s)y(s)− c[ y(s)]].
This is true for all y, in particular, for the optimal investment in the absence of
information.

Overall, early revelation of public information may allow irreversible invest-
ments to be better allocated, make production more efficient, and increase
overall resources in the economy. This positive effect juxtaposes with the poorer

7 To prove this property, note that y1 solves the first-order condition:

F( y) = E[q(s)− c′( y)]v′[q(s)y − c( y)] = 0.

The concavity of v and the convexity of c imply that F is decreasing in y. Thus, it is sufficient to
demonstrate that F( y0) < 0. Now, y0 is characterized by Eq(s) = q = c′( y0). Thus,

F( y0) = E[q(s)− q]v′[q(s)y0 − c( y0)].
The negativity of F( y0) follows because v′ is positive decreasing.
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allocation of risks when markets are initially incomplete and the arrival of
information shuts down interim markets (the Hirshleifer effect). The balance
is an empirical matter, which is to be identified on a case-by-case basis.

3 Private Information

And what if the information is not public, but rather private? Can an agent
receiving insider information benefit from it? To examine this question, it is first
necessary to adapt the notion of equilibrium to situations in which stakeholders
possess private information.

The structure of information considered in this section is specified as follows:

1 At time 0, ex ante, investors have beliefs that are identical across states of nature,
given by π .

2 At time 1
2 , individual i observes the realization si of a signal s̃i. This signal is

called private because it is not seen by other investors.

Crucially, most of the analysis is carried out under the common knowledge
assumption8: Whereas i does not observe the signal received by another investor j,
he knows that j receives a signal s̃j, and even knows the full distribution of the
whole vector (ẽ, s̃1, s̃2, . . . , s̃I).

The signal received by an investor may give information on the securities
payoffs. Signals received by different investors may be correlated, even containing
identical components. Hence, the observation of the signal si may provide i with
information, not only on the future payoffs or the future state of the economy,
but also on the private signals received by others.

In this setup, each individual is likely to seek which information others have.
An important question is whether trades, and more precisely, prices convey such
information. It is instructive to start with the extreme case of naïve investors.

3.1 Equilibrium with Naïve Traders

This section assumes informed investors to be naïve in the sense that they modify
their forecasts of securities payoffs exclusively in light of their private information.

8 This assumption has to be satisfied by every “rational” investor (except for noise traders in the last
section, and possibly for naïve traders).
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This leads to the simplest definition of an equilibrium in a situation with private
information9: This is the short-term equilibrium, as described in Section 1 of this
chapter, when the beliefs of each agent are updated by the signal he has received.
More precisely, when individual i observes the realization si of a private signal s̃i,
his belief, ψ i, is given by the conditional distribution π(e|si).

To illustrate this, consider a complete market equilibrium at time 0, as in
Section 2.1. The equilibrium allocation is thus optimal ex ante and the mar-
ginal utilities are proportional to the state prices. For all i, there exists λi > 0
such that

q(e) = λivi′[ci
0(e)]π(e).

At time 1
2 , the investor’s belief typically is revised in light of the realization of

his private information, resulting in a change in security demand. More precisely,
the naïve agent i’s willingness to pay for the contingent securities, in light of si,
becomes proportional to vi′[ci

0(e)]π(e|si), that is, proportional to

q(e)
π(e|si)

π(e)
.

At the initial allocation, given only the difference in agents’ private information, their
willingness to pay for securities at time 1

2 is no longer proportional to each other’s
if their a posteriori probabilities differ. Private information creates incentives to
trade and results in a new allocation (as in the equilibrium computed in the
following section).

Thus, even if the initial allocation is optimal ex ante, trades will occur on the
market at time 1

2 because agents choose a portfolio during the intermediate period
in consideration only of their private information si. According to Theorem 7.2,
some individuals will surely lose in these exchanges.

The equilibrium with naïve traders is not retained by most analysts today.
It neglects the fact that the price is a source of information, and that rational
investors will seek to use this public information to build their forecasts and choose
their portfolios. Let us again look at Hirshleifer’s example, in which an entrepre-
neur (e.g., agent 1) is the only one to have information on the only traded risky
security. Assume that, unlike all other investors, she knows exactly how much the
security will payoff. What will happen? If all investors know that the entrepreneur

9 The equilibrium is sometimes qualified as Walrasian since prices are only used to define the terms
of trade and not for their informational content.
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has this insider information and make full use of their knowledge, everything will
transpire as if the information were public. Indeed, the entrepreneur will wish to
keep the firm if the price she can receive for it is below the revenue anticipated
with certainty. Thus, investors deduce that any price that is accepted (or pro-
posed) by the entrepreneur exceeds that revenue, and consequently they no longer
have an interest in investing. That is how the price reveals private information.
However, this scenario is somewhat spurious: The insider has full information
and is the only one who does – and everyone else knows this. This should moti-
vate more strategic behavior in order to hide some of the information and is
outside the scope of this book. In the next section, the transmission of inform-
ation through prices is examined in a framework in which competitive behavior
is plausible: Information is disseminated and participants each receive a private
signal.

3.2 Private Information and Rational Expectations

How can one describe the information conveyed by prices? As in Section 1 of
this chapter, one could directly assume that agents’ beliefs ψ i depend on the
price system observed on the market. However, what is at stake is precisely to
provide a basis for this dependence, in particular to determine how investors
should modify their beliefs in response to prices. One must begin upstream. The
revision of beliefs must be derived from a model of the information each agent is
liable to receive, and of how this information modifies demand and, by extension,
equilibrium prices. This introspection implies recurrence: How I revise my own
beliefs depends on how other market participants expect me to modify them
along with my demand, and so on. The generally accepted hypothesis, which also
underlies the rational expectations equilibrium, is a fixed point in the introspection
process.

We first give a definition and then discuss its interpretation. The stock exchange
is described as usual by the securities payoffs. We are interested in the exchanges
at the time when individuals receive their private signals. The total number of
securities in circulation is denoted by zm = ∑

i zi(0). The crucial point is that
investors know how prices react to the set of received signals: The trading price is a
function, p = P(s), of the vector of all signals, s = (s1, . . . , sI), and individuals
know the form of the function P. Investors are said to be “rational” because, when
forming their demand, they account for their private signal and the information
revealed by the observation of the asset prices p = P(s).
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Definition 7.2 A rational expectations equilibrium specifies a price function of the
private signals, P(s), that satisfies for each I-tuple of signals s = (s1, . . . , sI):

1 Investor i chooses portfolio zi( p, si) maximizing his expected utility, conditional on
the value assumed by the signal si and the realization of the price P(s̃) = p:

E[vi(ci)|p = P(s), s̃i = si],
subject to the budget constraint;

2 Trades are balanced: ∑
i

zi( p, si) = zm at the price p = P(s).

The price plays two roles: It not only defines the budget constraint but also
carries information. This type of equilibrium requires much more sophistication
from traders than the naïve equilibrium. According to the definition, a minimal
requirement is a precise initial knowledge of the impact of the signals on prices:
Investors must know the price function P at least. How is such a knowledge
acquired? Before discussing this point, let us raise another difficulty.

By which process do prices simultaneously transmit information and reach
their equilibrium value? In an exchange economy, following Walras, one often
invokes an imaginary auctioneer who calls out a price, receives supplies and
demands for the given price, and revises it until equilibrium is reached. The auc-
tioneer knows nothing about the signals received by private agents: Thus, there
is no reason for agents to infer any information from the price called out by the
auctioneer, especially during the first round, and even subsequently any infer-
ence seems extremely complicated whatever the state. This problem is alleviated
if one assumes that the process is not interactive, but rather occurs in one step.
In this scenario, each investor submits a demand function in terms of prices to the
auctioneer, who then sets a price that eliminates excess demand.

This is similar to the functioning of stock exchanges at the opening and closing
of the trading day. Investors can submit different types of orders: Market orders
(these specify what quantity to buy or sell regardless of the price), limit orders
(buy (sell) transactions for a certain quantity that are executed only when the
price reaches a given maximum (minimum)), and stop orders (transactions for
a certain quantity that are triggered as soon as the price falls below a floor or rises
above a ceiling). Investors can submit any combination of these orders that they
choose, allowing a general demand function to be approximated in keeping with
the theory.
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It remains to describe how investors come to know the price function P.
A first justification is to assume that all participants know the structure of the

economy (the theoretical model in our case), that is, the value of initial resources,
the form of the utility functions, and the nature of the information each agent
is liable to receive (but not the values taken but the signals). Moreover, this
knowledge is shared: Everyone knows that everyone knows . . . that everyone
has the same initial knowledge of the model. And, finally, from this knowledge,
they are able to compute the demand and the equilibrium price. This is clearly
a particularly demanding level of knowledge and of rationality in the reasoning
process, especially in light of the uncertainty concerning the behavior of other
investors that exists in reality.

A second traditional justification for equilibrium is a learning process in a
context of repetition. It can be applied if private information becomes public after
the conclusion of operations, but it is particularly difficult to identify and correct
one’s errors in this context.

To conclude, when prices reveal private information, the rational expectations
equilibrium is the most fragile notion of equilibrium we have encountered in
this book.

3.3 Revelation of Information by Prices

The revelation of information by prices is a major theme in finance. Markets are
said to be strongly efficient10 if they reveal all available relevant information.

As a benchmark, we consider here an exchange economy, in which an optimal
allocation of risky resources has been contracted at time 0, as in Section 2.1.
Private signals are received interim, at time 1

2 before the realization of the state.
We know that with public information no exchange would take place, in contrast
to the naïve equilibrium. The no-trade theorem (Corollary 7.1) extends to the
case of private information under rational expectations: There is an equilibrium
in which all relevant information is revealed by prices if individuals receive private
information at time 1

2 . In other words, it is as if the information was public and
no trades occur on the intermediary date.

The crucial point is to define all relevant information. The value assumed by the
signal s has no intrinsic value other than the information it contains concerning

10 This concept of efficiency should not be confused with Pareto efficiency.
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the states. All relevant information is the probability of the states conditional on the
set of all private signals s .

Let us examine the information contributed by prices when markets are com-
plete. We can revert to a complete system of Arrow–Debreu securities. If all
information is revealed, that is, if s is public information, then the equilibrium
state prices satisfy (7.2):

Q(s)(e) = q(e)π(e|s)
π(e)

.

They are in a one-to-one correspondence with the states conditional on s. Con-
sequently, if all agents know the model, they will be able to infer the a posteriori
probability of the states from (7.2) by simply observing the state prices, Q(s)(e),
and will not wish to trade. This shows the following result.

Theorem 7.3 Consider an equilibrium at time 0 with complete markets. At time 1
2 ,

agent i, i = 1, . . . , I, receives the private signal s̃i , and markets open.
The absence of trade at time 1

2 is a rational expectations equilibrium associated with
prices that are completely revealing.11

To what extent is this result robust? As we have seen, the relevant information
is the probability distribution of the states of nature. The price system is perfectly
revealing if, and only if, the function P linking the equilibrium price system to
the state probabilities is one to one. If there are a finite number of securities,
K , the vector of state prices, which is defined up to a constant, provides K − 1
signals (formally, the normalized vector of state prices is a point in the simplex
of IRK ). Individuals observe these prices. If the dimension of the state prices is less
than the number of securities, there must be an equilibrium in which prices are
perfectly revealing. Conversely, if the dimension of the state space is greater than
or equal to the number of securities, prices can never be perfectly revealing and the
preceding theorem is inapplicable. We shall see that, in practice, when modeling
the interaction between prices and information on financial markets, some noise
is frequently introduced so that prices only reveal part of the information.

11 The attentive reader will notice a difficulty interpreting this result. Economic agents are purported
to observe prices at equilibrium, and yet there are no trades at equilibrium. We will pick up on this
issue in the following section.
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4 Information: The Normal Model

When markets are complete and the initial allocation is Pareto optimal, new
information will not induce trades, as we have just seen. To study the more inter-
esting case in which the initial allocation is not Pareto optimal, the CARA-normal
framework is routinely used in finance. Normal variables have a simple property
that is useful for the analysis of information. If the couple (ã, s̃), with values in
IRK × IRI , is normally distributed, then the distribution of ã, conditional on s̃ = s,
is also normal, with expectation and variance given by

E(ã|s) = E(ã)+ cov(ã, s̃)[var(s̃)]−1[s − E(s̃)],
var(ã|s) = var(ã)− cov(ã, s̃)[var(s̃)]−1cov(s̃, ã). (7.3)

The conditional variance does not depend on the realization of the variable s̃. The
preceding definitions of equilibrium can easily be applied to this context.

Consider an economy with a risk-free security with a fixed interest rate12 r
and a single risky security paying ã in the future and for which investors receive
private signals, s̃i for individual i. To simplify, take r = 0. Formally, we take the
CARA-normal assumptions:

1 The risk aversion of agent i, i = 1, . . . , I, is constant and equal to ρ i, and
his initial endowment in the risky asset is zi(0). Let ρ denote aggregate risk
aversion, defined by 1/ρ = ∑

i 1/ρ i;
2 The variables (ã, s̃1, . . . , s̃I), in which s̃i denotes i’s signal, have a joint normal

distribution.

In this framework, equilibria can be computed and the transmission of
information be analyzed. It is useful to start with naïve traders.

Naïve traders. The sale of the initial asset and the repurchase of z allow agent i
to consume pzi(0)+ z(ã − p) in period 1. Naïve behavior consists of choosing z
to maximize

E{vi[pzi(0)+ z(ã − p)]|s̃i = si}.

12 This analysis is in partial equilibrium: The price of the risk-free security is fixed, independent of
the price determination of the risky security.
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Let zi
n( p, si) be naïve demand. According to (4.11), its form is

zi
n( p, si) = E(ã|si)− p

ρ i var(ã|si)
.

If all participants are naïve, the equilibrium price is such that∑
i

zi
n( p, si) = zm.

The price p depends on the signals, and thus at least partially reveals them.
In the special case of only one participant receiving a signal (as in the Hirshleifer
example), the equilibrium price is a function of that signal and, if the relationship
is one to one, reveals it completely. Here,

E(ã|s1)− p
ρ1 var(ã|s1)

+
∑

i=2,...,I

E(ã)− p
ρ i var(ã)

− zm = 0 (7.4)

and the price is a linear function (thus one to one) of s1. Other participants should
infer the value of the signal from observing the price and change their demand
as a result, which would undercut equilibrium.

4.1 Rational Expectations and the Aggregation of Information

Recall that the price system is called strongly efficient if it reveals all relevant
information, public and private. In the event of strong efficiency, the price is
identical to what would be observed if all signals s = (s1, . . . , sI)were public. This
seems excessively demanding. However, an economy satisfying the CARA-normal
assumptions has a rational expectations equilibrium that is strongly efficient, in
which all relevant private information is revealed by the price system. This equi-
librium is identical to the one that would be established if private signals were
publicly announced. Note that, unlike in the previous section, markets are not
complete.13

13 To establish a link with the material in the previous section, the states of nature can be identified
with the values that ã may assume, or IR here. There are an infinite number of states and the signals
are in IRI . Since there is only one security, markets are not complete. Nonetheless, the distribution of
states conditional on s̃ is normal and only depends on the value assumed by the information through
the conditional expectation, E(ã|s). The variance, var(ã|s̃ = s), is independent of the value of the
signal.
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If all signals are public, a simple adaptation of (7.4) reveals that the form of the
equilibrium is

P(s) = E(ã|s)− ρzm var(ã|s). (7.5)

We wish to show that this price function is a rational expectations equilibrium.
At a rational expectations equilibrium, individual i’s demand depends, a priori,
on the information revealed by his signal s̃i and by the price P(s) = p:

zi = E[ã|si, P(s) = p] − p
ρ i var[ã|si, P(s) = p] . (7.6)

The key point is as follows: If it is common knowledge that the price is given
by (7.5), then observation of p = P(s) reveals E(ã|s) since, by assumption, under
normality the conditional variance var(ã|s̃) is constant and independent of the
realization of the signal s and of common knowledge. E(ã|s) is the best possible
information about the distribution of ã, and the signal si does not reveal any
more than the price:

E[ã|si, P(s) = p] = E[ã|P(s) = p] = E(ã|s).

E(ã|s) is called a sufficient statistics. Conditional on the observation of the equi-
librium price, investor i knows that ã is normally distributed with mean E(ã|s)
and variance var(ã|s), and consequently demands quantity

zi = E[ã|P(s) = p] − p
ρ i var(ã|s) . (7.7)

This demand coincides with what it would be if (s1, . . . , sI) was public informa-
tion, despite the fact that he is not able to observe the private signals received by
each market participant from observations on the price. Thus, we have shown
that the equilibrium price in an economy in which all information is public is
the same as a rational expectations equilibrium price in an economy with private
information.

We can identify the information contained in the price more precisely. Assume
that the signal can be written as s̃i = ã + ε̃i, where ε̃i is independentof ã, with
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expected value zero.14 Thus, it can be interpreted as a noisy estimate of the
security’s future value, with the term ε̃i representing the error. It is useful to
introduce hi, the reciprocal of the variance of ε̃i, which is called the precision of
the signal. Similarly, h is the reciprocal of the variance of ã. If the errors of the
various signals are mutually independent, applying (7.3) yields

E(ã|s) = h
h +∑

i hi
E(ã)+

∑
i

hi

h +∑
i hi

si, (7.8)

which is a convex combination of the a priori expectation of ã and the signals,
weighted by the measures of their precisions.

The property of the efficient transmission of information by prices is satisfied
in a number of models. These models present a paradox: If investors do not
use their private information si, but only the price, to formulate their demand,
we formally arrive at the same equilibrium. However, if investors do not use
their private information when formulating their demands, how can it become
incorporated into the price? Even more to the point, if prices costlessly reveal
all relevant information, then there is no reason to undertake costly information
gathering activities. One way to interpret these equilibria and resolve the paradox
is to consider this allocation as the limiting case in a long process during which
investors gather information that is transmitted by the prices after a certain lag.
For example, a lag between the execution of purchase or sell orders and the public
disclosure of the transaction, in particular of its price, may allow informed agents
to benefit from their informational edge, and to thus recuperate their outlays on
information. The microstructure of financial markets examines how private inform-
ation is disseminated by trades depending on the precise rules that govern the
operations of the markets.

Section 4.2 presents another approach that has also been the subject of a
voluminous literature. It is based on models in which prices do not have the
property of strong efficiency. It consists of introducing noise into the system –
noise traders prevent perfect transmission of private information.

14 This formulation is without loss of generality, up to an affine transformation of the signal – which
obviously does not change the information it contains – as long as it actually conveys information
on ã. Let

s̃i = αã + β + ν̃i

be the regression equation of the signal on ã. If α differs from 0, it suffices to transform the signal into
(s̃i − β)/α. If α is nil, the signal does not contribute any information. The formulation in the text
thus is not restrictive if the noise ε̃i is allowed to have an infinite variance.
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4.2 Noise and the Transmission of Information by Prices

In the previous model, only security yields were uncertain. In practice, the world
is full of other sources of uncertainty, which may be related to nonfinancial
income, the presence or absence of a specific type of participant based on the
state of his health, and so on. If the information bears both on the security payoffs
and on other random elements, the price reflects all the available information and
does not, in general, allow the part affecting the security payoff to be distinguished
from the remainder. It does not perfectly reveal the signal, and is not strongly
efficient.

To formalize this idea, assume that investors are joined on the market by agents,
called noise traders, who purchase and sell for reasons that are not related to the
security payoff, for example, because of liquidity needs subsequent to exogenous
occurrences known only to themselves (such as a death and the liquidation of
an estate). Their demand is denoted by ñ. Assume that the distribution of (ã, s̃, ñ)
is normal and that ñ is independent of all other variables. As before, the model
structure (including the distribution of the random variables) is known by all
investors and public knowledge.

The equilibrium price is a function of ñ and of the signals s̃. Price formation is
described by slightly adapting the general principles described above.

Definition 7.3 In the presence of demand shocks ñ, a rational expectations equilibrium
is a price function P(s1, . . . , sI , n), such that for each (s, n) = (s1, . . . , sI , n):

1 investor i chooses a portfolio zi( p, si) so as to maximize utility, conditional on the
value assumed by the signal si and the realization of the price P(s̃, ñ) = p;

2 Trades are balanced: For all (s, n)

I∑
i=1

zi( p, si)+ n = zm at p = P(s, n).

To simplify the calculation of the equilibrium, assume furthermore a particular
structure for the information. Let there be two categories of rational investors.
All the first receive the same signal s̃, and the others do not. In the CARA-normal
framework, the demand of several individuals possessing the same information
can be aggregated. It is that of a single investor whose risk tolerance is the sum
of individuals’ tolerances and whose wealth is their aggregate wealth. The model
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can thus be reduced to one with only two investors, each being representative of
all agents receiving the same information:

There are two rational investors:

1 An informed investor (or insider), receiving the signal s̃, whose risk aversion is
ρ1 and whose initial portfolio is z1(0).

2 An uninformed investor whose risk aversion is ρ2 with initial portfolio z2(0).
3 The vector (ã, s̃, ñ) is normal, the expectation of ñ is zero, and var(ã|s) > 0.

Theorem 7.4 Under the above assumptions, there exists a rational expectations
equilibrium in which the price is an affine function of

γ = E(ã|s)+ ρ1 var(ã|s)n. (7.9)

The equilibrium price is given by

P(s, n) = E(ã|γ )+ ρ∗
ρ1∗

[γ − E(ã|γ )] − ρ∗zm var(ã), (7.10)

where

1
ρ∗

= 1
ρ1∗

+ 1
ρ2∗

, ρ1∗ = ρ1 var(ã|s)
var(ã)

, ρ2∗ = ρ2 var(ã|γ )
var(ã)

. (7.11)

The information known to the public, that is, by the rational operators who
observe prices, is γ – a noisy version of the insider information. The price varies
with the insiders’ demand, a function of their information, and with liquidity
shocks. The relative weight of these two terms determines the precision of the
information contained in the prices. The transmission of information is all the
more effective that informed investors react to their private signals, that is, that
they are not very risk averse or they possess very precise information (formally,
ρ1 var(ã|s̃) is small).

From the perspective of the uninformed investor, the price of the security
differs from the expectation of its payoff by two terms:

1 −ρ∗zm var(ã) is the traditional risk premium;
2 ρ∗[γ − E(ã|γ )]/ρ1∗ is directly connected to the asymmetry of information.

This term is interpreted as a risk premium associated with the difference in
information between the informed investor and the others. Indeed, we can
write

γ − E(ã|γ ) = E(ã|s)− E(ã|γ )− ρ1 var(ã|s)n.
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γ − E(ã|γ ) is an unbiased estimate of the information differential E(ã|s) −
E(ã|γ ) between informed and uninformed rational investors. It is as if the
market accounts for this risk and requires compensation for it.

Proof of Theorem 7.4 Note that the price does not bring information on ã to the
informed investor. Given a realization of s̃ and of ñ, the equation for equilibrium is

E(ã|s)− p
ρ1 var(ã|s) + E(ã|p)− p

ρ2 var(ã|p) + n − zm = 0. (7.12)

All realizations of (s̃, ñ) that give the same value to n + E(ã|s)/ρ1var(ã|s),
(i.e., to γ ) are associated to the same price p. Thus, it is natural to look for
an equilibrium that is an affine function of γ . Linearity implies that normality
is preserved and it is sufficient to replace E(ã|p) with E(ã|γ ), and var(ã|p) with
var(ã|γ ), in Eqn (7.12). Using the expressions for ρ i∗, we obtain

γ

ρ1∗ var(ã)
+ E(ã|γ )
ρ2∗ var(ã)

− p
ρ∗ var(ã)

− zm = 0,

yielding (7.10).

This class of model, with noisy information, is very widely used to represent
the evolution of stock prices and their reactions to new information – and more
generally to address issues related to asymmetric information in the functioning
of financial markets.

4.3 Insiders

Consider an individual entrepreneur who knows more than anyone else about
the value of her firm, and decides whether to go public. This raises the issue of
regulating insider trading: Would it be better to have an institutional structure
that minimizes our entrepreneur’s opportunities to use her insider information
on the market, or to simply opt for an uncompromising laissez-faire approach
that will allow the (partial) transmission of the information to all agents in the
economy through stock price movements?

The entrepreneur, agent 1, initially has full ownership of the firm (normalized
as one unit of the security z1(0) = 1) and then puts it up for sale on the stock
exchange. The buyers, agent 2, do not possess any securities initially, z2(0) = 0.
At the time of the exchanges, the entrepreneur has insider information, s̃, on the
firm’s earnings. Can she capitalize on this information?
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To simplify the calculations, assume that the market is risk neutral (ρ2 = 0) and
denote the entrepreneur’s risk aversion ρ = ρ1. Three institutional arrangements
are considered in turn and compared from the point of view of the entrepreneur.
This allows us to identify the strengths and weaknesses of the stock exchange and
the role of regulation.

1 In the absence of a stock exchange, the entrepreneur’s ex ante utility is generated
by the payoffs ã generated by the firm. It is equal to

U0 = −E[exp(−ρã)] = − exp
[
−ρE(ã)+ (ρ)2

2
var(ã)

]
.

2 The regulated case, in which the entrepreneur does not enter the market
(meaning here that she puts the entire firm up for sale, whatever the price) –
for example, because insider trading is very severely penalized – is simple to
present. Since the market is risk neutral, the equilibrium price is independent
of the information, given by

p = E(ã).

The market provides complete insurance to the entrepreneur and her ex ante
utility is equal to U = − exp[−ρE(ã)], which (to simplify comparisons further
on) we can write as

U = −|U0| exp
[
−ρ

2

2
var(ã)

]
. (7.13)

Note that the same price and utility level would obtain if the entrepreneur
had no insider information, whatever the market structure, competitive or
monopolistic, or if the information s̃ were not correlated with ã.

3 Now consider the case in which the entrepreneur is permitted to be active on
the stock exchange, where her behavior is perfectly competitive, and where the
price is considered exogenous and entirely beyond her control. According to
the previous results, the equilibrium price is given by

p̃ = E(ã|γ ), γ̃ = E(ã|s)− ρ var(ã|s)ñ (7.14)
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and the ex ante expectation is written as15

U = −|U|
√

var(ã|s̃)
var(ã|γ̃ ) exp

{
−ρ

2

2
var[E(ã|γ̃ )]

}
. (7.15)

When the insider is not informed, var(ã|s̃) = var(ã), and the expected utility
reduces to U from Eqn (7.13). In general, there are two channels over which
information impacts on the entrepreneur’s utility, corresponding to the two
factors that multiply the reference utility, U:

1 The first, positive, is the term under the square root. It would be the only term if
we were looking at a case of pure speculation by an informed agent with no initial
resources in these securities (e.g, the entrepreneur is a well-informed manager
in the firm with no shares in his own name). This speculator’s utility is increasing
with the ratio var(ã|γ̃ )/var(ã|s̃). The more precise the insider’s information is
compared to that of the market, in other words, the greater his informational
edge, the greater his ex ante utility. This ratio is smallest in the two extreme
cases of the private information being either absent or perfect – in the latter
case, the entrepreneur fully reveals his information by an exaggerated reaction
to it.16

2 The second term in the exponential, var[E(ã|γ̃ )], always diminishes utility. It is
associated with the fact that the entrepreneur seeks to rid herself of some of
the initial risk by shifting it onto the other market participants. It translates
the detrimental impact of information on insurance: Only the share of the
security that is uncorrelated with information transmitted to the market can be
insured.

When is information profitable to the entrepreneur? According to what we saw
above, this requires that two conditions be met:

1 The risks are not too great: The speculative information advantage is independ-
ent of the variance in the original risk, while the Hirshleifer effect becomes more
damaging as the initial risk increases.

15 The calculations are given in the appendix. Recall that var[E(ã|γ̃ )] = var ã − var(ã|γ̃ ).
16 Questions arise regarding the assumption that the entrepreneur behaves competitively when she
is very informed: Her demand will react so strongly to the signal that it will be fully transmitted to
the market. This should lead her to account for this information leakage and adopt a more strategic
behavior. See the analysis of Demange and Laroque (1994, 1995) in a monopolistic and competitive
framework, respectively.
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2 The information is not very precise since, otherwise, it is revealed to the public
(the numerator and the denominator in the fraction tend toward zero), and the
informational advantage is low.

Should insiders be barred from the market? This model allows us to frame the
debate: In a situation in which the risks to be shared are fixed and exogenous,
such as when the information is public, the only impact of insiders’ actions is to
change the allocation of risks between economic agents. It is of no intrinsic interest
to the society, and can even work against the insiders by reducing the hedging
services provided by the stock exchange. The value of any early information arises
from the increase in resources and the greater return to investors it is liable to
induce, as is briefly discussed next.

5 Formation of Expectations and Investments

So far we have assumed that uncertainty regarding the future is exogenous. This
assumption is only plausible in a very small number of cases: The weather, to some
extent changes in consumer tastes, styles, and the like. As in most of the examples
that come to mind, the distribution of firms’ revenues (at least in the medium and
long term) are not exogenous data, independent of market participant’s actions.
This creates a fundamental link: Agents’ current decisions, such as investments,
depend on expected future states, which are in turn impacted by these current
decisions. This is the framework in which the notion of rational expectations,
which was formally presented above, was introduced by Muth (1961):

The underlying principle is that economic agents seek to make the best forecasts: Agents are
said to have rational expectations at time t if the subjective probability distribution that they assign
to future variables, conditional on the available information, coincides with the actual probability
distributions of these variables.

When the uncertainty is on exogenous variables, this principle means that
agents use all available information at time t to generate their forecast. We already
used this property in previous analyses, starting on p. 172. If uncertainty is on
variables that are partly endogenous, this concept is much less tractable. Future
events depend on decisions taken today – thus on agents’ expectations today,
and there is a feedback loop. While the target we seek to forecast is fixed in the
exogenous case, here it moves in tandem with how expectations are formed.
Thus, there may be several rational expectations, also called self-fulfiling. This
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possibility is often evoked in macroeconomics: When investors are confident, they
invest, thus stimulating demand and justifying their initial confidence; conversely,
when they are wary, they run down stocks and depress demand, again justifying
their expectations.

To illustrate these broad principles, consider a market for a good produced by
numerous competing firms. They decide on their investments one period before
bringing the good to market. This decision is a function of the attitudes toward
risk of the producers, of the shape of the production function, and of the price
p̃t+1 they expect at time t + 1.

If kt is the amount invested today, then the output at t + 1 will be g(kt). The
producer’s discounted profit, assuming that the interest rate is zero between t and
t + 1, equals

R(kt , p̃) = p̃g(kt)− kt .

This is random, affected by uncertainty on the price. The investment decision
depends on the future price, p̃t+1. Denoting the probability distribution on future
prices by ψt , the entrepreneur will choose to invest so as to maximize expected
utility:

Eψt u[R(k, p̃)] =
∫

p
u[R(k, p)]ψt(dp),

computed with the probability distribution ψt .
Aggregate output at time t + 1, Qt+1, is determined by decisions made by

producers at time t:

Qt+1 = F(ψt).

For example, if producers are risk neutral, each maximizes the mathematical
expectation of his profit, which is equal to

(Eψt p̃)g(kt)− kt .

His decision, and by extension the function F , only depends on the expectation
of the future price.

If producers are risk averse and maximize a mean–variance function, then F
depends both on the expectation and on the variance of the price.

The price of the good at time t+1 is determined competitively by setting supply
equal to demand. Assume that the demand at time t + 1 is a linear function of the
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current price and a stochastic element ε̃t+1:

Dt+1 = α − p̃t+1 + ε̃t+1.

Setting supply and demand equal, Qt+1 = Dt+1, yields the equilibrium price:

p̃t+1 = α − F(ψt)+ ε̃t+1.

Definition 7.4 The expectation ψt is rational if it corresponds to the distribution of
p̃t+1, conditional on the information known at time t. In other words, ψt is a rational
expectation if, jointly with p̃t+1, it solves the system:

1 p̃t+1 = α − F(ψt)+ ε̃t+1,
2 the distribution of p̃t+1, conditional on the information known at t, isψt .

Assume, for example, that ε̃t+1 is a random variable with mean zero and inde-
pendent of all that is known at time t, and that F(ψt) = βEψt p̃, with 0 < β < 1.
The equation for equilibrium can be rewritten as

p̃t+1 = α − βEψt p̃t+1 + ε̃t+1.

Using condition 2 from Definition 7.4, we can compute the expectation of p̃t+1

at time t by taking the mathematical expectation of the equilibrium equation.
This yields

Eψt p̃t+1 = α/(1 + β)

and p̃t+1 = α

1 + β
+ ε̃t+1.

Maintaining the same conditions as before, except for the specification of F ,
which we set equal to

F(ψt) = βEψt p̃ − γ varψt p̃,

we have,

p̃t+1 = α − βEψt p̃ + γ var ε + ε̃t+1,

whence

Ep̃ = [α + γ var ε]/(1 + β)

and p̃t+1 = α + γ var ε
1 + β

+ ε̃t+1.
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In the two foregoing examples, the rational expectation does not depend on
current information: It is equal to the marginal distribution of the price. This is
generally not the case – usually, we have information available at present that is
useful for the forecast. To illustrate this point, let us return to the initial function F ,
but assume that now the random term has the form:

ε̃t+1 = η̃t + η̃t+1,

where the random variables η are independent and identically distributed with
mean zero. Also assume that ηt is observed at time t by all agents in the economy.
The equilibrium then becomes

p̃t+1 = α − βEψt ( p̃t+1)+ ε̃t+1,

whence

Eψt p̃t+1 = (α + ηt)/(1 + β)

and p̃t+1 = α + ηt

1 + β
+ η̃t+1.

The distribution of the future price depends on current information.
How do agents learn these rational expectations? In the exogenous case,

Chapter 3 studies Bayesian learning of a distribution on the basis of independ-
ent observations. The same procedure can be extended to variables that, while
still exogenous, are not necessarily independent. However, in the endogenous case,
the difficulties of learning are exacerbated. First, the endogenous reality changes.
Since we are reasoning conditionally on the circumstances that currently pre-
vail, we can only verify the accuracy of the expectations by comparing forecasts
made under identical circumstances. To apply a Bayesian approach, we would,
thus, need to have a large number of observations associated with each version
of history. Furthermore, behavior would have to remain consistent throughout
the period for the probability distribution to remain constant and to validate the
application of the Bayesian formula.

BIBLIOGRAPHICAL NOTE

The economic theory of information arose during the past 30 years. There are
a variety of concepts and a multitude of results. This chapter only provides a
cursory overview. The book by Hirshleifer and Riley (1992) provides a more
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in-depth review. In his 1971 article, Hirshleifer was the first to emphasize the dual
role played by information: Advance notice of a risky event that stands in the way
of risk-sharing contracts being concluded, and a more thorough knowledge of
the environment allowing for wiser investments. The No-Trade Theorem, in its
most common formulation, was demonstrated by Milgrom and Stokey (1982).
Models of financial markets in which information filters through prices often are
extensions of the work of Grossman (1976), and Grossman and Stiglitz (1980).
Finally, the Muth (1961) article was the first to introduce the notion of rational
expectations equilibrium.
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Exercises

7.1 Consider an economy with a producer and a speculator Their tastes bear on their
income at time 1. Everyone’s utility is represented by a mean–variance function.

u(c̃) = E(c̃)− a
2

var(c̃), a > 0 for the producer, and

v(c̃) = E(c̃)− b
2

var(c̃), b > 0 for the speculator.

Output that is determined at t = 0 is only available at t = 1. The price of the
good at t = 1 is stochastic and denoted by p̃. This uncertainty motivates the
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creation of a futures market at t = 0. The price on this market is denoted by q.
The speculator initially owns no risky resources.

I Assume that production is fixed at the level y. Thus, the producer’s initial
resource is equal to yp̃.

1 Compute each agent’s demand on the forward market. Show that the
producer’s utility is given by

u(c̃) = u( yp̃)+ a
2

var(zp̃).

2 Derive the equilibrium price and allocation. Compute the producer’s utility
level.

3 Assume that, owing to advances in weather forecasting, agents have access to
better information on p before the futures market is opened. This information is
modeled by a signal s̃, such that var( p̃|s̃) < var( p̃). Show that this information
is, in fact, harmful to agents. To do this, prove that the level of utility expected
ex ante (before having received the information) is lower than what was found
in 1 (no additional calculations are required). Can you explain this result? You
could first examine the case in which the signal is perfectly informative, that is,
θ̃ = p̃.

II Assume from now on that the producer chooses the level of production.
The cost of producing y is c( y), where c is convex and increasing, and c(0) = 0.
The interest rate is zero.

1 What is the level of production when there is no futures market?
2 If there is a futures market, the production level only depends on the price q

on this market. Compute the equilibrium price and derive the production level
from it. Show that it is greater than when there is no futures market.

7.2 Incomplete markets, investment, and information Consider an economy with a
single good. There are two periods, t = 0, 1, and, at time 1, two states of nature,
e = 1, 2. We index values corresponding to time 0 with 0, and use e, e = 1, 2 to
identify values contingent on state e at time 1.

There are two consumers in this economy, 1 and 2.
The initial resources of consumer 1 are given a priori: She has 3

4 of a unit of
the good at time 0 and, regardless of the state, one unit of the good at time 1:
ω1 = ( 3

4 , 1, 1). The consumption flow of agent 1 is denoted by c1 = (c1
0, c1

1, c1
2).
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Her tastes are represented by a von Neumann Morgenstern utility function:

u1(c1) = c1
0 + πc1

1 + (1 − π)c1
2,

where π designates the probability of the occurrence of state 1. To simplify
the math, we assume that there are no constraints on the sign of agent 1’s
consumption.

Consumer 2 owns 5
4 of the good initially and has no resources at time 1:

ω2 = ( 5
4 , 0, 0). He has access to a technology for producing the good that yields

stochastic output. After investing k units of the good at time 0, the output of the
productive process during the following period is 4

√
k in state 2, and nothing in

state 1.
Agent 2 does not wish to consume in the first period. His tastes are

represented by

u2(c2) = π log(c2
1)+ (1 − π) log(c2

2).

1 Determine the Pareto optima of this economy. Compute the associated system
of contingent prices using good 0 as the numeraire.

2 There is only one security. Its total quantity is nil, and it allows risk-free lending
and borrowing operations between agents. One unit of security provides an
unconditional claim to one unit of the good at time 1.

Define the economy’s competitive equilibrium under these conditions.
Without calculation, determine the price of the asset at time 0 in terms of
good 0.

Compute the equilibrium allocation for π = 1
2 . Is this a Pareto optimum?

3 After having invested k, the entrepreneur deems that his productive activity
exposes him to undue risk. He decides to go public. He creates a corporation
that he endows with his right to receive all the firm’s profits at time 1. The
shares of the corporation are negotiable on the exchange at time 0.

Define and compute the competitive equilibrium. Compute the firm’s value
on the stock market.

Show that, if agent 2 correctly anticipates how the stock value of the firm will vary
with the initial investment k, he will select a level of investment yielding a Pareto
optimum. Comment.

4 For agent 2 to choose the right level of investment in the institutional setting of
the preceding question, he needs a lot of foresight.

When the state of nature is publicly observed, one can very well imagine that
some financial intermediary creates another security in parallel to the risk-free
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security of the second question, totaling zero in quantity and yielding one unit
of the good when state 2 materializes – nothing otherwise.

Compute the equilibrium of this economy. Compare with the third question.
5 As in the fourth question, assume that the state of the economy is public, say

linked to the business cycle. However, imagine that the government sets up a
forecasting agency capable of predicting the state and announcing it before the
markets open.

What is the new equilibrium? Are the forecasts beneficial? Compare with the
equilibria from the second and fourth questions.

6 In fact, unlike what was assumed in the fourth and fifth questions, random-
ness affecting production is frequently only directly observable by individuals
immediately involved in the productive activity. Drawing on the institutional
framework of the third question, this situation can be represented by assuming
that some technological progress allows the entrepreneur to exactly predict the
future after the investment has been made. This information is private, only
known to him. What do you think will happen?

Appendix

The entrepreneur’s wealth, with s and p known, is

p + E(ã|s)− p
ρ1 var(ã|s) (ã − p),

which, using p = E(ã|γ ), gives

E(u|s, γ ) = − exp
(

−ρ
{

E(ã|γ )− [E(ã|s)− E(ã|γ )2]
2ρ var(ã|s̃)

})
. (7.16)

We need to take the expectation over s, γ . Now, E(ã|s̃)−E(ã|γ̃ ) is independent
of γ . Indeed,

E(ã|s̃)− E(ã|γ̃ ) = E(ã|s̃)− ã + ã − E(ã|γ̃ ).
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Thus, we can separately compute the expectation of the two terms of the
exponential function in (7.16). On the one hand,

E{exp[−ρ E(ã|γ )]} = exp
{
−ρE(ã)+ ρ2

2
var[E(ã|γ )]

}

= |U| exp
[
ρ2

2
E(ã|γ )

]
.

For the other term, we use Rao’s formula: If z̃ is normally distributed, then

E[exp(−z̃2)] =
√

1
1 + 2 var z̃

exp
{
− [E(z̃)]2

1 + 2 var z̃

}
.

This equation must be applied to

z = E(ã|s)− E(ã|γ )
2 var(ã|s̃) .

We have Ez̃ = 0. Writing ã − E(ã|γ̃ ) = [ã − E(ã|s̃)] + [E(ã|s̃) − E(ã|γ̃ )] and
using the fact that ã − E(ã|s̃) is uncorrelated with either s̃ or x̃, we get

var(ã|γ̃ ) = var(ã|s̃)+ var[E(ã|s̃)− E(ã|γ̃ )],
which finally yields

E
(

exp −
{ [E(ã|s)− E(ã|γ )]2

2 var(ã|s̃)
})

=
√

var(ã|s̃)
var(ã|γ̃ ) .
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The equilibrium models studied so far are static models – they determine securi-
ties prices at a reference time on the basis of exogenous predictions of the future
revenues to which they provide a claim. They ignore a key fact: These reve-
nues themselves depend on the securities’ future prices. To account for this, an
economy in which markets are opened during an infinite number of consecutive
periods must be considered.

A first step can be made in this direction with the representative agent model that
serves as a benchmark. The main objective of Sections 1 and 2 of this chapter is
to present the implications of the model for the spot curve and security pricing,
starting with the case of certain resources. The economy consists of a single agent
who consumes the available resources at each point in time and in every state of
nature. An (implicit) supporting price for any good or asset can be defined as the
quantity of the numeraire the consumer is prepared to surrender at the margin
in exchange for one unit of the good or security under consideration. This, in
particular, yields the spot curve and links it to the degree of impatience, attitudes
toward risk, and the evolution of resources. Also, the dynamics of the spot curve
can be derived, as well as the relationship between the forward rates, say for
execution in 1 year, and the spot curve that will prevail then. Thus, even though
the representative agent hypothesis is simplistic, it yields some useful insights on
the impact of risk on interest rates and their evolution. Moreover, these insights
partially extend to an economy with many agents provided markets are complete.

The implications derived by the model have been tested. Section 4 discusses
one of the empirical paradoxes of the valuation of securities, the equity premium
puzzle. Section 5 concludes with an examination of assets with an infinite life span
in connection with the phenomenon of bubbles.
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1 The Representative Agent Model

1.1 The Economy

Consider an intertemporal economy with an infinite time horizon, in which time
is discrete, t = 0, . . . , ∞. There is a single consumer in this economy, whose life
span is also infinite.

From the perspective of time 0, future consumption may be uncertain. It is
described through a consumption plan, c̃ = (c̃t)t=0,...,∞, where c̃t is the (possibly
stochastic) forecasted level of consumption at time t.

The consumer’s preferences are defined over these consumption plans. They
are represented with a von Neumann Morgenstern utility function U, which is
intertemporally additive, U(c) = ∑∞

t=0 δ
tu(ct), where u is an increasing, concave,

and continuously differentiable function from IR into IR. The psychological discount
factor, δ, is positive and less than one, capturing the consumer’s preference for
the present. The psychological discount rate, j, is connected to δ by the following
relationship:

δ = 1
1 + j

.

The utility level associated with c̃ is given by

EU[(c̃)] = E0

[ ∞∑
t=0

δtu(ct)

]
,

where the mathematical expectation is conditional on the information available
at time 0. Note that the consumer’s tastes are invariant over time: At time t,
preferences are represented with the same utility function as that given above,
the only difference being that the mathematical expectation is taken conditional
on the information available at time t, and not that available at time 0. The analysis
can easily be extended to the case in which the intertemporal utility is the sum of
utility levels that may vary with time, E0[∑∞

t=0 δ
tut(ct)].

The resources in the economy that the agent receives are given by ω̃t , t =
0, . . . . They are exogenous and fixed. The good cannot be stored, nor invested or
transferred from one period to the next. Thus, the only resource allocation that
is feasible is c̃t = ω̃t , for all t.

Before proceeding, let us recall several definitions.
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1.2 The Spot Curve: A Review

Assume we are at time 0. Recall that the spot curve can be easily obtained from
the prices of zero coupons (see Chapter 1). A zero coupon maturing at τ provides
a claim on the delivery of one unit of the good at time τ , τ = 1, . . . .

The interest rate, r(τ ), on a loan taken at time 0 and due at τ , is defined from
the price of the zero coupon, q(τ ), maturing at τ , by

1
[1 + r(τ )]τ = q(τ ). (8.1)

All rates are measured per unit of time, regardless of the (remaining) life span of
the underlying security or loan.

The spot curve at time 0 is the curve τ → r(τ ), for τ = 1, . . . , that compares
the yields, per unit of time, of loans with different maturities.

Recall that the current forward interest rate is the interest rate fixed today on
a loan to be made at some future date, t. As explained in Chapter 1, due to
of arbitrage, the current forward price qt(τ ) of buying at date t a zero coupon
maturing1 at τ + t is equal to q(τ + t)/q(t).

Therefore, the current forward interest rate f t(τ ) for zero-coupon loans executed at
time t maturing τ periods later at time t + τ is defined by

1
[1 + f t(τ )]τ = qt(τ ) = q(τ + t)

q(t)
. (8.2)

We shall consider the forward rates at time 0 for loans to be made all at the same
date t but for various lengths of time: τ → f t(τ ).

Spot and forward rates are observable at present. Typically, the forward rates
evolve over time. We denote the spot curve that will materialize at t, rt : τ → rt(τ )

(with this notation, we have r(τ ) = r0(τ ) = f 0(τ )). Studies of rate dynamics
focus specifically on the relationship between forward rates, f t(τ ), that are observ-
able today and future rates rt(τ ) that will be realized at t. In other words, what
information about the realization at time t of spot curve rt(·) can we glean from
current observations on the forward rates, f t(·)?

The representative agent model allows this type of question to be addressed
once expectations on resources and their evolution have been specified.

1 As explained in Chapter 1, one should be careful to distinguish the maturity date of the forward
contract, here t, from the maturity date of the bond, here τ + t.
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In Section 2, resources are sure (though not necessarily constant) and perfectly
anticipated. Subsequently this unrealistic assumption is relaxed The analysis is
conducted under rational expectations: Future events are drawn from a distribution
that is consistent with the agent’s expectations.

2 Risk-Free Aggregate Resources

2.1 The Interest Rate Curve and Its Evolution

In the representative agent model, calculating the prices of zero coupons and the
associated rates is simple when resources are sure. This gives some interesting
insight on the relationship between the rates and the fundamental characteristics
of the economy.

Consider a consumer who can buy a zero coupon maturing at τ at a price
q(τ ). Given preferences E0[∑∞

t=0 δ
tu(ct)], he adjusts his portfolio to satisfy the

marginal condition:

q(τ )u′(c0) = δτE0[u′(c̃τ )].

In an economy with a single agent, consumption satisfies

c̃τ = ωτ

at equilibrium. Thus, we obtain

q(τ ) = δτ u′(ωτ )
u′(ω0)

. (8.3)

In other words, the price of a unit of the good available at τ in terms of the good
available today is equal to the marginal rate of substitution between these two
periods.

The spot curve is, thus, entirely determined by the evolution of resources and
preferences:

1 + r(τ )
1 + j

=
[

u′(ω0)

u′(ωτ )

]1/τ

. (8.4)
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It immediately follows that:

when resources are expected to be constant over time, the rates are all equal to
the consumer’s psychological discount rate. Because the rates are constant for all
maturities, the spot curve is said to be flat.

When resources are sure but vary over time, we have

ωτ > ω0 ⇐⇒ r(τ ) > j.

This property follows from the consumer’s declining marginal utility. For him to
accept a lower level of consumption at time 0 than at time τ , the price of the good
at time τ must be lower than the discount factor δτ , implying that the return is
greater than the psychological discount rate.

Finally note that an increase in resources does not necessarily mean that the
spot curve is increasing, as Example 8.1 illustrates.

Example 8.1 Let the function u be isoelastic:

u(c) = c1−γ

1 − γ
, γ > 0, γ 
= 1 or u(c) = ln c.

Then,

1 + r(τ ) = (1 + j)
(
ωτ

ω0

)γ /τ
.

For resources that increase at a constant rate g,ωτ = ω0gτ , the rate curve is flat
with a rate equal to (1 + j)gγ − 1.

We now examine the forward prices and forward rates for contracts maturing
at t and compare them with the spot prices and spot rates that will materialize at
t. Plugging the equilibrium values for the price q from (8.3) into (8.2) gives the
forward price and rate:

1
[1 + f t(τ )]τ = qt(τ ) = q(τ + t)

q(t)
= δτ u′(ωt+τ )

u′(ωt)
. (8.5)

The price at t of a zero coupon maturing at t + τ and the corresponding rate are
given by the same expression as (8.3), but offset by t periods.

1
[1 + rt(τ )]τ = qt(τ ) = δτ u′(ωt+τ )

u′(ωt)
. (8.6)
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Thus, the comparison between (8.5) and (8.6) immediately gives the following:

if there is no uncertainty regarding aggregate resources, the forward prices and
forward rates for contracts to be executed at t coincide with the spot prices and
forward rates that will materialize at t.

Finally, recall that the identity

1
q(t)

= [1 + r(t)]t = q(0)
q(1)

t−1∏
τ=1

q(τ )
q(τ + 1)

= [1 + r(1)]
t−1∏
τ=1

[1 + f τ (1)] (8.7)

holds by definition of the forward rates. It links the current rate for maturity τ
and the current 1-year forward rates for successive maturity dates.

In the case of no uncertainty, as we have just seen, forward rates for term t are
equal to the spot rates that prevail at date t: f t(1) = rt(1). Thus, the preceding
equation can be written as

1
q(t)

= [1 + r(t)]t = [1 + r(1)][1 + r1(1)] · · · [1 + rt−1(1)].

The rate for maturity τ is the geometric mean of the successive short-term
rates. Thus, a long-term rate exceeding today’s short-term rate implies that the
latter will rise and, in fact, eventually assume values greater than that of the
current long-term rate.

In a model with uncertainty, the above relationship between rates at different
dates no longer holds. However, the identity (8.7), which uses forward rates
observable today, may give similar qualitative indications.

2.2 The Valuation of Risky Assets

Even if resources are certain, securities may pay stochastic dividends. The same
valuation principle applies. Uncertainty is modeled by the “tree model" using a
finite number of states of nature (Chapter 2). The state, et in Et , that prevails at
date t determines the dividends to be distributed. Let π(et) be the probability,
at time 0, that state et will materialize at time t. Clearly, the values of risky
assets at time 0 depend crucially on the expected distribution of future states.
Assume that expectations are correct: The agent has perfect knowledge of the
distribution π .



Anula Lydia: GABR: “chap08” — 2005/8/23 — 14:39 — page 200 — #7

200 Chapter 8

As we saw in Chapter 2, a convenient procedure consists of evaluating state
prices, since they allow existing assets with a finite life span to be valued by
arbitrage.

An Arrow–Debreu, or contingent, asset – defined as a security that provides a
claim to the good at time τ if state eτ materializes – can be associated with each
date τ and each event eτ . Its price, q(eτ ), is determined in a manner analogous
to that of zero coupons. Let this security be tradable. The representative agent’s
optimization yields the first-order condition:

q(eτ )u′(c0) = δτπ(eτ )u′[c(eτ )].
At equilibrium we must have

c0 = ω0 and c(eτ ) = ωτ .

This directly yields the state prices q(eτ ) in terms of the good available at time 0:

q(eτ ) = δτπ(eτ )u′(ωτ )
u′(ω0)

,

or, using the price of the zero coupon from (8.3),

q(eτ ) = π(eτ )q(τ ).

In other words, the price contingent on a state at time τ equals the price
of the zero coupon maturing at τ multiplied by the probability of that state.
Consequently, here the risk-adjusted probability is identical to the objective prob-
ability. Of course, this is because there is no aggregate risk: The interest rate is
determined by the (sure) marginal utilities of resources at the times in question,
and under the von Neumann Morgenstern assumptions, the risk-adjusted prob-
ability coincides with the (subjective and objective) probability of the occurrence
of the states. Using the definition of the interest rate, the preceding equality can
be written as

q(eτ ) = 1
[1 + r(τ )]τ π(eτ ).

Now consider a security with a finite life span and paying stochastic dividends:
The owner of one unit of this asset receives d(eτ ) at time τ if the state of nature eτ
materializes; dividends are nil beyond some time T (in Section 5 this assumption
is abandoned). Using the principle of the absence of arbitrage opportunities, this
security price at time 0, p0, expressed in terms of the good today, follows from the
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state prices2:

p0 =
T∑

t=1

∑
et∈Et

q(et)d(et),

or

p0 =
T∑

t=1

1
[1 + r(t)]t


∑

et∈Et

π(et)d(et)


 .

The probability of the occurrence of the states π(et) is conditional on the
information available at present. Analogously, at time τ , the price is a function of
the realized state eτ :

p(eτ ) =
T∑

t=τ+1

1
[1 + rτ (t)]t−τ

∑
et∈Et

π(et|eτ )d(et). (8.8)

The following theorem captures these results.

Theorem 8.1 Assume that the total resources of the economy are risk-free and
known.

1 The forward rates for t : τ → f t(τ ) coincide with the spot rates that will
materialize at t.

2 The value of a security with a finite life span and paying stochastic dividends that are
correctly anticipated is given by (8.8). It is called the fundamental value of the security
and it equals the discounted sum, using the term structure of interest rates, of the
expected dividends it will yield conditional on the available information.

2 A direct argument can also be used. The additional utility that this security contributes at the margin
equals

T∑
t=1

δtu′(ωt)
∑

et∈Et

π(et)d(et).

Its price, p0, expressed in today’s good, is thus

p = 1
u′(ω0)

T∑
t=1

δtu′(ωt)
∑

et∈Et

π(et)d(et),

yielding the result we seek.
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3 Risky Future Resources

Though it serves a pedagogical purpose, the assumption that resources are risk-
free is clearly too restrictive. The previous analysis can easily be extended to the
case in which resources follow a dynamic stochastic process, provided this process
is known. As a result, a stochastic model of the evolution over time of the interest
rate curve is obtained.3 From here on, resources ω̃t are random and measurable
with respect to the state et : one can write ω̃t = ω(et).

3.1 The Interest Rate Curve

Zero coupons can be valued applying an argument analogous to the above. At
equilibrium, the agent expects to consume at time τ :

c̃τ = ω̃τ .

Asset prices must be such that there is no incentive to deviate from this con-
sumption. A marginal increase in the unconditional consumption of the good at
time τ , made possible by a zero coupon, increases future utility by δτE0[u′(ω̃τ )]
while decreasing current utility by q(τ )u′(ω0). Thus,

q(τ ) = δτE0[u′(ω̃τ )]
u′(ω0)

,

and, for the interest rate, using the psychological discount rate, i, defined by
δ = 1/(1 + i),

1 + r(τ )
1 + j

=
{

u′(ω0)

E0[u′(ω̃τ )]
}1/τ

. (8.9)

In order to examine the impact of uncertainty on the spot curve, let us refer
to a situation with no uncertainty in which the resource at time τ equals ωτ .
Now consider an alternative in which resources are stochastic, but with the same
mathematical expectation as in the reference situation:

E0(ω̃τ ) = ωτ .

3 We here apply a simplified version of the model proposed by Lucas (1978).
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According to Eqn (8.9), the interest rate with respect to the sure reference
situation4

• increases if marginal utility is concave;
• remains unaltered if utility is quadratic; and
• decreases if marginal utility is convex.

The impact of uncertainty on the interest rate curve thus depends on very
specific features of agents’ preferences. It is ambiguous even in the simplistic
model of the representative agent. However, the third case is frequently deemed
the most plausible. It captures what is called the precautionary effect: Faced with
a higher future risk, the individual prefers to increase savings today and transfer
wealth to the future. This leads to a decline in rates in order to balance the market.

One can also look at the links between the forward prices of zero coupons and
their prices in the future. The forward price fixed at time 0 for contracts executed
at t q(τ + t)/q(t) and the future price at t, qt(τ ), of a zero coupon maturing at
τ + t are, respectively, given by

q(τ + t)
q(t)

= δτ
{

E0[u′(ω̃τ+t)]
E0[u′(ω̃t)]

}
and qt(τ ) = δτ

{
Et[u′(ω̃τ+t)]

u′(ωt)

}
.

Seen from time 0, the future price, qt(τ ), is stochastic: It depends partly on the
realization of wealth, ωt (through the denominator), and partly on information
concerning future wealth that may change the conditional expectation in the
numerator. Unless one assumes risk neutrality, it is unlikely that the forward price will
be an unbiased estimate of the price in the future. In general, E0[qt(τ )] differs from
the forward price q(τ + t)/q(t).

Now consider the evolution of the forward price. At intermediary periods until
the maturity of the contract, s = 1, . . . , t − 1, the forward price for contracts
executed at t bearing on the zero coupon maturing at τ + t is

qs(τ + t − s)
qs(t − s)

= δτ
{

Es[u′(ω̃τ+t)]
Es[u′(ω̃t)]

}
.

As an illustration, imagine the simple (and unrealistic) situation in which
there is no news between 0 and t − 1 on the resources that will be available
at date t and date τ + t. Under this assumption, both expectations Es[u′(ω̃t)] and
Es[u′(ω̃τ+t)] stay constant, equal to their values at date 0, respectively, Es[u′(ω̃t)]
4 The interest rate in the case of uncertainty is greater than in the case of certainty if E0[u′(ω̃τ )] <
u′[E0(ω̃τ )], which obtains if u′ is concave.
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and E0[u′(ω̃τ+t)]. Then the forward rates are constant through s = 0, . . . , t − 1.
At date t, current resources are known, and the realized spot price of the zero
coupon in general differs from the previous forward prices because u′(ωt) differs
from E0[u′(ω̃t)]. Thus,

E0[qt(τ )] = δτE0

{
E0[u′(ω̃τ+t)]

u′(ωt)

}
= δτE0[u′(ω̃τ+t)]E0

[
1

u′(ω̃t)

]
.

The inverse function (1/x) is convex. Applying Jensen’s inequality yields

1
E0[u′(ω̃t)] ≤ E0

[
1

u′(ω̃t)

]
,

which implies

E0(qt(τ )) ≤ q(τ + t)
q(t)

.

Thus, the spot price will, on average, be below the forward price. This type of
analysis is often conducted on the spot rate, as in the next example.5

5 An important question is whether there is a systematic bias between the forward rates with respect
to the mathematical expectation of the spot rates that will materialize. Note, however, that the
forward price and the corresponding forward rate cannot be simultaneously unbiased estimates of the
spot price and the spot rate, respectively. Consider, for example, 1-year loans. The forward price is an
unbiased estimate of the spot price if

q(1 + t)
q(t)

= E0qt(1),

which in terms of rates is equivalent to

1
1 + f t(1)

= E0

[
1

1 + rt(1)

]
.

If the spot rate at t is random from the perspective of time 0, applying Jensen’s inequality again to the
strictly convex inverse function gives

E0

[
1

1 + rt(1)

]
>

1
1 + [E0rt(1)] .

Therefore, the forward rate f t(1) is surely strictly less than the expectation of the spot rate. The same
argument can be used for rates of various maturities.
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3.2 Spot and Forward Curves: An Example

We revert to the situation in Example 8.1, where preferences are of the form:

1
1 − γ

E

[ ∞∑
t=0

δt(ct)
1−γ

]
,

with γ strictly positive and not equal to one.
The distribution of resources (i.e., national output) is assumed to be lognormal:

The joint distribution of the log(ω̃t)t=1,...,T is normal for all T.
Taking logs in (8.9), we obtain

log[1 + r(τ )] = log(1 + j)− 1
τ

[log E0(ω̃
−γ
τ )− log(ω−γ

0 )]

Note that the distribution of ω̃−γ
t is lognormal: log ω̃−γ

t is normal with expecta-
tion −γ E(log ωt) and variance γ 2var(log ω̃t). The following relationship for a
variable X that is lognormally distributed holds:

log E(X) = E(log X)+ 1
2

var(log X). (8.10)

From this, the expression for the interest rate of maturity τ follows:

log[1 + r(τ )] = log(1 + j)+ γ

τ

{
E0[log(ω̃τ /ω0)] − γ

2
var0(log ω̃τ )

}
, (8.11)

which only depends on the values of E0(log ω̃τ ) and var0(log ω̃τ ).
Owing to its dual role in the representative agent’s preferences, the parameter

γ has two effects on the interest rate curve.
As in the case with certainty, it measures the individual’ s degree of comple-

mentarity between consumption at different periods. More precisely, the elasticity
of intertemporal substitution is equal to 1/γ (see Exercise 8.1). If the individual
expects an increase in income, for instance, the equilibrium interest rate has to
be larger than the psychological rate since at equilibrium borrowing has to be nil.
The larger the value of γ , the larger the interest rate.

But γ also measures relative risk aversion at a given point in time – and so
the rate depends on the future variance, var0(log ω̃τ ). Here, rates are decreasing
with this variance. This is the precautionary effect mentioned above, which is
stronger larger the γ .

One can study the relationship between the forward rates of (contract) matur-
ity 1 and the spot rates that will materialize in one period. According to (8.2),
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we have

[1 + f 1(τ )]τ = [1 + r(τ + 1)]τ+1

1 + r(1)
,

which, using (8.11) yields

log[1 + f 1(τ )] = log(1 + j)

+ γ

τ

{
E0(log ω̃τ+1 − log ω̃1)− γ

2
[var0(log ω̃τ+1)− var0(log ω̃1)]

}
.

The spot curve that will materialize at t = 1 is given by

log[1 + r1(τ )] = log(1 + j)+ γ

τ

{
E1[log(ω̃τ+1/ω1)] − γ

2
var1(log ω̃τ+1)

}
.

Seen from time 0, it is random, depending on the information available at time
1, which clearly includes ω1. To examine the difference between forward rates
and the expectation of spot rates,6 notice that

log[1 + f 1(τ )] − E0{log[1 + r1(τ )]}

= −γ
2

2τ

{[var0(log ω̃τ+1)− var1(log ω̃τ+1)] − var0(log ω̃1)
}

.

We once again find the two previously mentioned effects: The first term between
the square brackets captures the impact of new information at time 1 on future
resources, and the second the impact of realized wealth at time 1. There is no
reason why this expression should be equal to zero.

Thus, the forward rate is in general a biased estimate of the spot rate. The sign
of the bias depends on the precision of the information that will be available at the
maturity of the contract. If, for example, this information is not of good quality
(the variances of log ω̃τ+1 are nearly equal at time 0 and time 1), the bias will be
positive. On average, the forward rate will be higher than the future rate.

Let us develop these results when resources follow a first-order autoregressive
process:

log ωt = g + ρ log ωt−1 + εt ,

where g is a real number determining the long-term level of resources, ρ belongs
to the interval (−1, +1), and the εt are independent normal variables with mean
zero and variance σ 2.

6 To be rigorous, we work with log(1 + r), and not r. Analogous results can be derived when one
directly studies the rates.
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A simple calculation yields

E0(log ωt) = g
1 − ρt

1 − ρ
+ ρt log(ω0)

and var0(log ωt) = σ 2 1 − ρt+2

1 − ρ2 .

If resources are independent and identically distributed, ρ = 0 and

log[1 + f 1(τ )] − E0{log[1 + r1(τ )]} = γ 2

2τ
σ 2.

The forward rate is consistently above the expectation of the rate that will
materialize, and this bias declines with the maturity of the loan. For non-nil ρ,

log[1 + f 1(τ )] − E0{log[1 + r1(τ )]} = γ 2

2τ
σ 2

1 − ρ2 (1 − ρ3 − ρτ+2 + ρτ+3).

Changes to the shape of the spot curve are not so simple any more. For the
usual, positive, values of ρ, the increase in rates for maturities that are near is less
than for more remote ones. The expected future spot curve has a steeper slope
than the current spot curve.

3.3 The Dynamics of Securities Prices

As previously, it is convenient to begin by computing the prices of Arrow–Debreu
securities:

q(eτ ) = δτπ(eτ )u′[ω(eτ )]
u′[ω(e0)] ,

since the price of any other security with a finite life span can be calculated with
the state prices:

p0 =
T∑

t=1

∑
et∈Et

q(et)d(et).

This equality is often written in different ways, using the risk-adjusted probability
or the stochastic discount factor, or by incorporating returns.
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Let us begin with the first formulation. By definition, the sum of the state
prices for time τ is equal to the price of a zero coupon for the same date:∑

eτ∈Eτ
q(eτ ) = q(τ ).

Dividing the state prices by the price of the zero coupon, we obtain a probability.
More precisely, we can write

q(eτ ) = δτE0[u′(ω̃τ )]
u′[ω(e0)]

π(eτ )u′[ω(eτ )]
E0[u′(ω̃τ )] = 1

[1 + r(τ )]τ π
∗(eτ ),

where

π∗(eτ ) = π(eτ )u′[ω(eτ )]
E0[u′(ω̃τ )] .

By construction, π∗ is a probability measure. It is equal to the objective prob-
ability π if expectations on resources are certain or if the individual is risk neutral.
The price of an Arrow–Debreu asset as a function of interest rates has exactly the
same expression as in the previous section with the objective probability replaced
by the risk-adjusted probability. It directly follows that

p0 =
T∑

t=1

1
[1 + r(t)]t


∑

et∈Et

π∗(et)d(et)


 ,

or,

the value of a risky asset is equal to the discounted sum, using the term structure
of interest rates, of the mathematical expectation of the dividends it will yield,
computed with the risk-adjusted probability.

These equations can also be written in terms of returns. Let Rk(et , et+1) represent
the gross return of asset k at time t in state et . If the state at t + 1 is et+1, then,

Rk(et , et+1) = pk(et+1)+ d(et+1)

p(et)
.

The fundamental price-setting relationship is thus

1 = E
[
δ

u′(ω̃t+1)

u′(ωt)
R̃k

∣∣∣∣ et

]
. (8.12)
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Let δ̃t+1 be the stochastic discount factor7 defined by

δ̃t+1 = δ
u′(ω̃t+1)

u′(ωt)
.

According to (8.12), without risk on consumption, all securities should have
the same expected return equal to the non-random quantity 1/δt+1, regardless
of the risk of their payoffs. Thus, there should not be a risk premium. However,
consumption varies over time – and these variations cannot be forecasted perfectly.

It is within this variation, and in the correlation between movements in con-
sumption and asset returns, that the risk premium arises. To see this, rewrite
(8.12)

1 = Et(δ̃t+1)Et(R̃k)+ covt(δ̃t+1, R̃k).

Applying the formula to the risk-free asset (indexed ∗) and the stocks (security
1), and taking the difference, we find

Et(R̃1)− R∗ = −covt(δ̃t+1, R̃1)

Et(δ̃t+1)
.

The differences between the covariances of the returns and the stochastic discount
rate create differences between the expected returns in the model. The correlation
is essential: The expected return on a security whose return is uncorrelated
with forecasted consumption, sometimes called a zero-β, is equal to the risk-free
return R∗.

Example 8.2 Let us illustrate with the isoelastic utility function:

u(c) = c1−γ

1 − γ
, γ ≥ 0.

Assume that all variables are lognormal. Taking the log of (8.12), and using again
the formula (8.10) for lognormal variables, we obtain

0 = log δ + E(log R̃k)− γ E
[

log
(

c̃t+1

ct

)]
+ 1

2
var

[
log R̃k − γ log

(
c̃t+1

ct

)]
.

7 This formulation is often used in econometric tests, where the “true,” historical, probability is
preferred.
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Let σk represent the standard error of the log of security k return, σc the standard
error of the growth rate of consumption, and σkc, the covariance of the log of k’s
return with the log of the growth rate of consumption. Then,

0 = log δ + E(log R̃k)− γ E
[

log
(

c̃t+1

ct

)]
+ 1

2
(σ 2

k + γ 2σ 2
c − 2γ σkc). (8.13)

Applying the formula to the risk-free asset (indexed ∗) and the stock (security 1),
and taking the difference, gives

E(log R̃1)− log R∗ + 1
2σ

2
1 = γ σ1c, (8.14)

which yields the risk premium:

E(R̃1)− R∗ = R∗ (exp(γ σ1c)− 1).

4 Empirical Verification

It is reasonable to seek to test empirically the foregoing equations. The real
returns of bonds and shares are known over long periods. For example, the log of
the annual return of the Standard and Poor’s 500 index from 1889 to 1994 shows
a mean of 6.0 percent, and a standard error of 16.7 percent. The same calculation
applied to 6-month commercial debt instruments – the best approximation to
the risk-free rate available for long periods – gives a mean of 1.8 percent. Is the
4.2 percent average premium on shares justified by the risks that they impose on
stockholders? In the representative agent approach, the risk premium depends on
the shape of the utility function and on the consumption process.

4.1 Isoelastic Utilities

The first empirical studies were conducted by Mehra and Prescott (1985) on US
data. Their results, which were subsequently confirmed, led to what is known as
the equity premium puzzle. They assumed an isoelastic utility function as in the pre-
vious examples, and sought to verify whether (8.13) and (8.14) are compatible with
the orders of magnitude suggested by the statistics. We have already described the
yields of stocks and bonds. It remains to specify the evolution of consumption.
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In practice, one considers the purchases of nondurables and services.8 For the
United States, the mean of the log of the ratio ct+1/ct over the period 1889–1994
was 1.7 percent and the standard error was 3.3 percent. One can use the historical
value of the standard error, under the assumption that intertemporal variability
throughout the past century is equal to the conditional variance at any given date
(bear in mind that we are really only looking at orders of magnitude: more precise
calculations have revealed that the phenomenon persists when the evolution of
the variance over time is accounted for). The left-hand side of (8.14), evaluated
with the aforementioned data, yields a little over 6 percent (the risk-free rate, 1.8
percent, is barely greater than the mean of the variance of the securities’ yields,
(0.167)2/2). Thus, the key term is the covariance between the rate of growth of
consumption and the return on the stock exchange. A high correlation (agents
consume more when the market is high) indicates that the stock exchange is
poorly suited for providing investors with insurance to smooth shocks to their
consumption profile: Investors demand a risk premium that increases with the
correlation. Indeed, over the period, the correlation is high (0.49), resulting in
a covariance of 0.27 percent. Nonetheless, it remains too low: Eqn (8.14) implies
a coefficient γ greater than 20.

This value is highly implausible. Experiments that deal with risky choices tend
to yield values for γ that are below 4 or 5. For such values of γ , an agent facing
the observed market conditions would purchase high-return risky securities and
sell sure assets.

There is a further problem related to the risk-free interest rate. Equation (8.13)
applied to the risk-free rate allows us to estimate the psychological discount rate
when the coefficient γ and the growth rate of consumption are known:

log δ = − log R0 + γ E
[

log
(

ct+1

ct

)]
− γ 2σ 2

c

2
.

Since the mean rate of growth of consumption is approximately equal to the
risk-free rate (1.7 or 1.8 percent), and the standard error of consumption is 3.3
percent (variance 0.001), we see that a reasonable value for γ , between 2 and 10,
implies a psychological discount factor greater than 1, an unreasonable value. This
is the risk-free rate paradox. Put another way, given the low interest rate, consumers

8 Purchases of durables fluctuate considerably with the business cycle, styles, and expected price
rises. In all likelihood, the services that these goods provide to consumers, which enter into the util-
ity function but are not directly observable by statisticians, evolve much more smoothly than the
purchases.
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with a discount factor less than 1 wish to incur debt and consume more today
than tomorrow. Only when future consumption is very uncertain and/or when
they are highly risk averse can the mean growth rate of their consumption be
equal to the risk-free interest rate.

4.2 Beyond the Representative Agent

The preceding analysis requires many ancillary assumptions: the choice of the
form of the utility function, lognormality of returns and consumption growth,
as well as a representative agent. This raises the question of whether these
assumptions lie at the root of the incompatibility between the theory and the
observations, or whether the whole portfolio choice model must be scrapped.

Here, we draw on the approach in Hansen and Jagannathan (1991). The central
idea is to retain the rationality of agents while assuming as little as possible
regarding the unobservable, in particular, the stochastic discount factor. Given
observations on securities yields, a range of admissible values for the mathematical
expectation and the variance (or volatility) of the stochastic discount factor is
derived.

Consider an investor operating on the markets for these assets. Applying the
same reasoning as above, a marginal investment in security k leaves the investor’s
expected utility unchanged if

u′[ω(et)] = δE{u′[ω(et+1)][Rk(et , et+1)|et]}.

Note that this equality, derived above in the context of the representative agent
economy (where consumption is, in fact, macroeconomic consumption), also
applies to any individual market participant, provided purchases and sales of k
are not constrained (in this case, aggregate values for consumption and utility are
replaced with the corresponding quantities for individual agents).

Let us identify some forms for the stochastic discount factor that are compatible
with the statistical observation on returns. Equation (8.12) can be written in terms
of the expectations and covariance as follows:

1 = E(R̃k)E(δ̃)+ cov(R̃k, δ̃).

Stacking up these equalities for all securities yields the following equation, in
matrix notation:

1K = E(δ̃) E(R̃)+ cov(R̃, δ̃). (8.15)
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From this, one can derive a lower bound for var(δ̃) given a value of E(δ̃). If
δ̃ is in the L2-space of measurable random variables defined on the fundamental
space, then δ̃ can always be decomposed into its projection x′R̃ on the subspace
generated by the securities’ returns and an orthogonal element to that space.
We have, surely: var(δ̃) ≥ var(x′R̃). If we denote by � the variance–covariance
matrix of the returns, this inequality becomes

var(δ̃) ≥ x′�x,

and the first-order condition (8.15) is written as

1K = E(δ̃) E(R̃)+ �x.

Whence, taking x out of the first-order condition and substituting it into the
inequality,

var(δ̃) ≥ x′�x = [1K − E(δ̃) E(R̃)]′�−1[1K − E(δ̃) E(R̃)],
or,

var(δ̃) ≥[E(R̃′)�−1E(R̃)][E(δ̃)]2

− 2[1′
K�

−1E(R̃)]E(δ̃)+ [1′
K�

−11K ]. (8.16)

Inequality (8.16) identifies a lower bound on the volatility of the stochastic
discount factor. When this inequality holds as a strict equality, the set of points
1/E(δ̃) as a function of σδ̃/E(δ̃) describes a hyperbola in the plan (1/d, σ/d)
(just as in the case of the mean–variance efficient portfolios of Section 2.2,
Chapter 4). A stochastic discount factor is admissible when its representative
point [σδ̃/E(δ̃), 1/E(δ̃)] in the plan has a standard error that is greater than the
minimum and is thus located to the right of the hyperbola.

The lower bound improves (i.e., becomes more binding) as the variety of
securities under consideration increases. If a single security were to represent the
entire market (security 1), the hyperbola would collapse into its two asymptotes
and the inequality (8.16) would reduce to

var(δ̃)

[E(δ̃)]2
≥ [E(R̃1)− 1/E(δ̃)]2

(σ1)2
.

If the expectation of the stochastic discount factor is equal to the reciprocal
of the mathematical expectation of the return of the asset, then there is no
bound on its volatility. Otherwise, there is a strictly positive lower bound to the
discount factor’s volatility or, more precisely, to the ratio of its standard error to
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its mathematical expectation, which increases with the distance between 1/E(R̃1)

and E(δ̃) and decreases with σ1.
When this computation is implemented for a representative set of financial

assets, the problems of the previous section come up again. With an isoelastic
utility function and data on fluctuations in consumption, Hansen and Jagannathan
(1991) demonstrate that the stochastic discount factor does not satisfy the
inequality given above.

These negative results have led to revise the model more drastically by intro-
ducing, for instance, credit constraints, non-expected utility. These extensions are
out of the scope of this book.

5 Fundamental Value and Bubbles

Let us return to the case of sure aggregate resources, as in Section 2. The
fundamental value of a risky security was derived for securities whose dividends
are correctly anticipated and null after a finite number of periods. The observed
value may deviate from the fundamental value if expectations are incorrect.
A deviation may also occur when the asset’s life span is not finite, even if
expectations are assumed to be correct. In this case, the deviation is called a
bubble.

To illustrate this vocabulary and simultaneously examine the dynamics of asset
prices, it is enough to consider resources that are constant over time. Then the
interest rate curve is flat and all rates, at all times, are equal to the psychological
discount rate i (see Eqn 8.4). Consider an asset delivering a nonnegative dividend
linked to the evolution of the state of nature et , possibly of infinite maturity. The
owner of one unit of this asset receives d(eτ ) at time τ if the state of nature eτ
materializes. The additional utility that this security contributes up to time T at
the margin equals

T∑
t=1

δt
∑
et∈εt

π(et)d(et).

As T increases, the above expression does not decrease because dividends are
nonnegative. Therefore, whenever bounded, the sum converges as T tends to
∞. Using δ = 1/(1 + j), this means that the price in today’s numeraire that the
representative agent is ready to pay in exchange of the dividends served by one
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unit of asset is equal to

P(e0) =
∞∑

t=1

1
(1 + j)t

∑
et∈εt

π(et)d(et).

This is the expression of the fundamental value. Similarly, at time τ , if the state
eτ materializes, the price (after the dividend has been paid) will be

P(eτ ) =
∞∑

t=τ+1

1
(1 + j)t−τ

∑
et∈εt

π(et|eτ )d(et). (8.17)

We have assumed here that the owner of the asset keeps it forever. What
happens if the asset can be traded on a market at all periods and the agent con-
templates reselling the asset? Let p be the (state-dependent) price process. Correct
expectations imply a fundamental property between two successive prices. Using
the identity of the conditional probabilities for τ ≥ 0,

p(eτ ) = 1
1 + j

∑
eτ+1∈ετ+1

π(eτ+1|eτ )[p(eτ+1)+ d(eτ+1)].

The price of the asset today equals the discounted value of the mathematical
expectation of its resale price tomorrow, increased by the dividends. This prop-
erty is directly inferred from the rationality of the agent’s behavior, and is often
assimilated to the notion of the efficiency of financial markets: Markets completely
reflect all available information. Iterating this relation for a security with finite life
span gives the fundamental value: once the asset is no longer in circulation, its
price is null.

The argument is not valid for a security having an infinite life span. This is
easy to see, for example, by considering an asset that does not yield any dividends
regardless of the state of nature. This is a property of money. Its fundamental
value is equal to zero. However, the equation:

p(eτ ) = 1
(1 + j)

E[p(eτ+1)|eτ ]

is solved by many series of prices. The (non-stochastic) solutions are given by

p(τ ) = (1 + j)τ p(0),

for any nonnegative p(0). A priori, all these solutions are acceptable. The null
solution is the only one that, like the security and the resources, is stationary.
Nonstationary solutions are called bubbles. The price of the security today is only
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justified by the fact that it is expected to increase at the rate i tomorrow, and so
on into the future. This price rises exponentially until expectations collapse and
. . . the bubble bursts!

The crucial point in this simple model that explains the bubble is that, in
exchange markets, the current price of an asset is driven not only by its future
dividend but also by its future price, which cannot be determined without ambi-
guity. This phenomena is at work in more complex situations, in which future
prices are not common knowledge, owing to differential perceptions.

BIBLIOGRAPHICAL NOTE

The representative agent model was introduced by Lucas (1978) and provides
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for equality of the price of a security with the discounted expectation of the future
income it will provide its owner. Shiller (1981) rejected this property, called the
efficiency of markets: For plausible discount rates, price variations appear too great
compared with the variance in dividends. The literature subsequently turned
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Exercises

8.1 Recursive preferences The relative risk aversion coefficient and intertemporal elasti-
city of substitution are equal when the utility index is isoelastic. The following exercise
introduces preferences that are almost as easy to handle, but that disentangle the two
notions.

1 In a two dates model, consider a consumer with preferences over (c1, c2) represented by

1
1 − γ

[c1−γ
1 + δE(c1−γ

2 )]

and facing the budget constraint

c1 + qc2 = ω1 + qω2,

with q = 1/(1 + r) (there is no uncertainty). q is the price of one unit of good available
at date 2 in terms of good available at date 1. The intertemporal elasticity of substitution
is defined as the relative variation in the consumption ratio c2/c1, caused by a change in
this price:

e = −∂(c2/c1)

c2/c1

∂(q)
q

.

In other words, if the price increases by 1 percent, then the consumption ratio falls by
e percent. Compute this elasticity. Compare it with the risk aversion.

2 Now assume that preferences are given by

1
1 − γ

[c1−φ
1 + δE(c1−γ

2 )(1−φ)/(1−γ )]

Answer the same questions again. Draw conclusions.

8.2 Slope of the spot curve In a very simple model, we study how the slope of the spot
curve is related to expectation on future rates and to the supply of bonds. At t = 0, consider
two zero-coupon bonds:

1 a zero coupon with maturity 1 with price 1/(1 + r(1));
2 a zero coupon with a longer maturity, here 2, and costing q(2) today. Let q̃1(1) represent

its (random) price at time 1, as expected by the market. This expectation is assumed
identical for all investors.
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There are I investors at time t = 0. Investor i, i = 1, . . . , I, has wealthωi and preferences
over consumption at time 1. They are represented by a mean–variance function. Investor
i seeks to maximize

E(c̃)− ρI

2
var(c̃),

subject to his budget constraint.

1 Compute the quantity of zero coupons demanded by investor i.
2 The government supplies the zero coupons as follows. The supply of zero coupons

maturing at 2 is fixed at M while that for zero coupons maturing at 1 is adjusted so as to
make the short-term rate, r(1), equal to a given value r.
(a) Derive the equilibrium price q(2) as a function of the anticipated variance of q̃1(1)

and the supply M.
(b) Comment.

3 (a) Recall the relationship linking q(2) to the rate r(2)with maturity 2, and that linking
the price q1(1) that will be realized at time 1 to the rate r1(1) of maturity 1 at time
1. Derive the equilibrium relationship between the rates.

(b) Using the fact that the rates are small relative to 1, linearize the foregoing expression.
Under what conditions is the “short-term” rate r(1) greater than the “long-term”
rate r(2)? Can the spot curve be increasing, decreasing?

Note: In this simple exercise, it is only the anticipation on the distribution of next price
q̃1(1) that matters. This anticipation may be correct or not.
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In Part 2 of this book, the resources of the entire economy were wholly consumed
when they became available. They could neither be stored nor reused for purposes
of production. Aggregate savings were nil, and we were concerned with the
allocation of exogenously given risky resources. This last part introduces physical
investments so that production activities may alter the size of the available cake.
Also, because the revenues to investments are typically uncertain, production
decisions also affect risk profiles. Before addressing the problems stemming from
risks, it is worth reviewing briefly the basics of investment decision making in
a riskless economy.

There is no uncertainty in the economy, but the good available at time 0 may be
invested to produce additional resources at time 1. Thus, even in the absence of
financial markets, an agent can modify the time profile of her available resources.
We begin with the case in which there is no financial market, and then examine
the role of such a market in this set up.
Choice of investment without a financial market Consider an entrepreneur who
contemplates making an investment. In the absence of financial markets, she
needs to save to finance the investment – her consumption today and tomorrow
are directly linked to the size of the investment.

Investment opportunities are described by a production function, f : An invest-
ment of k units of the good at time 0 yields f (k) at time 1. The function f is
assumed concave and marginal productivity, f ′(k), is decreasing.

Denote by (ω0,ω1) the entrepreneur’s initial resources at the two dates. The
set C of consumption profiles, (c0, c1), that can be realized in the absence of
financial markets is given by

c0 = ω0 − k, c1 = ω1 + f (k), k ≥ 0, (P3.1)

With preferences represented by U(c0, c1), the entrepreneur selects the
investment level k ≥ 0 that maximizes

U[ω0 − k, f (k)+ ω1].
The necessary and sufficient first-order conditions are

U ′
0(c0, c1)

U ′
1(c0, c1)

≥ f ′(k) with equality when k > 0. (P3.2)

There is no investment if the marginal rate of substitution between current and
future income, evaluated with consumption equal to the initial endowments,
exceeds the marginal productivity of capital at the origin. Otherwise, the agent
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invests, by reducing current consumption in favor of future consumption, until the
marginal rate of substitution equals the marginal productivity of the investment.

Instead of a single entrepreneur, consider a firm owned in equal shares by
two investors, each contributing half of the investment and receiving half of the
output. Investor i, i = 1, 2, wishes the total investment of the firm to be equal to
ki ≥ 0, where ki maximizes

Ui
[
ωi

0 − k
2

,
f (k)

2
+ ωi

1

]
.

The first-order condition is still given by Eqn (P3.2) (replacing U with Ui). Unless
the preferences and/or endowments of the two individuals are identical, their
preferred choices are unlikely to coincide. Individuals usually desire different
investment levels, either because they differ in their impatience for consumption
or they have different income profiles.

This can be illustrated graphically. Consider first a single investor. Figure P3.1
depicts the set C (in the (c0, c1), space) of realizable consumption profiles from
which the investor must choose. The preferred profile is located at the tangency of
the indifference curve and the set of possibilities – or, in the absence of a tangency
point, at the corner�, where no investment occurs.

The same graph can be used when the two investors have identical endow-
ments. It is sufficient to define C as the set {(c0, c1) = ω0 − k/2, f (k)/2 + ω1),
k ≥ 0}. A priori, there is no reason why the two investor’s indifference curves
should be tangent at the same point.

�1

�0

U 1

0

U 2

Ω

c1

c0

Figure P3.1 The entrepreneur.
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Choice of investment with a financial market A market for lending and borrowing
allows these types of conflicts of interest between shareholders to be resolved.

Assume that the entrepreneur has access to a financial market where the risk-
free interest rate is r. The profile of consumption possibilities is described by

c0 = ω0 − k − z, c1 = ω1 + f (k)+ z(1 + r), k ≥ 0, (P3.3)

In the absence of any restriction on the sign of z, the foregoing equalities are
equivalent to the intertemporal budget constraint:

c0 + c1

1 + r
= ω0 + ω1

1 + r
+ f (k)

1 + r
− k, k ≥ 0. (P3.4)

A consumption profile is realizable if, and only if,

its discounted value equals the sum of the discounted values of the resources and
production net of investment costs.

Consider as before an entrepreneur/investor who chooses the consumption
profile, (c0, c1), and the level of investment k, under the constraint (P3.4). Since
investment only comes into play in her discounted wealth, any investor, regardless
of her income profile or utility function, invests the amount k∗ that maximizes
the discounted value of net output or discounted profit:

f (k)
1 + r

− k. (P3.5)

This expression is none other than profit from microeconomic theory, computed
using prices discounted at time 0. The optimal investment decision is thus inde-
pendent of, or separable from, the consumption decision (this result is known as
the Fisher Separation Theorem). The investor’s optimal choice is obtained by

1 setting investment k∗ to maximize the discounted value of net output;
2 maximizing utility under the budget constraint (P3.4) associated with the

optimal investment k = k∗.

When k∗ is strictly positive, these two conditions yield the equilibrium:

U ′
0(c0, c1)

U ′
1(c0, c1)

= 1 + r = f ′(k∗). (P3.6)

A geometrical depiction of this result can be seen in Figure P3.2. Starting
from any realizable point, M, the entrepreneur can borrow or lend to attain any
consumption profile on the line having the slope −(1 + r) and passing through
that point. Letting M vary in C gives rise to the set of all attainable consumption
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c1

c0
0

�1

�0

M

M*

U 1

U 2

Figure P3.2 The financial market.

profiles. Thus, profiles located on the tangency to the set C and with slope −(1+r)
“dominate” all others. As a result, the entrepreneur selects a point on the tangency
regardless of his preferences. All these points represent the same investment level
as that associated with the point of tangency M∗.

If the firm is owned in equal shares by two investors, each of whom contributes
half of the investment and receives half of the output, then each will obtain half of
the net discounted value of production. Thus, they are in agreement to maximize the
discounted value of net output, regardless of their preferences. Furthermore, each inter-
venes on the financial market to obtain the consumption profile that best suits her
preference for the present and initial endowments. This result can be generalized
to any number of investors. Summarizing, if a financial market operates without
borrowing constraints, at equilibrium there is

1 equality between the marginal rates of substitution, the marginal productivity
of investment, and the interest rate;

2 agreement between the different investors on the optimal level of production.

Financing of the firm and uncertainty According to the previous results, if the
economy is riskless, the availability of a financial market without any frictions
implies simple properties: The value of a firm is unambiguous; the owners of the
firm agree on the goals to set for the manager (maximization of discounted profit)
and there are no particular difficulties financing production by borrowing on the
financial market.
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Uncertainty undermines these properties in a fundamental way. The existence
of a diversity of financing instruments further complicates the analysis. Chapter 9
presents a general accounting model of the financial flows within the firm,
distinguishing between the contributions of stockholders and bondholders and
introducing limited liability. The “value” and a “stock market valuation” of
the firm can be defined in an uncertain environment just as under certainty,
provided markets are complete. If markets are incomplete, these definitions are
no longer valid. Under some conditions, however, the Modigliani–Miller theorem
establishes a link between the value of all securities issued by the firm.

Chapter 10 examines the firms’ financing practices and their interaction with
investment choices. Even when markets are complete, conflicts of interest may
arise between stockholders and bondholders when there is limited liability, and
the investment level chosen by the stockholders may be suboptimal. Finally,
we address situations involving asymmetric information between the entrepre-
neur and the financial backers, whether stockholder or banker. This leads us to
discuss the effect of insider trading on the stock exchange and to examine credit
rationing.
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Firms take risks. Any investment, hiring, or production decision is a bet on the
future. Stakeholders in the firm share these risks in various ways: The labor con-
tract specifies the amount of wage risk assumed by workers, regulations governing
the collection of taxes and social security contributions determine the receipts of
public creditors in the event of bankruptcy, and so on. This chapter examines a
very stylized representation of the firm as a meeting place for financial backers
and the entrepreneur/manager. makes two kinds of decisions: economic and
financial. The former deal with investments, levels of output and employment,
wages, sales price, and the like. These choices require capital. Financial decisions
pertain to raising capital from various sources and the associated allocation of
risk. We present these in a simplified accounting framework of the activities of
the firm (Section 1). Many questions arise. Can the profit maximization criterion
from microeconomics be adapted to account for randomness? What are the goals
of a firm? Who sets them? Can we define its value, its stock market valuation?
These seemingly simple questions in fact prove quite difficult. This chapter, for
the most part, concentrates on financial aspects and treats economic decisions as
fixed.

The fundamental concepts are first introduced in an intertemporal frame-
work without uncertainty. Section 2 then shows that no conflict of interest arises
between the various stockholders, or between stockholders and managers, and
that the traditional concept of profit used in microeconomics is justified.

In the presence of uncertainty, these results only partly generalize. Section 3
specifies the conditions under which the value of the firm can be unambiguously
defined exclusively on the basis of economic choices regardless of the financial
structure. It discusses the Modigliani–Miller theorem, which is derived from
the absence of arbitrage opportunities. As a result, the theorem only reflects a
consistency in the structure of the prices of securities that firms issue. It should
not be misinterpreted as determining all the securities prices. In particular, it is
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not useful to predict how a firm value would be modified by changes to economic
decisions – except in the case of complete markets (or more generally under a
spanning condition). This issue will be addressed in Chapter 10.

1 A Simple Accounting Representation

The financial backers of a firm share the net cash proceeds (NCPs) that are the
aggregate result of economic choices. We examine the principles governing this
distribution, which leads us to introduce the notions of firm value and stock
market valuation.

1.1 Financial Backers

Three broad categories of financial backers can be distinguished.

1 Stockholders A firm issues stocks, usually in exchange for money (sometimes,
however, in exchange for an in-kind contribution such as a patent, good-
will, etc.) to increase its equity. Stocks establish property rights on the firm:
Their owners participate in the management of the firm by voting and receive
dividends. Stockholders equity is the permanent resources of a firm. A stock-
holder has no claim for his initial contributions on the firm equity and must
sell his stocks to a new investor if he wishes to divest from the firm. If this firm
is listed on the stock exchange, that is where the sale will occur. Otherwise, a
buyer must be found outside of the market, or OTC.

2 Medium- and long-term lenders These are usually banks and, to a lesser extent,
individuals holding bonds issued by the firm.

3 Short-term lenders Intercompany credit is a way for firms to finance ongoing
operations. Suppliers provide credit and typically require payment of their bills
after 3 months, or at the end of the quarter. The firm may, itself, extend
credit to its clients. Overall, in the entire economy, this is generally quite a
small amount (it corresponds to “trade" in Table 9.1). This aspect of the firm’s
financial environment is ignored in this chapter as well as the next one.

A stylized balance sheet of the US nonfarm, nonfinancial firms is presented in
Table 9.1. It aggregates the noncorporate and corporate sectors. Only the latter
issues stocks, which may be traded on a market. The real estate assets of the
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Table 9.1 Nonfarm, nonfinancial business balance
sheet USA: amounts outstanding at the end of 2003
(in trillions of dollars)

Assets Liabilities

Total tangible assets 15.8
Real estate 10.5
Other tangible assets 5.3

Total financial assets 12.4 13.4
Liquidities and credit 1.8 7.2
market instruments

Trade 2.2 1.8
Miscellaneous 8.4 4.3

Net worth 14.8

Source: http://www.federalreserve.gov/releases/Z1/Current/

firms are approximately equal to the US GDP in 2003 (11 trillions dollars), while
physical equipment and inventories amount to less than half a year of production.
When one looks at financial instruments, total assets are not very different from
total liabilities, both approximately equal to 1 year of production. Interfirm trade
credit corresponds to 1.5–2.0 months of production. Net recourse to credit and
bond issues contributes 5.4 trillions dollars to the financing of the firms’ activities,
but they hold in miscellaneous assets (equity and bonds of other firms directly
held or through home pension funds) a net wealth of 3.9 trillions dollars. All
considered in the aggregate, financial wealth is close to zero and tangible wealth
is close to the net worth, 14.8 trillions dollars, of the firms. The data aggregate
those from noncorporate and corporate firms. Of the net worth of 14.8 trillions
dollars, the share of noncorporate firms was 4.8 trillions at the end of 2003. The
corporate net worth, much more liquid, was 10 trillions, hence approximately
equal to the total (farms included) market value of equities outstanding. This
equality is not the rule: at the end of 1999, at the time of the stock market bubble,
the accounting corporate net worth was equal to 8.2 trillions, while the market
value of equities was 85 percent larger, at 15.2 trillions.

Unlike fixed-income government bonds, securities issued by firms (stocks and
bonds) are risky, owing to uncertainties associated with productive activity. Bonds
frequently contain a variety of clauses, allowing for such things as the conversion
into stocks or reimbursement at a date chosen by the debtor. Moreover, even
when they guarantee fixed revenues a priori, they always bear an element of default
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Table 9.2 Stylized balance sheet variations

Variations in assets (or uses) Variations in liabilities (or resources)

Variations in working capital Revenues – operating costs
Investments
Interest costs Variations in indebtedness
Dividends Variations in equity capital

risk: In the event of financial difficulties, the issuer may request rescheduling of
the maturity, or even go bankrupt. By their very nature, incomes from stocks
are risky, since they provide a claim on the firm’s residual revenue once all other
creditors have been paid. The total amount accruing to medium- and long-term
financial backers is called the NCPs, which we now define.

1.2 The Net Cash Proceeds

We use a generic cash-flow table to represent the financial flows in the firm.
Table 9.2 represents variations in the items over 1 year. The left-hand column
gives the variation in assets (or uses) and the right-hand column that of liabilities
(or resources).

Under resources, we find first resources generated by the year’s activity, which
we call revenues − operating costs, and then the net contributions by financial
backers – variations in equity capital coming from new stock issues and retained
earnings on the one hand and changes in indebtedness on the other hand. In cor-
porate accounting, the former corresponds to total sales minus operating expenses
(purchases, wages, etc.) and taxes. To clearly identify the relationship between
the firm and its financial backers, we diverge from the usual accounting practice
by excluding from the expenses interest and fees on loans.1

Under uses, we find investments, variations in working capital (increases in
inventories and advances to clients linked to business development), and payments
to creditors and stockholders. The accounting identity translates the fact that the

1 The (revenues − operating costs) is thus equal to the operating cash flow plus interest costs.
Technically, it is adjusted for tax deductions on interest payments (these payments reduce the year’s
earnings and thus the associated taxes). Thus, for any firm that is subject to taxes on earnings, if the
nominal interest rate is r and the tax rate τ , the interest cost per dollar borrowed is only r(1 − τ).
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contribution to the year’s resources from financial backers and from the proceeds
of business are used to compensate the backers and for business development.

Economic decisions affect the revenues − operating costs, investments, and
variations in working capital. For our purpose, it is enough to consider the
aggregate result of these decisions, which we call the NCPs. They are defined as
the (revenues − operating costs) minus all investment expenses and variations in
working capital. The accounting identity yields

NCP = (dividends − variations in equity capital) + (interest costs − variation in
indebtedness).

In other words, by construction: The NCPs equal the financial backers’ net revenues.

2 Intertemporal Decisions without Uncertainty

Let us first examine financial practices when both revenues and the interest rates
are riskless. In this risk-free environment, without loss of generality, one can
assume that debt is always repaid.2

2.1 The Accounting Framework

Consider for the time being the following sequences, supposed known as of
time 0:

1 The NCP, yt , t = 0, . . . , T, where T is the finite life span of the firm.
2 The interest rates, rt , t = 0, . . . , T, where rt is the rate associated with lending

or borrowing operations between t and t+1. Unlimited lending and borrowing
is possible at these rates.

By assumption, these data are known from the start and do not change. In par-
ticular, we are exclusively interested in financial decisions that are assumed to

2 Strictly speaking, this assumption does not apply to corporations with limited liability, since stock-
holders cannot be forced to contribute to repaying the debt beyond their initial outlay. But there is no
uncertainty, everything is known in advance, so that the debt holders know from the start what they
will get in the end.
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leave unchanged the sequence of NCPs, ( yt). We note

1 dt the dividends received at t;
2 ft the total equity at t, computed as the sum at historical dollar values of the

shareholders’ contributions and retained earnings up to time t;
3 lt the total level of indebtedness at t. To focus our thoughts, let us assume that

all loans incurred by the firm are short term: If lt is the level of debt contracted
at time t, then the firm must repay the principal, lt , plus interest payments
at time t + 1. By arbitrage, interest payments are equal to rt lt since there is
no default risk. The firm can take out another short-term loan, lt+1, but not
beyond the final date: lT = 0.

In some cases, we shall distinguish between firms created at t = 0 and firms
already set up. If the firm starts at date 0, it does not inherit any equity or debt.
In this case, it is convenient to set f−1 = l−1 = 0. If it started before, it inherits
equity, f−1, and debt, l−1.

At each date, the NCPs are distributed to the financial backers, in keeping with
the accounting identity:

yt = [dt − ( ft − ft−1)] + [rt−1lt−1 − (lt − lt−1)]. (9.1)

Various measures of values, for the firm, the stocks, the debts, can easily be
computed. The reason is that, in a riskless setup without arbitrage opportunities,
the present value of any sure revenue flow is well defined (assuming the appropri-
ate market for lending and borrowing as here). Recall, as first shown in Chapter 1,
that the value at t = 0 of a revenue flow, at , t = 0, . . . , T, is equal to

T∑
t=0

q(t)at ,

where the discount factors q(t) are defined as

q(0) = 1 and q(t) = 1
1 + r0

× 1
1 + r1

× · · · × 1
1 + rt−1

, t ≥ 1.

The value of the firm and of the associated financial instruments are determined
according to this principle.



Anula Lydia: GABR: “chap09” — 2005/8/23 — 14:39 — page 233 — #7

Corporate finance and risk 233

2.2 Value of the Firm

The firm generates a revenue flow equal to yt , t = 0, . . . , T. This leads to defining
the value of the firm at time 0 as3:

V0 =
T∑

t=0

q(t)yt .

This value is the translation into our accounting framework of the discounted
profit used in microeconomic theory. The NCPs, yt , are the excess at time t of
sales over purchases and other production-related expenditures during period t,
measured in accounting units. The NCP at current prices are discounted by
multiplying by q(t).

How do financial backers appropriate this value? Let us multiply the accounting
identity (9.1) for time t by q(t) and sum from 0 to T. The term corresponding to
debt, lt , for t, 0 ≤ t < T, is equal to

[−q(t)+ q(t + 1)(1 + rt)]lt ,
which is null by definition of the discounting factors. Since lT = 0, the terms
associated with debt incurred as of time 0 cancel,4 which gives

V0 =
T∑

t=0

q(t)yt =
T∑

t=0

q(t)[dt − ( ft − ft−1)] + (1 + r−1)l−1. (9.2)

This equation describes the distribution of the value of the firm among the two
categories of financial backers – creditors and shareholders – and has important
consequences. Indeed, since shareholders run the firm, various questions arise.
In particular, can shareholders increase their wealth by requesting that the firm’s
financial officer adopt any particular debt management or dividend distribution
practice? The financial officer may, for example, change the borrowing plan lt into
l̄t , and consequently modify the distribution of dividends according to (9.1), which
becomes d̄t instead of dt . In this transformation, the purely financial operation
leaves the sequence of NCPs, yt , unchanged.

3 The value is computed at the beginning of the period before the realization of y0. For consistency,
the stock market valuation is defined before decisions pertaining to finances, the distribution of
dividends, and increasing capital, have been made. This is an accounting convention: one could just
as easily use the end of period.
4 If there is no final period, T = ∞, the same result holds provided the debt is growing more slowly
than the interest rate, that is, if limt→∞ q(t)lt = 0.
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To understand the impact of such decisions and interpret Eqn (9.2), observe that

dt − ( ft − ft−1)

corresponds to the net revenues received by the stockholders5 at time t. Thus, the
first term on the right-hand side of Eqn (9.2),

T∑
t=0

q(t)[dt − ( ft − ft−1)]

gives the discounted value of net revenues received by all stockholders, current
and future. The second term, (1 + r−1)l−1, is the initial value of the debt.6 Thus,
Eqn (9.2) yields a first expression of the famous Modigliani–Miller theorem:

the value appropriated by current and future stockholders is equal to the value
generated by the firm diminished by the value of the initial debt, independently of
the future financial policy.

This implies that the financial officer cannot increase the discounted sum of net
revenues paid out to the shareholders, which remains unchanged, independent of
his actions, equal to V0 − (1 + r−1)l−1.

For a firm that starts at time 0, past indebtedness is nil. In this case, l−1 = 0,
and one immediately gets

the value generated by the firm as of its creation is entirely appropriated by the
stockholders.

We have only considered short-term debts. The preceding analysis can easily
be extended to cover debts with a longer term and varied repayment profiles.
Basically, it suffices to observe that the aforementioned calculations demonstrate
that the value, at time 0, of the flows generated by a debt contracted at time 0 or
later is nil. To prove this point, consider a debt incurred at time 0 or later: It yields
lt at the time it is received and specifies the repayment schedule, including interest
and capital, aτ , τ = t + 1, . . . , T. These payments are all known with certainty.

5 It may seem contrived to simultaneously distribute dividends and raise capital from stockholders,
but such decisions, which happen in practice, affect differently new and “old" stockholders.
6 As we shall see, this terminology is particularly apt if the debt does not need to be fully repaid at
time 0.
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By arbitrage, the value of the loan at the time of issue equals the discounted values
of the payments to which it gives rise:

lt =
T∑

τ=t+1

1
1 + rt

× 1
1 + rt+1

× · · · × 1
1 + rτ−1

aτ =
T∑

τ=t+1

q(τ )
q(t)

aτ .

This implies that the total flows associated with the debt contracted as of time 0
have a discounted value of zero at time 0:

qtlt −
T∑

τ=t+1

qτ aτ = 0.

Instead, the value of the flows associated with debts predating 0 is not nil:
Their value is equal to the discounted value of the associated reimbursements.
A calculation analogous to that in Section 2.1, with the value of the debts replacing
(1 + r−1)l−1, can then be performed.

So far we have discussed the distribution of the value of the firm between
creditors and shareholders. More precisely, the previous analysis bears on the
value accruing to all shareholders over the life span of the firm. When the structure
of stock ownership remains stable, the value is of course received by the current
stockholders. In particular, if the founders of the firm remain in place, they receive
the value of the firm – each one’s share prorated to her initial contribution. In a
situation in which the ownership composition changes, such as when the stock is
listed on the exchange, the accounting identity (9.2) reveals nothing concerning
the distribution of this value amongst the various stockholders.

2.3 Stock Market Valuation

What happens if the firm is listed on the stock exchange, and the structure of the
stock ownership changes?

Consider initially a firm that is not public. The value at time 0 of the firm to
its shareholders is given by S0 = V0 − (1 + r−1)l−1. One question is whether
by listing the firm on the stock exchange and by possibly issuing some new
shares, the current shareholders who appropriate this value, can gain more or
can lose.

Let the firm be first listed at t = 0. Consider an announced sequence of
dividends and variations in capital resulting from equity issues for instance.
Provided that this sequence does not change the economic decisions and is
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feasible, meaning that (9.1) is satisfied at all dates, the arguments that lead to
the derivation of Eqn (9.2) still apply and give:

V0 − (1 + r−1)l−1 =
T∑

t=0

q(t)[dt − ( ft − ft−1)].

This means that by arbitrage, at t = 0, the value of the claims over the firm
by the shareholders of time 0, taken before the distribution of dividends at time 0
and incorporation of reserves and the possible emission of shares, is necessarily
equal to S0, independently of any future financial policy and variations in equity.
This result is again driven by the arbitrage principle. Any future equity issue will
be priced at its “fair" value, that is, the cash raised at the time of issue is equal
to the discounted values of the payments to which it is associated. Viewed from
date 0, the net value is nil. In other words,

at any given date, the value of the firm minus the value of its debt is independ-
ent of any future change in the ownership. It is the value accruing to the current
shareholders.

Let us now assume that the firm is quoted on the market at time 0. Since the
number of shares may vary, it is convenient to distinguish the price of a share,
denoted by p (or pt if necessary), from the stock market valuation, that is, the
total value of the stock, denoted by S.

The previous argument applies: by arbitrage, at t = 0, the market value of
the stock, before the distribution of dividends at time 0, retained earnings and
possible emission of shares, is necessarily equal to

S0 =
T∑

t=0

q(t)[dt − ( ft − ft−1)] = V0 − (1 + r−1)l−1.

That is, S0 is the stock market valuation.
To better understand stock market valuation, and how it is affected by possible

stock issues, let us examine an example. Initially, n shares are held by the public.
The price of a share, p, satisfies

np = S0.

Assume that the capital is increased at time 0: n̄ − n shares are issued to the
public (new stockholders are eligible alongside the incumbents) and the funds
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that are raised are equal to f̄0 − f0. Thus, we have

(n̄ − n)p̄ = f̄0 − f0,

where p̄ is the share price after the issue.
If the increase in capital is purely a financial operation that does not affect the

subsequent NCPs, yt , the accounting identity (9.1) at time 0,

f̄0 − f0 = d̄0 − d0 − (l̄0 − l0),

indicates that the injection of fresh capital can serve to reduce indebtedness, so
that the new l̄0 is below the old l0, or to boost the overall distribution of dividends,
which will rise from d0 to d̄0 or both.

At the following period, (1 + r0)l̄0 has to be reimbursed instead of (1 + r0)l0,
and assume to simplify that afterward the borrowing and dividend policy are
unchanged (l̄t = lt starting at date 1, and d̄t = dt from date 2 onward). Thus, the
distributed dividend at time 1 satisfies

0 = d̄1 − d1 + (1 + r0)(l̄0 − l0).

Let S̄0 be the market valuation of the shareholders’ claims on the firm after the
stock issue. The variation satisfies

S̄0 − S0 = (d̄0 − d0)+ 1
(1 + r)

(d̄1 − d1)

which, from the above identities, is equal to f̄0 − f0. Therefore, the market
valuation has increased exactly by the cash raised in the stock issue. The total
stock market valuation after the increase in capital S̄0 is equal to n̄p̄. Hence,

n̄p̄ = np + (n̄ − n)p̄,

which implies that the value of the share is unchanged: p̄ = p.
If the injection of fresh capital had been used to reduce indebtedness, the

total distributed dividends would not have changed (d̄0 = d0), the per share
dividend would have decreased with respect to the initial situation. Thus, initial
shareholders would have received less at that period. This loss, However, would
have been compensated later, by an increase of the dividend.

This confirms that, from the perspective of the firm’s stockholders, the oper-
ation is neutral. Clearly, this result can be generalized to any future operation
on capital and is, as always, based on arbitrage. At the time of the share issue,
new stockholders have a perfect knowledge of future dividends and infer the fair
market price from it.
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2.4 Limited Liability

The value of the firm, V0, is the discounted sum of future profits. The only
difference with the stock market valuation comes from inherited debt, which
must be honored in any event. This property provides the justification for the
traditional microeconomic approach that retains profit maximization as the sole
decision variable regardless of the structure of the stock ownership or the rela-
tionship between managers and owners. Let us now examine economic choices.
Maximizing profit is equivalent to maximizing the stock market valuation – there
is no conflict between the managerial perspective and the stockholder perspective.
If the firm is indebted and cannot repay these debts, problems arise owing to lim-
ited liability. Consider the case in which no fresh capital is injected by the firm
stockholders after time −1: ft = f−1 for all t. Under the principle of limited liabil-
ity, the stockholders cannot be compelled to disburse any money in excess of their
initial contributions. Dividends being positive or nil, Eqn (9.2) can only obtain if

V0 ≥ (1 + r−1)l−1.

In our framework, with no uncertainty and fully informed creditors, this
inequality must always be satisfied:

1 If V0 is negative, creditors will not lend. Suppose that the firm can shut down
costlessly: then the firm must stop its operations since it is no longer solvent.

2 If V0 is positive and V0 < (1 + r−1)l−1, creditors should have lent less. Even
if the firm pays no dividends to the stockholders, the revenues generated by
its activity are insufficient to allow it to repay the loans it has incurred. It is
bankrupt and the creditors will recuperate the value V0, at most.

Since V‘0 is the value of the discounted profit from microeconomic theory, the
economic operation of the firm appears to be conditional on a positive discounted
profit.

2.5 Comments on the Leverage Effect

The result that the financial structure is irrelevant to stockholders appears to
contradict what financial analysts call the leverage effect. This is only an outward
discrepancy: The leverage effect results from an ex post accounting illusion, and
not from an ex ante property.
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The argument underlying the leverage effect is as follows. First, the economic
profitability of physical investments and the financial profitability of stocks are
measured (see below for definitions of these two terms). Then, if the rate of
economic profitability exceeds the interest rate, financial profitability increases
with the level of indebtedness: Compensation to stockholders is supplemented by
the difference (economic profitability − interest rate) per additional unit of debt.

In practice, accounting information on future revenues is not available. Also,
financial analysis defines ratios on the current accounts – generating a sort of
snapshot. Some ratios pertain to economic activity; others to financial decisions.
To illustrate this, let us define two profitability ratios for a single period. The firm
makes an initial investment, k0, corresponding to negative NCPs financed by f0
and l0. This yields y1, which is entirely distributed7:

k0 = −y0 = f0 + l0 and y1 = d1 + l0(1 + r0).

Economic profitability equals the resources generated per unit of capital, that is,

ρeco = y1 − k0

k0
.

Financial profitability equals revenues paid out to stockholders per unit of equity
capital, after they have recovered their outlay, that is,

ρfi = d1 − f0
f0

.

The debt–equity ratio is given by α = l0/f0. According to (9.1), d1 = y1−
(1 + r0)(k0 − f0), or,

ρfi = ρeco + α(ρeco − r0).

This relationship, which translates the leverage effect into algebra, indicates
that, from the stockholders’ perspective, if one is focused on financial profitability,
then the optimal way to finance the firm would appear to be as follows: Finance
exclusively from borrowing if the economic profitability exceeds the interest rate.

However, the analysis in terms of ratios is deceptive: It does not capture the
initial value of the securities or the movements of funds associated with changes
in indebtedness and stock issues (see Exercise 9.2). At time 0, before any financing

7 The NCPs include earnings and variations in investments, so in this case, the resale of the initial,
possibly depreciated, investments is counted.
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decision, the value of the firm equals

V0 = y1

(1 + r0)
− k0.

This discounted amount is in the hands of the firm owners, regardless of how
they acquired their interest – which could, for example, be through their know-
how or the development of a new product, not necessarily by injecting financial
capital.

The realization of this value, which is only a potential, is conditional on the
financial management finding k0 in funding at time 0. If they have available funds,
do the stockholders have an interest in investing them in their firm, or would they
be better off putting them into some other activity?

Let us do the accounts for an investment of f0 financed by a stock issue, f0, and
a loan, l0, with k0 = f0 + l0. The stockholders’ net revenues are −f0 at time 0, and
d1 = y1 − (1 + r)l0 = y1 − (1 + r)k0 + (1 + r)f0 at time 1. The discounted value
of this flow equals V0 and is independent of f0: Stockholders are indifferent as to
how the activity is financed – they only care whether the value of the firm, V0,
is positive. The illusion associated with the calculation of financial profitability is
linked to the fact that, in the foregoing presentation, it has been forgotten that the
stockholders (or others having the right or ability to appropriate the firm earnings)
have the potential for profits before the financial decision is made. If financial
markets are perfect, the financing method is irrelevant. Indeed, stockholders may
actually borrow on their own account and then re-lend this money to the firm!
This is one form of the Modigliani–Miller theorem, as explained later.

All of the reasoning in this section occurred in an environment of certainty,
with no uncertainty on debt payments. Now we study whether the neutrality
properties extend to situations in which the firm earnings and the securities it
issues entail risk.

3 Financial Structure

To capture the uncertainty affecting the NCPs, it is convenient to use the tree
structure introduced in Chapter 2. Let us denote by y(et) the NCP at time t if
state et occurs. As in the case without uncertainty, revenue flows can be compared
using state prices, that exist provided there are no arbitrage opportunities. State
prices, however, must be used with care when markets are incomplete. Thus, as
usual, it is useful to distinguish the cases of complete and incomplete markets.
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3.1 Complete Markets

Assume that markets are complete. Then there exists a unique system of state
prices associated with an equilibrium. Let us denote by q(et) the price to be paid
today, at time 0, for one unit of money in state et . Every contingent income flow
y(et), t = 0, . . . , T, has a well-defined value equal to

∑
e∈E q(et)y(et) at time 0.

Now the equations from the case without uncertainty apply, simply replacing the
discount factors with the state prices.

Thus, the value of the firm at time τ , in state eτ , is defined as the value of its
future NCP discounted with state prices (computed at eτ ), or

V(eτ ) =
∑

et>eτ

q(et)

q(eτ )
y(et).

Using the following facts:

1 y(et) is the sum of net compensation to the financial backers,
2 the stock market valuation is the sum of the compensation to stockholders

discounted by the state prices in eτ ,
3 the value of all flows generated by debt incurred from time τ onward discounted

with the state prices in state eτ is nil,

we immediately obtain

if markets are complete, the value of the firm is defined as the value of its NCP
discounted by the state prices. It is equal to the sum of its stock market valuation
and the value of its current debt.

This statement is a simple version of the Modigliani–Miller theorem.
To enhance the understanding of these basic principles, they are first applied
to the case of an indebted firm that may default. Then a change in the capital
structure is examined.

The Case of an Indebted Firm

Consider at time 0, a firm that will stop its activities at time 1. Investments have
been made and financed. They will yield nonnegative revenues ( y(e)) at time 1.
The firm has incurred a debt whose face value is m. Thus, the firm repays m unless
it declares bankruptcy. If m is too high, then revenues may not suffice to ensure
reimbursement: y(e1) < m for some states at time 1. Under limited liability,
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stockholders are under no obligation to inject further capital to honor this debt.
Thus, revenues associated with this debt are equal to min[y(e), m]. They vary
with the state that will materialize: they are risky.8 The discounted value of the
repayments is equal at time 0 to:∑

e∈E
q(e)min[y(e), m].

This is known by the market, so that the value of the debt l0 must be equal to
this discounted value:

l0 =
∑
e∈E

q(e)min[y(e), m]. (9.3)

Now consider shares. The revenue of the stockholders equals the firm’s income
minus repayments to bond holders, provided this quantity is positive. Thus,
stockholders receive

max[y(e)− m, 0]. (9.4)

If this is correctly anticipated, the stock market valuation at time 0 equals∑
e

q(e)max[0, y(e)− m].

It is easy to check that the Modigliani–Miller theorem obtains. The relationship

y(e) = max[y(e)− m, 0] + min[y(e), m],
which holds in all states, implies∑

e

q(e)y(e) =
∑

e

q(e)max[y(e)− m, 0] +
∑

e

q(e)min[y(e), m].

The value of the firm is equal to the sum of its stock market valuation and of
the value of its debt.

Remark 9.1 In this very simple model with only one form of debt (a zero
coupon), Eqn (9.4) reveals that owning stock is analogous to buying a call option
on the firm final revenues, the strike price of which is equal to the reimbursement of
the debt. This remark underlies a number of models for valuing risky debt. Under
some assumptions on the evolution of the firm’s revenues, the stocks are valued

8 Instruments, known as credit derivatives, have been developed to make it possible to trade this
default risk.
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as an option on these revenues using options valuation techniques. The value of
the debt is then computed as the difference between the value of the firm and the
value of the stocks.

Remark 9.2 At time 0, formula (9.3) prices the whole debt that matures at time 1,
be it issued at time 0 or before. In realistic situations, a firm has many different
outstanding debts that were issued at different dates. Arguing as above, the value
of a given bond issued by the firm is affected by other outstanding debts (if any),
since the latter affect the possibility of bankruptcy. But it also depends on the
priority rules, which specify how the various bond holders are reimbursed in case
of bankruptcy.

Stock Issues and Debt Repurchase

According to the Modigliani–Miller theorem, the total value of the various secu-
rities issued by the firm is not affected by a change in financing policies. However,
the distribution of this value among the firm’s various financial backers generally is.
The following example aims to illustrate this last point, which has considerable
practical importance.

Consider a firm having incurred a debt before time 0, which, for simplicity,
consists of m units of zero-coupon bonds maturing at time 1 and paying out one
unit of money each. We compare two situations:

1 No new debt is issued at time 0. A unit of the bond is traded at the price q


q
 =
∑
e∈E

q(e)min
[

y(e)
m

, 1
]

,

so that the total debt value is mq
 and the price of the n shares in circulation is

np =
∑
e∈E1

q(e){y(e)− min[y(e), m]}.

2 New capital is raised at time 0: n̄ − n shares are issued to the public (new
stockholders are eligible alongside the incumbents) for an amount f̄0 − f0.
Thus, we have

(n̄ − n)p̄ = f̄0 − f0,

where p̄ is the new share price. The increase in capital is a purely financial
operation serving to reduce the debt load, that is, to buy back zero coupons – it
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does not affect the NCPs at time 1. Assume that the firm buys back m − m̄ zero
coupons. Since dividends are unaffected, the accounting equality at time 0 is

(n̄ − n)p̄ = (m − m̄)q̄
, (9.5)

where q̄
 is the new bond price satisfying

q̄
 =
∑
e∈E

q(e)min
[

y(e)
m̄

, 1
]

.

If, in the reference situation, the firm does not fully reimburse its debt in all
states of nature (i.e., m > y(e) for at least one state), then buying back part of the
debt increases the value of the bonds, q̄
 > q
, since fewer bond creditors will
remain to share the residual assets in the event of bankruptcy. As the value of the
firm remains unchanged, we have

n̄p̄ + m̄q̄
 = np + mq
.

Using (9.5), we find that p > p̄, so that the stock price decreases.
Thus, financing practices are the key to how the firm’s assets are divided among

the financial backers. If there is a risk of bankruptcy, an increase in capital for
purposes of buying back the debt essentially raids the incumbent stockholders to
benefit bond holders. Similarly, stock buyback operations financed by debt issues
benefit stockholders. It should be noted that laws are not always very precise
in terms of what financial policies a firm may adopt, and vary widely between
countries. Stock buyback operations, for instance, are widely practiced in the
United States but closely controlled in some European countries. As a result, the
degree of protection of bond holders (or also minority stockholders) vary as well
across countries. The preceding example illustrates a principle that extends to
numerous other situations (see Exercise 9.2).

3.2 Incomplete Markets

The case of complete markets is quite particular, and it is unrealistic to assume that
contingent markets exist for every random event that a firm is likely to encounter.
What happens when markets are incomplete?

First, in the absence of arbitrage opportunities, there is always a system of
state prices with which one can value the contingent flow of revenues. However,
one must be careful: This valuation is only meaningful if the revenues at stake can
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be replicated by a portfolio of market securities (the spanning condition studied
in Part 2). Otherwise, the fact that the state prices are indeterminate translates
into indeterminate valuations.

The value of a security is the market’s estimate of the flow of dividends to
which it provides a claim. This is a general principle. In particular, if a bond is
risky, its market value will account for that risk. Consider a firm whose shares
and bonds are listed on the exchange. For all securities we observe a market
price that represents the firm’s payments – in the form of dividends, interest, or
reimbursements – to its financial backers. Let us compare the market value of
all shares, bonds, and other debts for two firms having made the same economic
decisions but with differing financial structures.

Theorem 9.1 Modigliani–Miller theorem Let there be two firms that are listed
on the stock exchange. Assume that their NCPs are identical for all states of nature and
that their debts are tradable on financial markets. Then, the sum of the values of the shares
and debts issued by the former equals the sum of the values of the shares and debts issued
by the latter, regardless of their respective financial structures.

Proof of Theorem 9.1 Let ( y(et)) be the two firms’ NCP. Owing to the absence of
arbitrage opportunities, there exists at least one vector of state prices, (q(et)), such
that the price of any asset at time 0 equals the value of its contingent revenues
discounted by these state prices. For all states, the revenues distributed by firm 1 to
its financial backers is y(et), which is also the sum of revenues paid out by firm 2.
Furthermore, by assumption, these revenues can be replicated with securities
exchanged on the market. This directly gives that the values of both firms are
equal to

∑
et

q(et)y(et).

Theorem 9.1 applies in particular to the case in which a firm is very indebted
and the revenue it pays to its bond creditors is risky. However, if bond creditors
demand liquidation of the firm, whenever this liquidation bears a cost, then the firm
no longer generates the same revenues since it is burdened by the cost of the
bankruptcy: The theorem no longer applies.

What is the difference with complete markets? Assume that firm 2 changes
its financial structure and issues a security that cannot be replicated by existing
assets. A priori, the state prices and market valuations are modified to reflect the
new opportunities for exchange (the value of the firm, which is the sum of the
asset values, is different). However, the Modigliani–Miller theorem tells us that
we continue to have equality between the (modified) value of firm 1 and the
sum (similarly modified) of the values of the securities issued by 2. If markets
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were complete, these values would remain unchanged. Indeed, the stock market
valuation is invariant with the financial structure of 2 when the issued securities
are generated by existing assets (this is again the spanning condition).

3.3 Some Limitations

Many analysts are skeptical of the Modigliani–Miller theorem and maintain that a
firm value is affected by its debt–equity ratio.9 More precisely, the value might be
a function of the debt–equity ratio: Increasing first and then falling (a bell-shaped
curve) – implying the existence of an optimal debt–equity ratio.

Taxation may explain divergences from the idealized framework of the the-
orem. Interest charges diminish the firm’s taxable profit. Thus, it is preferable
for stockholders to lend to the firm and receive interest payments rather than to
contribute their own funds and receive taxable dividends. There are many other
distortions in the tax system that undermine the Modigliani–Miller theorem and
can come into play in financial decision making. Thus, capital gains on securities
values are taxed less than dividends. This can induce firms to buy back their own
stocks on the market so as to drive up the price rather than pay out dividends,
regardless of the damage to bond holders we previously observed.
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Exercises

9.1 Bankruptcy and financial structure We use the simplest possible situation to illus-
trate that default on debt repayment has no impact on a firm’s value provided it is correctly
anticipated and there is no cost to bankruptcy. For this, consider in a model with two dates
a firm with revenue y at time 1 and a debt with face value denoted by d.

1 Assume that the firm revenue is sure. If r is the interest rate, compute the value of the
debt (l0) and the stocks ( p0) at time 0. Verify that, even if d > y, the value of the firm
equals the sum of its stock market valuation and the value of its debt, that is,

y
1 + r

= p0 + l0.

2 Assume that markets are complete and generalize to the case with uncertainty.
3 Now we no longer assume complete markets. Let there be two firms, a and b, with

identical revenues. Firm a is debt-free, while firm b is indebted to the point of being
unable to consistently make its debt payments at face value. There is no penalty when
it fails to make these payments in full. Verify that the stock market valuation of a equals
the sum of the stock market valuation and the value of the debt of b.

9.2 Financing the firm and the interests of existing financial backers The purpose of this
exercise is to demonstrate with a simple example that the financing practice of the
firm managers, which has no impact on the overall value of the firm according to the
Modigliani–Miller theorem, provides an advantage to one or the other of the categories of
incumbent financial backers.

Consider an economy with two states of nature, e = b or e = h, and complete markets.
Today’s state prices are 4

5 and 1
5 , respectively. There is a firm whose economic activity

yields $1M if e = b and $2M if e = h. It is financed by 1,000 bonds with a face value of
$1,100, and there are 1,000 shares held by the public.

1 Compute the interest rate in this economy. At what price will the firm’s bonds and shares
trade?
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2 The financial officer decides to issue an additional 1,000 bonds at the same face value
of $1,100. How much fresh capital is injected into the firm? What are the prices of the
bonds and shares after this operation? What do the original financial backers think of
this initiative?

3 Revert to the original situation: Now answer the same question in the event of a share
issue.
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Investment decisions are frequently compromises between diverse parties within
a firm. The management team, stockholders, and long-term lending institutions
may all pursue differing goals, a priori. These differences can be traced to a number
of factors: This chapter analyzes the role of incomplete markets, asymmetric
information, and limited liability.

Section 1 first examines the circumstances under which the goals of all stock-
holders are aligned. This is the case if markets are complete. There is no conflict
between the various stockholders, who all agree to maximize the stock market
valuation which, by definition, is the sum of future dividends discounted with
the state prices. However, the lenders to the firm, whose objective is to maximize
the value of the debt that they hold, may disagree with stockholders’ decisions.
Owing to limited liability, new investments by a firm that is in debt and in danger of
bankruptcy may increase the probability of default, thereby reducing the value of
the standing debt. If markets are incomplete, a further problem arises: There is no
longer unanimity among the stockholders (except under a “spanning” condition).

In order to go further, we limit our exposition to single-proprietorships with
well-defined goals. The objective is to deal with the financing methods of a small
firm and the problems of information that are inextricably linked to them, as well
as their interaction with the investment.

A major decision for an entrepreneur is whether to let its firm go public. Being
listed on the stock exchange implies complying with strict rules on the dissemina-
tion of information. It increases the risk that managers will lose control of the firm
with the arrival of outside stockholders. Also, it is likely that the entrepreneur is in
possession of information on the firm’s prospects prior to the potential buyers of
its shares: An IPO may be marred by inside information and the associated adverse
selection cost. Section 3 examines the trade-offs faced by an entrepreneur, draw-
ing on the CARA-normal model from Chapter 7. We underscore the damaging
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impact the insider information has on trades and risk sharing. In order to mitigate
these difficulties, stock exchanges have implemented rules governing both the
publication of accounts and participation in the markets by corporate insiders
(insider trading). We explain why, from a long-term perspective, entrepreneurs
who are better informed than the public may well benefit from these types of
limitations.

For whatever reason, linked to a loss of control or to information, many firms
(especially the smallest) do not seek financing on the stock exchange, but rather
opt for bank credit. Section 3 concludes with a look at the market for bank credit.
Particular attention is paid to the role of limited liability in distorting the incentives
of an entrepreneur.

1 The Choice Criteria for Investments

According to the classical microeconomic theory of perfect competition, max-
imizing profit is the appropriate goal of the firm (the resulting equilibrium is
Pareto optimal). Under uncertainty, however, the definition of profit is not self-
evident. A simple one-period model in which uncertainty is represented by an
exogenous set of states of nature is useful to illustrate the problems that arise.
Not surprisingly, it is useful to distinguish between complete and incomplete
markets.

1.1 Complete Markets

When markets are complete, the system of state prices associated with equilib-
rium is unique and allows any contingent revenue flow to be valued. In particular,
the value of the firm and the stock market valuation can be unambiguously
defined. Since shareholders decide on investment, the main question is how they
choose it. Do they agree on the decisions to be made, and if the answer is positive,
do they maximize the firm’s value?

To address these questions, we consider the following simplified framework.
There are two dates. At date 0, a firm is facing new investment opportunities
on which it has to decide. At date 1, the firm stops its activities, and distributes
all the returns to investments, past or present. These returns are affected by
the state of nature that materializes. If the firm is not a start up, it inherits at
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date 0 for date 1 some debt obligations as well as revenues attributable to past
investments.1 The initial situation of the firm is characterized by

1 the expected revenue at t = 1, y1(e) if state e materializes, attributable to past
investments;

2 the noncontingent payment, m, that the firm is committed to make at time
t = 1 from previous debt contracts;

3 the investment opportunities that the firm is facing at date 0; they are repre-
sented by the revenues they generate: y(k, e) at date 1 if state e materializes
when k was invested at time t = 0.

Recall that, building on Chapter 9, thanks to complete markets, the value of the
firm is well defined for any level of k: It is the sum of the revenues from real
activities in each state discounted by the state prices2 (q(e)). If k is the level of
investment, the value of the firm is

V0(k) =
∑

e

q(e)[ y1(e)+ y(k, e)] − k.

This value is independent of the way the firm finances its investment: Maxi-
mizing the value of the firm is a well-defined criteria. Since y1 comes from the
past and cannot be changed, the criteria reduces to

∑
e q(e)[ y(k, e)] − k, which is

the standard profit of classical microeconomic theory.
Why is this criteria interesting? Recall that the value is entirely distributed to

the financial backers of the firms. As a result, maximizing the value of the firm
amounts to maximize the overall revenues to those who have a claim on the firm’s
activities, be it shareholders or bondholders. Thus,

from the perspective of all financial backers, an optimal investment is the one that
maximizes the value of the firm.

Note that the bondholders are those who are entitled to the claim of m. We shall
refer to this debt as the “senior” debt, so as to distinguish it from the new debt
that may be issued.

1 There may be payments and revenues during period 0, related to past or current activities: We place
ourselves after all these transfers have been carried out.
2 This implicitly assumes that the firm is small so that the activities of the firm, that is, here the
chosen level k, do not affect the state prices. This assumption makes sense only if the states are
macroeconomic states. We shall come back to this point.
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The Stockholders’ Perspective

The shareholders have to decide on the investment level and its financing.
Formally:

1 At date 0, they choose k, and how it is financed from equity, f , and new “junior”
debt, l, under the budget constraint k = f + l. Assuming that the debt is issued
at par, let us denote by r� the interest rate applying to this debt. This means that
the lenders are entitled to a claim of (1 + r�)l at date 1. This rate is determined
later on.

2 At date 1 owing to limited liability, the dividend distributed in state e to
shareholders is equal to

d(e) = max[ y(k, e)− (1 + r�)l − m, 0]. (10.1)

Thus, once k, f , and l have been decided, the overall value accruing to the
shareholders is ∑

e

q(e)d(e)− f ,

where d(e) is given by (10.1) and f + l = k.
Note that

∑
e q(e)d(e) is the stock market valuation once investments have

been made. Therefore,

from the perspective of the stockholders, an optimal decision – investment and
financing – is one that maximizes the stock market valuation net of contributions.

It is important to note that stockholders are unanimous in maximizing this
criteria. To see this, consider a particular stockholder owning z shares and whose
nonfinancial incomes areω0 andω1(e). If markets are complete, we know that the
budget constraints he is facing at times 0 and 1 combine into a single intertemporal
budget constraint. More precisely, by trading on the market, he can generate any
consumption profile that satisfies the intertemporal budget constraint:

c0 +
∑

e

q(e)c1(e) = ω0 − zf +
∑

e

q(e)[ω1(e)+ zd(e)]. (10.2)

Thus, the decision of the firm only affects the stockholder through the inter-
temporal budget constraint, that is, through the stock market valuation net of
contributions,

∑
e q(e)d(e)− f .

It follows immediately that all stockholders, regardless of their wealth or atti-
tude vis-à-vis risk, are always in agreement. They deem an investment profitable



Anula Lydia: GABR: “chap10” — 2005/8/23 — 14:39 — page 253 — #5

Financing investments and limited liability 253

(unprofitable) if it generates a positive (negative) variation in contingent revenues,
as evaluated using state prices – stockholders all agree to maximize the stock market
valuation net of contributions.

Clearly, this result holds because, owing to the completeness of markets, stock-
holders are able to transform their financial income (dividends) in any contingent
income stream of their choice.

The Stockholders’ Choice

When an investment opportunity arises, one may wonder whether the stock-
holders’ decision is influenced by the financial structure inherited from the past –
the preexisting level of debt in this case. By assumption, earlier debt repayment
commitments have all been honored and only the future schedule needs to be
considered. Is the investment choice influenced by the inherited debt? First,
as a benchmark, consider a debt-free firm, to simplify, a start-up.

Start-Up

For a start-up, the previous model simplifies by taking past decisions, m and
(y1(e)) to be nil. The value of the firm if k is chosen is

V0(k) =
∑

e

q(e)y(k, e)− k.

Since there is no senior debt, we know that the founders of the firm have
title to this value whatever the financing policy. In other words, the stock market
valuation net of contributions associated to a level k is equal to V0(k), independent
of its financing. Thus, shareholders will choose the investment that maximizes
the value of the firm. To better understand the difference with the case of an
indebted firm, let us repeat the argument that shows the independence of the
financial policy.

Let k be financed by f and l. If r� is the nominal interest rate on the debt,
creditors are entitled to min[ y(k, e), (1 + r�)l] if state e materializes. Thus, by
arbitrage, the nominal interest rate must be set so as to satisfy

l =
∑

e

q(e)min[ y(k, e), (1 + r�)l].
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Note that this incorporates the possibility of default. Recall that
∑

e q(e)×
(1 + r) = 1, where r is the risk-free market rate. Thus, r� is equal to the risk-free
market rate only if the debt is not risky, and is otherwise higher. As for the
dividend, it is given in state e by

d(e) = y(k, e)− min[ y(k, e), (1 + r�)l].

It follows that the value accruing to the founders is

∑
e

q(e)d(e) =
∑

e

q(e)y(k, e)− l.

The equality k = f + l and the definition of V0 give

∑
e

q(e)d(e)− f = V0(k),

the desired result.
Therefore, the investment choice is unaffected by the financial structure of the

firm. Note that the argument relies on the valuation of the debt by arbitrage.
In particular, it is essential that the creditors perfectly foresee the possibility of
default. Otherwise, the stockholders could exploit this ignorance and benefit from
issuing a large debt. In practice, the notation given by rating agencies to the debt
issues of large firms helps the market to assess the risk of default. Also, creditors
like banks use various “rating” techniques to evaluate the risk.

The analysis extends to a horizon of several periods, provided everything is
planned ex ante for any contingency: The financial operations are neutral from
the point of view of the shareholders because the value of the firm accrues entirely
to them.

Indebted Firm

Does this result hold for an existing firm inheriting a debt, which is due at time 1,
when it faces a new investment opportunity? Recall that the value of the firm,
when it intends to invest k, is

V0(k) =
∑

e

q(e)[ y1(e)+ y(k, e)] − k.
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To simplify, consider the case where all the investment is either self-financed,
or financed by the shareholders (no new debt is issued).3 Then the value of the
existing debt is equal to ∑

e

q(e)min[ y1(e)+ y(k, e), m].

Therefore, the stock market value is equal to

V0(k)−
∑

e

q(e)min[ y1(e)+ y(k, e), m].

As a consequence,

if the firm is indebted, the investment that maximizes the value of the firm is not
necessarily the same as the one that maximizes the stock market value.

If the initial debt is risky, and the new investment allows reimbursements to
increase, the value of the existing debt increases. For example, assume that for
some states y1(e) < m and y(k, e) is positive. In this case, and unlike in the
case of a start-up, the value of the investment is not entirely appropriated by the
stockholders. Some of it accrues to the bondholders.

In the other direction, the stockholders can appropriate more than the value
created by the new investment. If, for example, the initial debt is risk-free while
the risky project creates a danger of bankruptcy, the value of the debt is likely
to fall. The argument extends to a horizon of several periods. More precisely, the
investment choice is affected by the inherited debt that is due when the revenues
associated with the new investment (if it is undertaken) become available.

Con icts of Interest between Bondholders and Stockholders

The previous analysis has direct implications for the choice of investment.
Let us simplify the preceding example even further and assume that the

opportunity for investment is characterized by a fixed value, k, and a risk-free

3 To analyze the impact of an issue of new debt, one needs to specify the priority rules of old and new
debts in case of default. When all types of debts are equally treated (there is no priority), issuing new
debt typically dilutes the value of the old one and benefits the shareholders, all other, things equal
(see Exercise 9.2). In any case, the stock market value and the shareholders’ preferred investment are
related to the financial policy of the firm.
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revenue, y(k). The stockholders choose to invest if∑
e

q(e)max[ y(e)+ y(k)− m] − k ≥
∑

e

q(e)max[ y(e)− m, 0].

When there is no risk of default, this amounts to investing whenever[∑
e

q(e)
]

y(k)− k ≥ 0,

that is, if the project is profitable. In the presence of risky debt, this project could
be detrimental to stockholders. There is a conflict of interest between stock-
holders and bondholders. This conflict of interest may account for the focus
bondholders, frequently banks, place on the debt–equity ratio (an emphasis that
the Modigliani–Miller theorem fails to explain), and possibly make it desirable for
them to exercise some control. In the absence of a guard rail, the interests of bond
creditors may be harmed and the market for loans dry up.

This allows us to stress one of the limits of the Modigliani–Miller theorem.
It shows that the financial structure does not impact on the value of the firm,
provided that all investment decisions are fixed, today and in the future. But the financial
structure may have a differential impact on the various financial backers who,
as a result, may disagree on the decisions to make. For instance, the stockholders
of two firms that are identical in terms of their productive activities, but differ in
their indebtedness, will not have the same interests.

Indeed, risky debt may impede a stock issue designed to finance a profitable
investment. This is called the debt overhang effect. This problem, identified by
Myers (1977), can be laid at the feet of limited liability, which relates to the legal
structure of the firm. It may cause socially desirable investments to be abandoned.
We shall see below that it also gives rise to other types of dysfunction.

1.2 Incomplete Markets

The situation changes when markets are incomplete. Let us begin with the study
of an individual entrepreneur, indexed with i. Her preferences determine the
marginal utility of risky income received in the various states of nature, and
consequently the marginal willingness to pay today for a unit of money in state
et , qi(et). We must not only label this marginal willingness with the letter q, like
a price, but must also index it with i since, in the absence of complete markets,
it is likely to vary from one agent to the next. It is now trivial to ascertain that,
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if the entrepreneur wishes to hire a manager to run her firm, it is optimal for her to
instruct the manager to maximize the quantity

∑
et

qi(et)d(et)−f . Two firms with
the same technical characteristics, but whose sole owners have different attitudes
toward risk or different resources, will generally opt for different production
programs.4

And what if we are dealing with a firm with several shareholders? For a firm
listed on the stock exchange, as seen earlier, once the decisions have been made
and their results correctly valued by the market, all stockholders agree on the
market valuation. They also all agree on the value of physical or financial decisions
that modify the flow of dividends from the status quo in any direction spanned by
existing securities. However, they tend to disagree on changes to future revenues
that cannot be replicated on the market. To see this more clearly, let A be the
vector subspace of IRE of revenues that can be generated with a portfolio of
existing securities and A⊥ its complement. Markets are incomplete if A⊥ is not
reduced to the null vector.

The vector of contingent revenues of the firm can be decomposed on these
two subspaces:

y(k, e) = yproj(k, e)+ y⊥(k, e).

First, consider an unlisted firm whose stocks are not tradable. If it chooses an
investment level k, yproj(k, e) can be evaluated by replication. If all investment
payoffs are spanned by the existing securities, that is, if y⊥(k, e) is nil whatever k,
the same analysis as in complete markets holds. In particular, stockholders all
agree on which investment level to choose. The next section provides an example
in which this spanning condition holds. The market tells us nothing regarding the
value of y⊥(k, e). In the absence of agreement on this value among the owners,
the choice of investment becomes a possible source of conflict.

If the firm is listed, the situation is better, though not fundamentally different.
The stock issued by the firm yields y(k∗, e)−(1+ r)k∗ for an observed investment
level k∗ (assuming it does not default). In this case, y⊥(k∗, e) equals zero and
the market provides a value for the firm. However, it provides no information
on how to evaluate alternative investments whose returns are not spanned by
existing securities: If y⊥(k, e) differs from zero for investment k, stockholders may
disagree on whether changing k∗ to k is worthwhile.

4 This can occur for the same reason in a risk-free environment when there is not market for borrowing
and lending, as seen in the introduction to Part 3.
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Thus, there is no unambiguous goal for the firm manager when the
stockholders are not unanimous on the new direction.5 These hurdles to defining
the goals of the firm when markets are incomplete, which are both theoretical
and practical, are vital to decisions on physical investments.

1.3 Multiplicative Risk

As just seen, even when markets are incomplete, an investment choice criterion
can be defined on which all stockholders agree under the spanning condition.
Consider the following situation. The risk of a firm is said to be multiplicative if
there is a vector (pg(e)) for which

y(k, e) = pg(e)g(k) ∀k, ∀e.

Thus, choosing the investment level determines the scale at which revenue (pg(e))
is obtained. This occurs, for instance, if the firm output, g(k), is unaffected by
uncertainty and risk only impacts the future selling price of the good, pg(e) in
state e.6 Assume that there is a risk-free asset.

In the absence of default, dividends take the form:

d̃ = g(k)p̃ − (1 + r�)l,

which is a linear combination of the vector p̃ = [p(e)]e=1,...,E and of the constant
vector. Consequently, the space of contingent revenues generated by the securities
issued by the firm is fixed independent of its (non-nil) level of investment: The
spanning condition holds. Let p0,g be the market value at time t = 0 of the
random revenue7 p̃g . The value of the firm is now given by

V(k) = p0,gg(k)− k.

5 When there are i = 1, . . . , I stockholders whose marginal propensity to pay is qi , and each of whose
share in the firm is zi , it has been suggested in the theoretical literature that the manager maximizes
profit using a state price equal to

∑I
i=1 ziqi . However, this notion has no practical relevance.

6 This also applies when there is no uncertainty on prices, but production levels retain the same
proportion in the different states of nature regardless of the investment. The choice of the firm is the
scale of production.
7

p0,g = E{v′i[ci(e)]pg(e)}
u′i[ci(0)] ∀i.

This is the price that consumers are prepared to pay at the margin for the income p̃g .
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If the firm takes this price as given and maximizes its own value, one has

p0,gg′(k) = 1,

at equilibrium. 1/g′(k) is interpreted as the marginal quantity of good k that
must be forfeited at t = 0 to increase the scale of production. If there is no debt
overhang, then maximizing the value of the firm suits the stockholders.

2 Investments, Equity Financing, and
Insider Information

Section 1 has underscored the importance of the assumption of complete markets.
This raises the question of whether this assumption is plausible, especially in
the context of investments. Uncertainty over revenues has many sources: Some
are macroeconomic, for example, dealing with the prices of supplies or exchange
rates, while others are microeconomic and may involve sector-specific issues
or the behavior of agents within the firm: Managers, workers, and the like.
While the assumption of complete markets may be acceptable when the only
uncertainty bears on a macroeconomic shock, it makes no sense when applied
to idiosyncratic risks. The individual, idiosyncratic, component of risk inherently
plays a very large role in small firms. Not only are these risks not spanned by
the market, but the financial backers also may lack information to evaluate them.
The remainder of this chapter provides an overview of the problems that arise and
emphasize the asymmetry of the information between the entrepreneur and her
financial backers. The entrepreneur is better informed than the financiers on the
risk associated with her firm, but has every interest in painting a rosy picture and
thus it lacks credibility. This predicament arises in the case of both stock market
funding, the subject of this section, and on the credit market, which is examined
in Section 3.

We use the CARA-normal framework that is quite restrictive but allows equi-
libria to be explicitly solved when information is asymmetric. More specifically,
an individual entrepreneur, who is better informed than the public, weighs the
benefits and disadvantages of going public, as in the model developed in Section 4
of Chapter 7. However, while the size of the firm was treated as given in that case,
here we are interested in the impact of the financial decision on the realized level
of physical investment.
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The entrepreneur is the sole proprietor of the firm and is contemplating offering
it for sale on the stock exchange. The revenues that the firm will generate from
an initial investment of k equal p̃gg(k), where p̃g is normally distributed. The
entrepreneur maximizes the utility of her future wealth, given a risk aversion
coefficient of ρ:

−E[exp(−ρW̃)].
The market for loans is assumed to function well. To simplify, the risk-free

rate is zero. We avoid the problems associated with limited liability by supposing
that the entrepreneur always honors the incurred debt repayment obligations. Each of
the three institutional contexts of Section 4 of Chapter 7 is examined in turn and
we compare the level of investment and the entrepreneur’s welfare in each case.

1 In the absence of a stock exchange,8 the entrepreneur assumes all the risks
associated with her activity. The income she receives from her investment is

W̃ = p̃gg(k)− k.

Maximizing expected utility is equivalent to maximizing

g(k)E(p̃g)− ρ

2
g(k)2var(p̃g)− k,

yielding the first-order condition:

g′(k)[E(p̃g)− ρg(k)var(p̃g)] = 1.

When the production function g is increasing and concave, any solution to
the first-order condition is a local maximum (one only needs to check that the
second derivative is negative). This condition can also be written as

E(p̃g)− ρg(k)var(p̃g) = 1
g′(k)

,

indicating that the marginal cost is set equal to the expected price minus a risk
premium. The concavity of g also implies that, ceteris paribus, the higher the
variance of the price, the lower the level of investment: Risk leads the entrepreneur
to invest less.

2 The firm is listed on a stock exchange. Furthermore, the entrepreneur has no
insider information. To keep the math tractable, assume that the market is risk

8 This is of course an extreme assumption. The argument goes through provided p̃g is uncorrelated
with the dividends of the tradable securities.



Anula Lydia: GABR: “chap10” — 2005/8/23 — 14:39 — page 261 — #13

Financing investments and limited liability 261

neutral. The market provides full insurance to the entrepreneur. In the absence
of information, the price of the firm is

p = E(p̃g)g(k)− k.

Since the entrepreneur can hedge her risks without cost, it is optimal for her
to sell the firm in toto9 and to choose the level of production so as to maximize
E(p̃)g(k)− k.

The level of investment is thus given by the first-order condition:

g′(k)E(p̃g) = 1.

Marginal cost is equated to the mathematical expectation of the sales price.
The allocation of risk that the stock exchange makes possible allows for a
higher level of investment. It is easy to show that the entrepreneur’s level of
utility increases relative to the previous situation. However, this is a partial
equilibrium result, which is only valid if the firm is small relative to the overall
market. If not, the increase in production could change the product sales price
and, by the law of supply and demand, reduce p̃g . It is thus possible that the
benefit could be reduced, and even change sign (see Exercise 10.2).

3 As in case 2, the firm is listed on the stock exchange but the entrepreneur
possesses information on the firm profitability in advance of the market, as is
more realistic. The physical investment decision is made before knowledge of
this information. Information is modeled by an advance signal s̃ on the realiza-
tion of the product sales price. If the stock is tradable on a competitive stock
exchange, the fact that the entrepreneur may trade on the basis of this advanced
information affects the exchanges and the resulting prices.

To study this more precisely, it is convenient to assume, as in Chapter 7, that
some traders, “noise traders,” intervene on the stock market. Their demand is
equal to ñ. Let (p̃g , s̃, ñ) be normally distributed. At the rational expectations
equilibrium, the entrepreneur’s information is only partially revealed by prices:
The price of the firm sold on the stock exchange10 is a function of γ , a “noisy”
version of the entrepreneur’s expectations E[p̃g |s]. More precisely, the stock value
p̃ derived from a physical investment decision k is given by

p̃ = E[p̃gg(k)− k|γ ], γ̃ = E(p̃g |s)− ρ var(p̃g |s)ñ, (10.3)

9 Indeed, if she opts to sell a share z different from 1 of her income, (1 − z)[p̃g g(k)− k] + zp, it has
the same expectation as p but is more risky.
10 See Chapter 7 and its appendix, taking ã = p̃g g(k)− k.
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and the entrepreneur’s ex ante expected profit is

U = −
√

var(p̃g |s̃)
var(p̃g |γ̃ )

× exp
(

−
{
ρ[g(k)Ep̃g − k] − ρ2g(k)2

2
var[E(p̃g |γ̃ )]

})
. (10.4)

The same terms as in Section 4.3 in Chapter 7 reflect the impact of information
on the entrepreneur’s profit: A speculative, beneficial effect of information (the
term under the square root), and a harmful one represented by the last factor,
reflecting the reduced ability of the market to provide insurance when information
is asymmetric. This is through this latter term that new investment is affected
by insider information. The optimal level of investment satisfies the first-order
condition:

g′(k){E(p̃g)− ρg(k)var[E(p̃g |γ̃ )]} = 1.

For purposes of our comparison with the previous cases, it is useful to
decompose the variance of prices:

var(p̃g) = var[E(p̃g |γ̃ )] + var(p̃g |γ̃ ).
Compared with the case in which there is no stock exchange, investment is

greater, as is the entrepreneur’s utility. However, it is lower than when there
is a stock exchange and no insider information. There is a risk premium equal
to ρg(k)var[E(p̃g |γ̃ )] that captures the detrimental impact of information on
insurance: Only the part of the security payoff that is uncorrelated with informa-
tion transmitted to the market can be insured, and var(p̃g |γ̃ ) is assumed by the
entrepreneur.

This negative impact on investment of trades based on inside information
underlies the regulation of insider trading. It motivates an institutional structure
that reduces to the greatest possible extent the entrepreneur’s ability to use her
insider information on the market. If the entrepreneur is forbidden to trade, the
market provides full insurance and investment is maximized (as in case 2).

But this is only part of the story: Here information is the villain, since its only
role is to give an advantage to one of the market participants. This is because
physical investment is decided before the signal is available. These results may be
reversed if the information is known before the decision on physical investments is
made. Then one may invest a great deal when prices are high and little when pros-
pects are less advantageous. Formally, let U(k, p̃g ; s̃) be the entrepreneur’s interim
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expected utility before opening of the stock exchange when she has invested k
in the firm. The insider information she has received is given by the random
variable s̃ and her (personal) price expectation is the random variable p̃g . As we
saw in Chapter 7, if physical investment can be decided after the signal is known,
two effects come into play: The entrepreneur bears a risk related to fluctuations
in the stock exchange, but can eventually increase output to benefit from higher
prices, at least if production is sufficiently flexible.

3 The Market for Credit

The stock exchange is only accessible to firms that are large enough to assume the
costs of the demanding procedures governing the dissemination of information
on their prospects and investment projects. In the case of a small firm, or a firm
engaged in an activity that requires confidentiality (research, easily copied innova-
tions, etc.), financing can consist of bank credit. The bank may access to the firm
secrets for which it is bound to maintain confidentiality.

Sharing information, even when this is possible, only addresses part of the
problem: The market is fundamentally incomplete and contingent contracts on
all states of nature cannot be defined. Then, the risk of bankruptcy is liable to
undermine the functioning of the market for credit. The presentation below
builds on the model of Stiglitz and Weiss (1981).

Consider a small firm that wishes to undertake an investment that requires
external financing. The entrepreneur is better informed than potential lenders on
the quality of the project. Insider information and incentives (moral hazard) can
coexist with credit rationing at equilibrium.

3.1 The Market without Dysfunction

For purposes of comparison, as a benchmark, let us start by examining a credit
market without dysfunction, in which distortions due to limited liability and
information-related problems are absent.

In the sequel, the focus is on the demand side of the market, the demand for
loans. Therefore, supply is described as simply as possible. Banks collect deposits
that they lend to investors. The cost to banks of collecting a level of deposits s is
C(s), where the function C is strictly increasing and strictly convex. This function
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is assumed to be exogenously given: The compensation to deposits is fixed and
independent of the conditions of bank credit. This is a simplifying assumption
(which roughly holds when regulation forbids deposits to be remunerated).

To simplify further, assume that a single type of contract can be signed between
the parties: This contract specifies that, for a nominal market interest rate of r�,
a credit of one dollar obligates the borrower to repay the lender (1 + r�) dollars
at time 1. The question is to determine the level of the rate r� and the amount of
the loan.

When there is no default, the bank supply of risk-free loans at the rate r�
maximizes its profit:

r�s − C(s).

Since C is strictly convex, the supply s(r�) is unique and characterized by the
first-order condition r�l = C′[s(r�)] (we are abstracting from corner solutions).
It follows that supply, s, is increasing with the rate. The associated profit, π b(r�),
is the maximum profit that the bank can earn at rate r� when it lends s(r�). It is
worth noting that this profit, π b, is increasing11 in r�. We denote by S the banks’
aggregate supply.

For now, we simply assume that the entrepreneur’s demand for loans is given
by a function K(r�). The shape of this demand will be examined in the following
section.12

In a competitive framework, a rate rE is an equilibrium if the total supply
of credit at that rate equals the demand: S(rE) = K(rE). This is the traditional
definition when all agents, especially banks, treat prices as given.

To justify this definition, let us examine the case of a bank that seeks to deviate
from equilibrium by proposing an interest rate r� that differs from rE. If it charges
a rate that is higher than rE, another bank will take its place and it will lose all of
its clients (here the assumption of perfect competition – that is, with many agents
that are small relative to the market – comes into play: This would not be the case
with a monopoly). The only feasible deviation is to lower the rate. Here, this is
not a profitable strategy for the bank, since profit is an increasing function of the rate.
Below, we shall encounter conditions under which profit is not increasing with

11 When C is strictly convex, the optimum, s(r�), is unique and differentiable with respect to r�.
Since πb(r�) = r�s(r�)−C[s(r�)], differentiating with respect to r� and using the first-order condition
yields πb′(r�) = s(r�), which is strictly positive.
12 Under the usual assumptions, this demand is decreasing in rate, but this is immaterial to our
reasoning.
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rates, and in which we need to call on another description of the functioning of
the market than that given by competitive equilibrium.

3.2 Default Risk

So far we have assumed that there is no default on repayment. This may be
plausible when the debt load is sufficiently small relative to the firm revenues,
but it is unrealistic for a start-up. Even in the case of an unincorporated sole-
proprietorship, in which the entrepreneur’s liability is unlimited in principle, the
bank is unable to recover more than the owner’s personal possessions. It is useful
to examine the market when loans allotted by the banks are risky owing to
bankruptcy. We first examine the demand for loans, then the supply, and finally
equilibrium.

The entrepreneur chooses a level of investment, k, that generates a stochastic
revenue, y(k, e) if state e materializes. Inaction is possible: y(0, e) = 0. The
number of states is finite. Marginal productivity is assumed to be decreasing: The
function y is strictly concave in k. We study the demand for loans and the default
risk when the entire investment is borrowed. The entrepreneur is assumed risk
neutral.

Under unlimited liability, she maximizes:

P(k, r�) = E[ y(k, e)− (1 + r�)k].

Under limited liability, if revenues are insufficient to repay the debt, default
occurs and the lender only recovers y(k, e). The entrepreneur then chooses an
investment that maximizes:

P�(k, r�) = E{max[ y(k, e)− (1 + r�)k, 0]}.

Also it is convenient to assume that y is continuous and differentiable with
respect to k.

Proposition 10.1 Let K(r�) and K�(r�) be the demand for loans of companies with
unlimited and limited liability, respectively. Under the usual assumption of decreasing
marginal productivity, K is decreasing and K�(r�) ≥ K(r�) for all r�. In other words,
ceteris paribus, limited liability increases the demand for funds relative to unlimited
liability.
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Consequently, entrepreneurs are more prepared to invest if they only bear a
limited liability. This result, which is quite intuitive, is attributable to the fact that
they are “off the hook” when the firm becomes insolvent.

Proof of Proposition 10.1 The aforementioned assumptions imply that y(k, e)/k is
decreasing and always above marginal revenue:

y(k, e)
k

> y′
k(k, e) ∀k > 0, e. (10.5)

Note that owing to the decline in average revenue, the set of states in which there
is bankruptcy can only become larger as the level of investment increases.

We show that optimal investments satisfy the first-order condition (which,
owing to discontinuities, is no trivial result under limited liability). The result
then follows from comparing marginal profits with and without limited liability.

First-order conditions In the case of unlimited liability, the expected profit is
concave, and the derivative

P′
k(k, r�) = E[ y′

k(k, e)− (1 + r�)],
is strictly decreasing in k. Investment demand, K(r�), is characterized by the
equality P′

k = 0.
In the case of limited liability, max[ y(k, e) − (1 + r�)k, 0] is not necessarily

concave. The expected profit has a derivative equal to

P′
�,k(k, r�) = E{[(y′

k(k, e)− (1 + r�)]11{e|y(k,e)−(1+r�)k>0}},

at all points k such that y(k, e)− (1 + r�)k differs from zero in all states.
Elsewhere, at an investment level for which revenue just covers the debt pay-

ment in some state, profit is not differentiable. We prove that the derivative
features upward discontinuities, so that such an investment level is surely not
optimal. To see this, consider an investment value, say k∗, for which profit is just
equal to zero in a state e∗: y(k∗, e) = (1 + r�)k∗. When k increases above k∗, the
set of states in which there is bankruptcy becomes larger, including e∗. Further-
more, thanks to (10.5), marginal productivity y′

k(k
∗, e∗) is below 1 + r�: This state

no longer contributes to the entrepreneur’s revenue. The difference between the
right and the left derivatives is thus positive, equal to – [ y′

k(k
∗, e∗) − (1 + r�)]

multiplied by the probabilityπ(e∗).13 Thus, the demand for loans, K�(r�), satisfies

13 When there is a continuum of states, say e is real-valued with an absolutely continuous density
with respect to the Lebesgue measure, and the derivative of y(k, e) with respect to e is always strictly
positive, the reasoning is simpler. The profit is in fact everywhere continuously differentiable.
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the condition:

P′
�,k(k, r�) = 0.

Comparison of marginal profits From the perspective of the entrepreneur, the
marginal profit of an investment equals the mathematical expectation of the
difference between its marginal revenue and the interest rate, computed either
over all states (when there is unlimited liability) or over those states in which the
firm does not go bankrupt (when there is limited liability). This means that the
marginal profit is greater under limited liability:

P′
k(k, r�) ≤ P′

�,k(k, r�),

with strict inequality in the case of positive probability of bankruptcy. Indeed,
in a state e where there is default, y(k, e) − (1 + r�)k ≤ 0, implying y′

k(k, e) <
(1 + r�) because of (10.5). In other words, in a state in which there is bankruptcy,
marginal revenue is surely below the interest rate. It is, thus, sufficient to compare
the expression for marginal profits to derive the desire inequality: P′

k(k, r�) ≤
P′
�,k(k, r�).

Comparison of investments Applying the preceding inequality to k = K�(r�),

P′
k[K�(r�), r�] ≤ P′

�,k[K�(r�), r�] = 0.

Thus, K�(r�) ≥ K(r�) because P′
k is decreasing.

The fact that investment demand K decreases with r� is a direct consequence
of the fact that P′

k is decreasing in r�.

Consequently, a first effect of limited liability is to increase the demand for loans.
If we assume that banks and entrepreneurs have access to the same information
on the future yields of investments, a second effect is a reduced supply: Banks
anticipate the default risk and consequently cut supply. More precisely, a bank
expects the payoff:

E[min(y(k, e), k(1 + r�)].
Thus, from the perspective of the lending bank, the yield of a loan granted at the
nominal rate r� is ρ(r�), given by

ρ(r�) = E
[

min
[

y(k, e)
k

− 1, r�

]]
. (10.6)
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It is below r� when default exists. Furthermore, when the rate varies, the quality
of repayment can also vary owing to the reaction of entrepreneurs. In this context,
it is legitimate to assume that banks account for the reaction of borrowers: This
leads us to define the banks’ supply when they anticipate that the mean expected
profitability of loans at r� equals ρ(r�). Furthermore, if banks are risk neutral,
they only care about the expectation of the yield, the reduced form ρ. A bank’s
supply at rate r�, s�(r�), depends on expected profitability. It maximizes

maxs ρ(r�)s − C(s).

As before, capital letters indicate aggregate values.

Proposition 10.2 Let S(r�) and S�(r�) be the banks’ supply of loans to unlimited and
limited liability companies, respectively. We have

S�(r�) ≤ S(r�).

While the maximum supply, S, and profit, π b, are increasing with r�, supply S� and
profit π b

� are not necessarily increasing: Their derivative with respect to r� has the same
sign as the derivative of ρ with respect to r�.

The proof is straightforward. We have already seen these properties in the case
of unlimited liability – where banks bear no default risk. The case of limited lia-
bility follows directly, since S�(r�) is given by S[ρ(r�)] and the maximum expected
profit, π b

� , is π b[ρ(r�)]. Since S and π b are increasing functions, supply and profit
vary with r� in the same direction as ρ. Moreover, we have S�(r�) ≤ S(r�), since
ρ(r�) ≤ r�.

3.3 Equilibrium

The previous analysis leads us to define an equilibrium when banks form correct
expectations about the default risk: They anticipate that the expected profitability
of loans at r� equals ρ(r�).

When expected profitability ρ(r�) is increasing with r�, the expected profit
π b
� is also increasing in r� according to Proposition 10.2. Thus, the competi-

tive equilibrium as defined above in the case with no bankruptcy is meaningful.
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The equilibrium rate is that at which demand, K�, and supply, S�, are equal.14

Comparing this equilibrium with those under unlimited liability, the higher
demand and lower supply both drive up the equilibrium rate. This is in keeping
with current observations: Rates paid by start-ups are higher than those granted
to well-established firms that feature little risk and have a reputation to maintain.

We shall see below that expected profitability may be a decreasing function of
the interest rate – at least locally. In this event, one needs to specify what notion of
equilibrium to retain. The reduced form, ρ, is useful for this purpose. To simplify
the presentation,15 assume that the function ρ is first increasing for r� ≤ r∗

� ,
and decreasing afterward (by construction, ρ(r�) ≤ r�). Also, assume that the
rate r∗

� , which maximizes the expected profitability of loans, is below the rate rc
�

that establishes equilibrium between supply and demand. The argument below
suggests that the equilibrium is established at r∗

� and corresponds to a rationing
of credit: Demand is not fully met. The argument is the following one.

A bank’s supply, s�(r�), is increasing up to r∗
� and then decreasing, and profit

maximization corresponds to the maximum expected profit, at r∗
� . Assume that

the rate offered by the other banks is rc
�. If rc

� > r∗
� , the bank can lower its rate and

lend an amount equal to its supply (the demand that will materialize will certainly
exceed supply), and thus increase profits. The rate rc

� is not a stable equilibrium.
This argument is valid as long as the proposed rate exceeds r∗

� . Conversely, any
rate below r∗

� is not an equilibrium since profits are locally increasing, as in the
standard case. Thus, the equilibrium is established at r∗

� , where the supply of
credit, S�(r∗

� ), is below K�(r∗
� ): Borrowers are rationed.

Example 10.1 Consider the case of an isoelastic production function with uncer-
tainty on the sales price: y(k, e) = p(e)

√
k. Assume that the price p(e) can take

two values, p1 > p2, with probability π and (1 − π). Default occurs in state 2 if
p2 < (1 + r�)

√
k. In the absence of bankruptcy, investment is equal to

K(r�) =
[

E(p)
2(1 + r�)

]2

,

14 Since demand is not necessarily continuous, one may wonder whether such an equilibrium exists.
In fact, since discontinuities are upward, its existence is ensured provided the demand for funds is
below supply for sufficiently high rates. However, there may be several equilibria.
15 The same logic can be applied when the function is piecewise increasing with downward discon-
tinuities, provided that supply intersects demand after the point of discontinuity at a value of ρ below
the previous maximum.
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which gives an ex ante profit for the firm equal to

P(r�) = 1
4

[ [E(p)]2

1 + r�

]
.

At this level of investment, there will not be any bankruptcy provided p2 ≥
E(p)/2. Under this condition, the preceding calculations are valid.

On the other hand, if the entrepreneur expects to go bankrupt when the price is
p2, the level of the investment, computed so as to maximize earnings in state 1, is

K1(r�) =
[

p1

2(1 + r�)

]2

,

which, under the assumption that revenue in state 2 is nil, yields a profit (in
mathematical expectation) of

P1(r�) = π

4

[
p2

1

1 + r�

]
.

There will indeed be a bankruptcy in state 2 if p2 ≤ p1/2.
Assume p1/2 ≥ p2 ≥ E(p/2). Investments K and K1 both satisfy the first-order

condition and correspond to local profit maximization. To determine the optimal
investment, it suffices to compare the values of the associated profits, respectively,
[E(p)]2 and πp2

1. We here encounter the intuitive result that, if the probability
of state 1 is sufficiently high, it is optimal to choose the high level of investment
K�(r�) = K1(r�) and go bankrupt if the price turns out to be low.

In this example, the entrepreneur chooses whether to go bankrupt regardless
of the rate r�. Thus, ρ(r�) is never decreasing: It is equal either to r� (if [E(p)]2 is
larger than πp2

1), or to

π r� + (1 − π)

[
p2√

K1(r�)
− 1

]
,

with K1(r�) decreasing. Therefore, the equilibrium entails no rationing. This
property extends to the case of any Cobb–Douglas production function with mul-
tiplicative risk. An examination of the expression for ρ given by (10.6) reveals that
it must usually be increasing in r� under our hypotheses. This might induce the
reader to wonder whether an equilibrium with rationing is not simply a theoretical
curiosity. However, by broadening the framework somewhat, we shall provide
examples of rationing.
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Example 10.2 This example is identical to Example 10.1, except that production
is subject to a fixed cost, F . If the fixed cost is not too high relative to the interest
rate, the demand for funds continues to be given by K(r�) and profit is simply
P(r�)−F . If this expression is negative, the firm produces no output – the demand
for funds reduces to zero.

Similarly, in the event of bankruptcy when the price is p2, the level of investment
is K1(r�) if P1(r�) − πF ≥ 0 and nil otherwise. Everything is as if the fixed cost
was partly paid by the bank, with probability (1 − π). The fixed cost reinforces
the incentive to declare bankruptcy. Indeed, the entrepreneur chooses to declare
bankruptcy when P1(r�) − πF > P(r�) − F , which is more likely to occur if
F is large. With the specification retained above, this inequality is equivalent to
4(1 + r�)(1 − π)F > [E(p)]2 − πp2

1, which always holds for r� sufficiently large
(for a null fixed cost, we fall back on the previous condition in which default is
occurs only if 0 > E(p)]2 − πp2

1, regardless of r�).
Consider, for example, the values F = 0.1, p1 = 2, p2 = 1, and π = 1

2 .
According to the previous calculations, the optimal choice for the entrepreneur

is K(r�) for r� < 0.25 and K1(r�) for r� ≥ 0.25.
Therefore, the investment, which would be equal to K(r�) (a decreasing func-

tion of the interest rate) in the absence of limited liability, increases with the risk
of bankruptcy. Even though the firm is solvent in both states of nature, if it invests
K(r�) and the rate is 25 percent, it decides to set up a bigger stock of capital,
K1(r�), putting it into bankruptcy in state 2: The loss is partly borne by the bank,
while the profits, which are greater in state 1, are appropriated exclusively by the
firm. The yield to the loan, from the point of view of the bank, is ρ(r�) = r� for
r� < 0.25 and, for r� ≥ 0.25,

ρ(r�) = 1
2

r� + 1
2

[
p2

√
K1(r�)− F
K1(r�)

− 1
]

,

that is,

ρ(r�) = 0.9r� − 0.05 − 0.05r2
� .

When the interest rate crosses the value of r∗
� = 0.25, there is an upward dis-

continuity in the demand for loans and a downward discontinuity in the expected
yield to banks.

If banks correctly anticipate entrepreneurs’ reactions, it is in their interest to
propose a rate that is just below r∗

� to curb the number of defaults. Note that if
the level of investment was observed by the bank, it could condition its supply of
loans on the value of the investment: Rationing would not occur.
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Example 10.3 The entrepreneur has a choice between two investments, a or b.
Both cost K and they, respectively, yield RaK and RbK if successful and 0 if not.
The probabilities of success are pa and pb. Assume

Ra > Rb, pa < pb,

so that project a is more risky than project b. The entrepreneur is risk neutral
and must borrow the funds K . The realization of the project, R, is observable and
liability is limited: Repayment is given by min[RK , (1 + r�)K].

Let us determine the entrepreneur’s choice when the nominal interest rate
is r�. If she chooses project �, her expected profit is

[R� − (1 + r�)]Kp�, if R� ≥ (1 + r�),

and 0 otherwise. We easily see that she will choose

• the least risky project, b, if

r� < r∗ = pbRb − paRa

pb − pa
− 1;

• project a if r∗ < r� < r = Ra − 1;
• neither project if r� > r = Ra − 1.

For the intermediate value, r∗, the entrepreneur is indifferent between the two
projects. The expected compensation per unit borrowed at r�, if project i is chosen
is, r�pi. It follows that

ρ(r�) =
{

r�pb, if r� < r∗,
r�pa, if r∗ < r� < r.

The function ρ(r�) has a maximum at r∗, followed by a downward discontinuity.
When the rate varies, the quality of the repayment also varies endogenously.

The same type of phenomenon may occur if there are a priori differences
between entrepreneurs, with some projects more risky than others. A high interest
rate may dissuade some entrepreneurs from borrowing, even if their projects
are as (or more) profitable but less risky, while limited liability may encourage
others with more risky projects to borrow. Offering a lower rate will attract a
higher quality of entrepreneur. With the same notation as above, assume that
entrepreneurs choose an a-type project in proportion α and a b-type project in
proportion (1 − α). Each entrepreneur knows the characteristics of her project
that are unobservable to the banks.



Anula Lydia: GABR: “chap10” — 2005/8/23 — 14:39 — page 273 — #25

Financing investments and limited liability 273

It is easy to verify that, if r� < Rb, all entrepreneurs demand financing, while
only those with type a projects do if Rb < r� < Ra. Thus, we have

ρ(r�) =
{

r�[αpa + (1 − α)pb], if r� < Rb,
r�pa, if Rb < r� < Ra,

and, since pa < pb, the expected yield has a maximum at Rb, followed by a
downward discontinuity.

Private information that is too important generates dysfunctions, or even
causes potentially profitable exchanges to be abandoned. We again encounter
a phenomenon that we analyzed while looking at trading on a stock exchange.
This justifies and explains the establishment of mechanisms and institutions that
make exchanges possible, costly though they be.16 Rating agencies, like Standard
and Poor’s and Moody’s, provide information on the market for bonds issued by
firms, which may be risky because of the danger of default. Their ratings seek
to reflect the health of firms and to account for the seniority of each loan type.
Such services are only of use to the largest issuers, owing to their cost. There is
no comparable service for small firms that may lead to credit rationing.

BIBLIOGRAPHICAL NOTE

This chapter deals with a variety of subjects that are still under development,
making anything more than a summary quite impossible.

The relationships between different types of financial backers are developed in
the theory of corporate governance. The difficulties associated with defining stock-
holders’ goals when markets are incomplete and with potential conflicts between
incumbent and new stockholders are probably best described by Drèze. (Other
than the article quoted in Chapter 9, you might also consult the 1987 collec-
tion of articles.) Myers (1977) and Myers and Majluf (1984) examined conflicts
between financial backers, first under symmetric information (as in Section 2)
and then under asymmetric information. These key articles explain why debt,
and more generally the financial structure, may influence investment decisions.
Ekern and Wilson (1974) showed that if the technologies of a firm satisfy the
spanning condition, shareholders are unanimous about the value of investment.
The multiplicative risk condition was introduced by Diamond (1967) in an article
on the role of the stock market.

16 Akerlof ’s (1970) article was the first to formalize this problem, drawing on the market for used
cars.
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Hirshleifer (1917) was the first to demonstrate the damaging effect on risky
exchanges of the premature release of information. Though the argument is rela-
tively simple when the information is public, it is less straightforward when it is
private. Then it must be determined how this information affects trades. Rational
expectations equilibrium is a way to do so. Akerlof (1970) was the first to formally
examine a market in the presence of asymmetric information (e.g., the market
for used cars) and, in particular, to demonstrate that such asymmetries may make
trades impossible. Many models have been developed since then, such as the
one by Stiglitz and Weiss (1981) for the credit market. They particularly focus
on identifying mechanisms and institutions that allow the distortions caused by
asymmetries to be reduced.

Akerlof, G. (1970). “The market for lemons: qualitative uncertainty and the market
mechanism,” Quarterly Journal of Economics, 84, 488–500.

Diamond, P.A. (1967). “The role of a stock market in a general equilibrium model with
technological uncertainty,” American Economic Review, 57, 759–776.

Drèze, J. (1987). Essays on economic decisions under uncertainty, Cambridge University Press,
Cambridge, USA.

Ekern, S. and R. Wilson (1974). “On the theory of the firm in an economy with incomplete
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Hirshleifer, J. (1971). “The private and social value of information and the reward to
inventive activity,” American Economic Review, 61, 561–574.
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firms have information that investors do not have,” Journal of Financial Economics, 13,
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Exercises

10.1 Financial structure and managers’ incentives Deviations from perfect com-
petition are a way around the Modigliani–Miller theorem to make the financial
structure of a firm have an impact on its value. We here consider information-
related problems that arise when some participants have insider information. The
model has two periods and the market is risk neutral.

1 Two types of firms exist on the stock market, a and b. They are indistinguishable
a priori, but their sure revenues at time 1 are, respectively, given by ya and yb,
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where ya > yb. The proportion of type a (respectively b) firms is π (respectively
1 − π ). Investors cannot identify the firm type. We denote the value of the
securities (debt plus stocks) issued by these firms Va and Vb.
(a) Firms are indistinguishable if they adopt the same financial structure (same

financing ratio). What is the value of their assets (debt plus stocks) in this
case?

(b) Assume that firms a and b adopt different financial structures, and that this
is known to investors. What is the value of assets issued by a and b? We now
assume that the compensation to firms’ managers is an increasing function
of the firm value. Show that the managers of firm b have an interest in
modifying its structure. Show that then Va = Vb.

2 Now assume that the firms are administered by managers who know the type
of their firm, but do not have the right to intervene on the market. If m is
the face value of the firm’s debt, the manager is compensated according to the
following schedule:

f (m) =
{
(1 + r)γ0V + γ1y, if y > m,

(1 + r)γ0V + γ1(y − c), if y < m,
(10.7)

where V is the value at time 0 of securities issued, γ0 and γ1 are parameters
that do not depend on the firm, and c is a strictly positive number.
(a) Interpret the compensation schedule.
(b) Let ma and mb be the face values of the debts of a and b. If da �= db, what

are the values of Va and Vb? Under what conditions do no managers have
an incentive to modify the structures of their firms? Comment.

10.2 Forward markets and investment What is the impact of a forward market
on producers’ decisions and profits? This exercise uses the example of I farmers
facing risk on the sales price of their harvest. The aim of the exercise is to com-
pute their outputs and profits in the absence (part I), and presence (part II),
of forward markets, and then compare the two situations. Market participants
(farmers and speculators) are assumed sufficiently numerous to ensure competi-
tive behavior. They can borrow or lend on the credit market at an interest rate
of zero.

I Without a forward market

1 Consider a typical farmer deciding how much to produce, y, at time 0. The
output will be available and sold at time 1 at a stochastic price expressed in
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dollars, p̃. Compute the farmer’s supply knowing that
(a) his utility is represented by a mean–variance function of wealth c̃ at time 1

(ρ ≥ 0):

U(c̃) = E(c̃)− ρ

2
var(c̃);

(b) the cost of producing y, paid at time 1, equals y2;
(c) the farmer’s expectation on the mean and variance of p̃ are pe and ve,

respectively. We denote the supply by y(pe, ve).
2 The price at time 1 is determined by the equation:

p̃ = D − βY + η̃, (10.8)

where Y is total supply, D is a positive parameter, and η̃ is a random variable
with expectation zero and variance v.
(a) Price p is said to be an equilibrium if

p = D − βIy(p, v).

Comment on this definition.
(b) Compute the equilibrium price. Derive the farmers’ equilibrium produc-

tions and utilities.
(c) Examine the variations in the farmers’ utility levels at equilibrium as a

function of v. Comment on this result.

II With a forward market
A forward market is opened at time 0. In addition to the farmers, J “speculators”
participate. The price on the forward market is denoted q.

1 The typical speculator’s initial wealth, ws, is risk-free and her utility is
represented by a mean–variance criterion:

U(c̃) = E(c̃)− ρs

2
var(c̃).

Compute her demand, z, on the forward market as a function of q and the
expected mean and variance of the price, (pe, ve).

2 The farmer simultaneously chooses his output and his position on the forward
market. Choose as variables the level of output y and the part of the output that
is not covered x (y − x thus is the amount sold on the forward market). Show
that his production decision only depends on q. Compute x as a function of q
and the expected mean and variance of the price (pe, ve).
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3 We continue to assume that the price p̃ is given by (10.8).
(a) In your opinion, when does a pair (q, p) represent equilibrium prices?
(b) From now on assume that there are enough speculators for b/J to be neg-

ligible. Compute the equilibrium prices, outputs, and the farmers’ utility
levels.

(c) Under what conditions is the introduction of the forward market beneficial
to farmers? Explain your results.
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