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Preface

True to its title, this book itself is an excellent financial investment. For the price
of one volume it teaches two Nobel Prize winning theories, with plenty more
included for good measure. How many undergraduate mathematics textbooks
can boast such a claim?

Building on mathematical models of bond and stock prices, these two theo-
ries lead in different directions: Black–Scholes arbitrage pricing of options and
other derivative securities on the one hand, and Markowitz portfolio optimisa-
tion and the Capital Asset Pricing Model on the other hand. Models based on
the principle of no arbitrage can also be developed to study interest rates and
their term structure. These are three major areas of mathematical finance, all
having an enormous impact on the way modern financial markets operate. This
textbook presents them at a level aimed at second or third year undergraduate
students, not only of mathematics but also, for example, business management,
finance or economics.

The contents can be covered in a one-year course of about 100 class hours.
Smaller courses on selected topics can readily be designed by choosing the
appropriate chapters. The text is interspersed with a multitude of worked ex-
amples and exercises, complete with solutions, providing ample material for
tutorials as well as making the book ideal for self-study.

Prerequisites include elementary calculus, probability and some linear alge-
bra. In calculus we assume experience with derivatives and partial derivatives,
finding maxima or minima of differentiable functions of one or more variables,
Lagrange multipliers, the Taylor formula and integrals. Topics in probability
include random variables and probability distributions, in particular the bi-
nomial and normal distributions, expectation, variance and covariance, condi-
tional probability and independence. Familiarity with the Central Limit The-
orem would be a bonus. In linear algebra the reader should be able to solve

v



vi Mathematics for Finance

systems of linear equations, add, multiply, transpose and invert matrices, and
compute determinants. In particular, as a reference in probability theory we
recommend our book: M. Capiński and T. Zastawniak, Probability Through
Problems, Springer-Verlag, New York, 2001.

In many numerical examples and exercises it may be helpful to use a com-
puter with a spreadsheet application, though this is not absolutely essential.
Microsoft Excel files with solutions to selected examples and exercises are avail-
able on our web page at the addresses below.

We are indebted to Nigel Cutland for prompting us to steer clear of an
inaccuracy frequently encountered in other texts, of which more will be said in
Remark 4.1. It is also a great pleasure to thank our students and colleagues for
their feedback on preliminary versions of various chapters.

Readers of this book are cordially invited to visit the web page below to
check for the latest downloads and corrections, or to contact the authors. Your
comments will be greatly appreciated.

Marek Capiński and Tomasz Zastawniak
January 2003

www.springer.co.uk/M4F
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1
Introduction: A Simple Market Model

1.1 Basic Notions and Assumptions

Suppose that two assets are traded: one risk-free and one risky security. The
former can be thought of as a bank deposit or a bond issued by a government,
a financial institution, or a company. The risky security will typically be some
stock. It may also be a foreign currency, gold, a commodity or virtually any
asset whose future price is unknown today.

Throughout the introduction we restrict the time scale to two instants only:
today, t = 0, and some future time, say one year from now, t = 1. More refined
and realistic situations will be studied in later chapters.

The position in risky securities can be specified as the number of shares
of stock held by an investor. The price of one share at time t will be denoted
by S(t). The current stock price S(0) is known to all investors, but the future
price S(1) remains uncertain: it may go up as well as down. The difference
S(1) − S(0) as a fraction of the initial value represents the so-called rate of
return, or briefly return:

KS =
S(1) − S(0)

S(0)
,

which is also uncertain. The dynamics of stock prices will be discussed in Chap-
ter 3.

The risk-free position can be described as the amount held in a bank ac-
count. As an alternative to keeping money in a bank, investors may choose to
invest in bonds. The price of one bond at time t will be denoted by A(t). The

1



2 Mathematics for Finance

current bond price A(0) is known to all investors, just like the current stock
price. However, in contrast to stock, the price A(1) the bond will fetch at time 1
is also known with certainty. For example, A(1) may be a payment guaranteed
by the institution issuing bonds, in which case the bond is said to mature at
time 1 with face value A(1). The return on bonds is defined in a similar way
as that on stock,

KA =
A(1) − A(0)

A(0)
.

Chapters 2, 10 and 11 give a detailed exposition of risk-free assets.
Our task is to build a mathematical model of a market of financial securi-

ties. A crucial first stage is concerned with the properties of the mathematical
objects involved. This is done below by specifying a number of assumptions,
the purpose of which is to find a compromise between the complexity of the
real world and the limitations and simplifications of a mathematical model,
imposed in order to make it tractable. The assumptions reflect our current
position on this compromise and will be modified in the future.

Assumption 1.1 (Randomness)

The future stock price S(1) is a random variable with at least two different
values. The future price A(1) of the risk-free security is a known number.

Assumption 1.2 (Positivity of Prices)

All stock and bond prices are strictly positive,

A(t) > 0 and S(t) > 0 for t = 0, 1.

The total wealth of an investor holding x stock shares and y bonds at a
time instant t = 0, 1 is

V (t) = xS(t) + yA(t).

The pair (x, y) is called a portfolio, V (t) being the value of this portfolio or, in
other words, the wealth of the investor at time t.

The jumps of asset prices between times 0 and 1 give rise to a change of
the portfolio value:

V (1) − V (0) = x(S(1) − S(0)) + y(A(1) − A(0)).

This difference (which may be positive, zero, or negative) as a fraction of the
initial value represents the return on the portfolio,

KV =
V (1) − V (0)

V (0)
.
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The returns on bonds or stock are particular cases of the return on a portfolio
(with x = 0 or y = 0, respectively). Note that because S(1) is a random
variable, so is V (1) as well as the corresponding returns KS and KV . The
return KA on a risk-free investment is deterministic.

Example 1.1

Let A(0) = 100 and A(1) = 110 dollars. Then the return on an investment in
bonds will be

KA = 0.10,

that is, 10%. Also, let S(0) = 50 dollars and suppose that the random variable
S(1) can take two values,

S(1) =
{

52 with probability p,
48 with probability 1 − p,

for a certain 0 < p < 1. The return on stock will then be

KS =
{

0.04 if stock goes up,
−0.04 if stock goes down,

that is, 4% or −4%.

Example 1.2

Given the bond and stock prices in Example 1.1, the value at time 0 of a
portfolio with x = 20 stock shares and y = 10 bonds is

V (0) = 2, 000

dollars. The time 1 value of this portfolio will be

V (1) =
{

2, 140 if stock goes up,
2, 060 if stock goes down,

so the return on the portfolio will be

KV =
{

0.07 if stock goes up,
0.03 if stock goes down,

that is, 7% or 3%.
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Exercise 1.1

Let A(0) = 90, A(1) = 100, S(0) = 25 dollars and let

S(1) =
{

30 with probability p,
20 with probability 1 − p,

where 0 < p < 1. For a portfolio with x = 10 shares and y = 15 bonds
calculate V (0), V (1) and KV .

Exercise 1.2

Given the same bond and stock prices as in Exercise 1.1, find a portfolio
whose value at time 1 is

V (1) =
{

1, 160 if stock goes up,
1, 040 if stock goes down.

What is the value of this portfolio at time 0?

It is mathematically convenient and not too far from reality to allow arbi-
trary real numbers, including negative ones and fractions, to represent the risky
and risk-free positions x and y in a portfolio. This is reflected in the following
assumption, which imposes no restrictions as far as the trading positions are
concerned.

Assumption 1.3 (Divisibility, Liquidity and Short Selling)

An investor may hold any number x and y of stock shares and bonds, whether
integer or fractional, negative, positive or zero. In general,

x, y ∈ R.

The fact that one can hold a fraction of a share or bond is referred to
as divisibility . Almost perfect divisibility is achieved in real world dealings
whenever the volume of transactions is large as compared to the unit prices.

The fact that no bounds are imposed on x or y is related to another market
attribute known as liquidity . It means that any asset can be bought or sold on
demand at the market price in arbitrary quantities. This is clearly a mathe-
matical idealisation because in practice there exist restrictions on the volume
of trading.

If the number of securities of a particular kind held in a portfolio is pos-
itive, we say that the investor has a long position. Otherwise, we say that a
short position is taken or that the asset is shorted. A short position in risk-free
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securities may involve issuing and selling bonds, but in practice the same fi-
nancial effect is more easily achieved by borrowing cash, the interest rate being
determined by the bond prices. Repaying the loan with interest is referred to
as closing the short position. A short position in stock can be realised by short
selling . This means that the investor borrows the stock, sells it, and uses the
proceeds to make some other investment. The owner of the stock keeps all the
rights to it. In particular, she is entitled to receive any dividends due and may
wish to sell the stock at any time. Because of this, the investor must always
have sufficient resources to fulfil the resulting obligations and, in particular, to
close the short position in risky assets, that is, to repurchase the stock and
return it to the owner. Similarly, the investor must always be able to close a
short position in risk-free securities, by repaying the cash loan with interest. In
view of this, we impose the following restriction.

Assumption 1.4 (Solvency)

The wealth of an investor must be non-negative at all times,

V (t) ≥ 0 for t = 0, 1.

A portfolio satisfying this condition is called admissible.
In the real world the number of possible different prices is finite because

they are quoted to within a specified number of decimal places and because
there is only a certain final amount of money in the whole world, supplying an
upper bound for all prices.

Assumption 1.5 (Discrete Unit Prices)

The future price S(1) of a share of stock is a random variable taking only
finitely many values.

1.2 No-Arbitrage Principle

In this section we are going to state the most fundamental assumption about
the market. In brief, we shall assume that the market does not allow for risk-free
profits with no initial investment.

For example, a possibility of risk-free profits with no initial investment can
emerge when market participants make a mistake. Suppose that dealer A in
New York offers to buy British pounds at a rate dA = 1.62 dollars to a pound,
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while dealer B in London sells them at a rate dB = 1.60 dollars to a pound.
If this were the case, the dealers would, in effect, be handing out free money.
An investor with no initial capital could realise a profit of dA − dB = 0.02
dollars per each pound traded by taking simultaneously a short position with
dealer B and a long position with dealer A. The demand for their generous
services would quickly compel the dealers to adjust the exchange rates so that
this profitable opportunity would disappear.

Exercise 1.3

On 19 July 2002 dealer A in New York and dealer B in London used the
following rates to change currency, namely euros (EUR), British pounds
(GBP) and US dollars (USD):

dealer A buy sell
1.0000 EUR 1.0202 USD 1.0284 USD
1.0000 GBP 1.5718 USD 1.5844 USD

dealer B buy sell
1.0000 EUR 0.6324 GBP 0.6401 GBP
1.0000 USD 0.6299 GBP 0.6375 GBP

Spot a chance of a risk-free profit without initial investment.

The next example illustrates a situation when a risk-free profit could be
realised without initial investment in our simplified framework of a single time
step.

Example 1.3

Suppose that dealer A in New York offers to buy British pounds a year from
now at a rate dA = 1.58 dollars to a pound, while dealer B in London would sell
British pounds immediately at a rate dB = 1.60 dollars to a pound. Suppose
further that dollars can be borrowed at an annual rate of 4%, and British
pounds can be invested in a bank account at 6%. This would also create an
opportunity for a risk-free profit without initial investment, though perhaps
not as obvious as before.

For instance, an investor could borrow 10, 000 dollars and convert them into
6, 250 pounds, which could then be deposited in a bank account. After one year
interest of 375 pounds would be added to the deposit, and the whole amount
could be converted back into 10, 467.50 dollars. (A suitable agreement would
have to be signed with dealer A at the beginning of the year.) After paying
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back the dollar loan with interest of 400 dollars, the investor would be left with
a profit of 67.50 dollars.

Apparently, one or both dealers have made a mistake in quoting their ex-
change rates, which can be exploited by investors. Once again, increased de-
mand for their services will prompt the dealers to adjust the rates, reducing dA

and/or increasing dB to a point when the profit opportunity disappears.

We shall make an assumption forbidding situations similar to the above
example.

Assumption 1.6 (No-Arbitrage Principle)

There is no admissible portfolio with initial value V (0) = 0 such that V (1) > 0
with non-zero probability.

In other words, if the initial value of an admissible portfolio is zero, V (0) =
0, then V (1) = 0 with probability 1. This means that no investor can lock in a
profit without risk and with no initial endowment. If a portfolio violating this
principle did exist, we would say that an arbitrage opportunity was available.

Arbitrage opportunities rarely exist in practice. If and when they do, the
gains are typically extremely small as compared to the volume of transactions,
making them beyond the reach of small investors. In addition, they can be more
subtle than the examples above. Situations when the No-Arbitrage Principle is
violated are typically short-lived and difficult to spot. The activities of investors
(called arbitrageurs) pursuing arbitrage profits effectively make the market free
of arbitrage opportunities.

The exclusion of arbitrage in the mathematical model is close enough to
reality and turns out to be the most important and fruitful assumption. Ar-
guments based on the No-arbitrage Principle are the main tools of financial
mathematics.

1.3 One-Step Binomial Model

In this section we restrict ourselves to a very simple example, in which the
stock price S(1) takes only two values. Despite its simplicity, this situation is
sufficiently interesting to convey the flavour of the theory to be developed later
on.
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Example 1.4

Suppose that S(0) = 100 dollars and S(1) can take two values,

S(1) =
{

125 with probability p,
105 with probability 1 − p,

where 0 < p < 1, while the bond prices are A(0) = 100 and A(1) = 110 dollars.
Thus, the return KS on stock will be 25% if stock goes up, or 5% if stock goes
down. (Observe that both stock prices at time 1 happen to be higher than that
at time 0; ‘going up’ or ‘down’ is relative to the other price at time 1.) The

Figure 1.1 One-step binomial tree of stock prices

risk-free return will be KA = 10%. The stock prices are represented as a tree
in Figure 1.1.

In general, the choice of stock and bond prices in a binomial model is con-
strained by the No-Arbitrage Principle. Suppose that the possible up and down
stock prices at time 1 are

S(1) =
{

Su with probability p,
Sd with probability 1 − p,

where Sd < Su and 0 < p < 1.

Proposition 1.1

If S(0) = A(0), then
Sd < A(1) < Su,

or else an arbitrage opportunity would arise.

Proof

We shall assume for simplicity that S(0) = A(0) = 100 dollars. Suppose that
A(1) ≤ Sd. In this case, at time 0:

• Borrow $100 risk-free.
• Buy one share of stock for $100.
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This way, you will be holding a portfolio (x, y) with x = 1 shares of stock
and y = −1 bonds. The time 0 value of this portfolio is

V (0) = 0.

At time 1 the value will become

V (1) =
{

Su − A(1) if stock goes up,
Sd − A(1) if stock goes down.

If A(1) ≤ Sd, then the first of these two possible values is strictly positive,
while the other one is non-negative, that is, V (1) is a non-negative random
variable such that V (1) > 0 with probability p > 0. The portfolio provides an
arbitrage opportunity, violating the No-Arbitrage Principle.

Now suppose that A(1) ≥ Su. If this is the case, then at time 0:

• Sell short one share for $100.
• Invest $100 risk-free.

As a result, you will be holding a portfolio (x, y) with x = −1 and y = 1, again
of zero initial value,

V (0) = 0.

The final value of this portfolio will be

V (1) =
{ −Su + A(1) if stock goes up,

−Sd + A(1) if stock goes down,

which is non-negative, with the second value being strictly positive, since
A(1) ≥ Su. Thus, V (1) is a non-negative random variable such that V (1) > 0
with probability 1−p > 0. Once again, this indicates an arbitrage opportunity,
violating the No-Arbitrage Principle.

The common sense reasoning behind the above argument is straightforward:
Buy cheap assets and sell (or sell short) expensive ones, pocketing the difference.

1.4 Risk and Return

Let A(0) = 100 and A(1) = 110 dollars, as before, but S(0) = 80 dollars and

S(1) =
{

100 with probability 0.8,
60 with probability 0.2.



10 Mathematics for Finance

Suppose that you have $10, 000 to invest in a portfolio. You decide to buy
x = 50 shares, which fixes the risk-free investment at y = 60. Then

V (1) =
{

11, 600 if stock goes up,
9, 600 if stock goes down,

KV =
{

0.16 if stock goes up,
−0.04 if stock goes down.

The expected return, that is, the mathematical expectation of the return on the
portfolio is

E(KV ) = 0.16 × 0.8 − 0.04 × 0.2 = 0.12,

that is, 12%. The risk of this investment is defined to be the standard deviation
of the random variable KV :

σV =
√

(0.16 − 0.12)2 × 0.8 + (−0.04 − 0.12)2 × 0.2 = 0.08,

that is 8%. Let us compare this with investments in just one type of security.
If x = 0, then y = 100, that is, the whole amount is invested risk-free. In

this case the return is known with certainty to be KA = 0.1, that is, 10% and
the risk as measured by the standard deviation is zero, σA = 0.

On the other hand, if x = 125 and y = 0, the entire amount being invested
in stock, then

V (1) =
{

12, 500 if stock goes up,
7, 500 if stock goes down,

and E(KS) = 0.15 with σS = 0.20, that is, 15% and 20%, respectively.
Given the choice between two portfolios with the same expected return, any

investor would obviously prefer that involving lower risk. Similarly, if the risk
levels were the same, any investor would opt for higher return. However, in the
case in hand higher return is associated with higher risk. In such circumstances
the choice depends on individual preferences. These issues will be discussed in
Chapter 5, where we shall also consider portfolios consisting of several risky
securities. The emerging picture will show the power of portfolio selection and
portfolio diversification as tools for reducing risk while maintaining the ex-
pected return.

Exercise 1.4

For the above stock and bond prices, design a portfolio with initial wealth
of $10, 000 split fifty-fifty between stock and bonds. Compute the ex-
pected return and risk as measured by standard deviation.
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1.5 Forward Contracts

A forward contract is an agreement to buy or sell a risky asset at a specified
future time, known as the delivery date, for a price F fixed at the present
moment, called the forward price. An investor who agrees to buy the asset is
said to enter into a long forward contract or to take a long forward position. If
an investor agrees to sell the asset, we speak of a short forward contract or a
short forward position. No money is paid at the time when a forward contract
is exchanged.

Example 1.5

Suppose that the forward price is $80. If the market price of the asset turns out
to be $84 on the delivery date, then the holder of a long forward contract will
buy the asset for $80 and can sell it immediately for $84, cashing the difference
of $4. On the other hand, the party holding a short forward position will have
to sell the asset for $80, suffering a loss of $4. However, if the market price of
the asset turns out to be $75 on the delivery date, then the party holding a
long forward position will have to buy the asset for $80, suffering a loss of $5.
Meanwhile, the party holding a short position will gain $5 by selling the asset
above its market price. In either case the loss of one party is the gain of the
other.

In general, the party holding a long forward contract with delivery date 1
will benefit if the future asset price S(1) rises above the forward price F . If
the asset price S(1) falls below the forward price F , then the holder of a long
forward contract will suffer a loss. In general, the payoff for a long forward
position is S(1) − F (which can be positive, negative or zero). For a short
forward position the payoff is F − S(1).

Apart from stock and bonds, a portfolio held by an investor may contain
forward contracts, in which case it will be described by a triple (x, y, z). Here
x and y are the numbers of stock shares and bonds, as before, and z is the
number of forward contracts (positive for a long forward position and negative
for a short position). Because no payment is due when a forward contract is
exchanged, the initial value of such a portfolio is simply

V (0) = xS(0) + yA(0).

At the delivery date the value of the portfolio will become

V (1) = xS(1) + yA(1) + z(S(1) − F ).
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Assumptions 1.1 to 1.5 as well as the No-Arbitrage Principle extend readily to
this case.

The forward price F is determined by the No-Arbitrage Principle. In par-
ticular, it can easily be found for an asset with no carrying costs. A typical
example of such an asset is a stock paying no dividend. (By contrast, a com-
modity will usually involve storage costs, while a foreign currency will earn
interest, which can be regarded as a negative carrying cost.)

A forward position guarantees that the asset will be bought for the forward
price F at delivery. Alternatively, the asset can be bought now and held until
delivery. However, if the initial cash outlay is to be zero, the purchase must be
financed by a loan. The loan with interest, which will need to be repaid at the
delivery date, is a candidate for the forward price. The following proposition
shows that this is indeed the case.

Proposition 1.2

Suppose that A(0) = 100, A(1) = 110, and S(0) = 50 dollars, where the risky
security involves no carrying costs. Then the forward price must be F = 55
dollars, or an arbitrage opportunity would exist otherwise.

Proof

Suppose that F > 55. Then, at time 0:

• Borrow $50.
• Buy the asset for S(0) = 50 dollars.
• Enter into a short forward contract with forward price F dollars and delivery

date 1.

The resulting portfolio (1,− 1
2 ,−1) consisting of stock, a risk-free position, and

a short forward contract has initial value V (0) = 0. Then, at time 1:

• Close the short forward position by selling the asset for F dollars.
• Close the risk-free position by paying 1

2 × 110 = 55 dollars.

The final value of the portfolio, V (1) = F − 55 > 0, will be your arbitrage
profit, violating the No-Arbitrage Principle.

On the other hand, if F < 55, then at time 0:

• Sell short the asset for $50.
• Invest this amount risk-free.
• Take a long forward position in stock with forward price F dollars and

delivery date 1.

The initial value of this portfolio (−1, 1
2 , 1) is also V (0) = 0. Subsequently, at

time 1:
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• Cash $55 from the risk-free investment.
• Buy the asset for F dollars, closing the long forward position, and return

the asset to the owner.

Your arbitrage profit will be V (1) = 55 − F > 0, which once again violates
the No-Arbitrage Principle. It follows that the forward price must be F = 55
dollars.

Exercise 1.5

Let A(0) = 100, A(1) = 112 and S(0) = 34 dollars. Is it possible to
find an arbitrage opportunity if the forward price of stock is F = 38.60
dollars with delivery date 1?

Exercise 1.6

Suppose that A(0) = 100 and A(1) = 105 dollars, the present price of
pound sterling is S(0) = 1.6 dollars, and the forward price is F = 1.50
dollars to a pound with delivery date 1. How much should a sterling
bond cost today if it promises to pay £100 at time 1? Hint: The for-
ward contract is based on an asset involving negative carrying costs (the
interest earned by investing in sterling bonds).

1.6 Call and Put Options

Let A(0) = 100, A(1) = 110, S(0) = 100 dollars and

S(1) =
{

120 with probability p,
80 with probability 1 − p,

where 0 < p < 1.
A call option with strike price or exercise price $100 and exercise time 1 is

a contract giving the holder the right (but no obligation) to purchase a share
of stock for $100 at time 1.

If the stock price falls below the strike price, the option will be worthless.
There would be little point in buying a share for $100 if its market price is
$80, and no-one would want to exercise the right. Otherwise, if the share price
rises to $120, which is above the strike price, the option will bring a profit of
$20 to the holder, who is entitled to buy a share for $100 at time 1 and may
sell it immediately at the market price of $120. This is known as exercising
the option. The option may just as well be exercised simply by collecting the
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difference of $20 between the market price of stock and the strike price. In
practice, the latter is often the preferred method because no stock needs to
change hands.

As a result, the payoff of the call option, that is, its value at time 1 is a
random variable

C(1) =
{

20 if stock goes up,
0 if stock goes down.

Meanwhile, C(0) will denote the value of the option at time 0, that is, the price
for which the option can be bought or sold today.

Remark 1.1

At first sight a call option may resemble a long forward position. Both involve
buying an asset at a future date for a price fixed in advance. An essential
difference is that the holder of a long forward contract is committed to buying
the asset for the fixed price, whereas the owner of a call option has the right
but no obligation to do so. Another difference is that an investor will need to
pay to purchase a call option, whereas no payment is due when exchanging a
forward contract.

In a market in which options are available, it is possible to invest in a
portfolio (x, y, z) consisting of x shares of stock, y bonds and z options. The
time 0 value of such a portfolio is

V (0) = xS(0) + yA(0) + zC(0).

At time 1 it will be worth

V (1) = xS(1) + yA(1) + zC(1).

Just like in the case of portfolios containing forward contracts, Assumptions 1.1
to 1.5 and the No-Arbitrage Principle can be extended to portfolios consisting
of stock, bonds and options.

Our task will be to find the time 0 price C(0) of the call option consistent
with the assumptions about the market and, in particular, with the absence of
arbitrage opportunities. Because the holder of a call option has a certain right,
but never an obligation, it is reasonable to expect that C(0) will be positive:
one needs to pay a premium to acquire this right. We shall see that the option
price C(0) can be found in two steps:

Step 1
Construct an investment in x stocks and y bonds such that the value of the
investment at time 1 is the same as that of the option,

xS(1) + yA(1) = C(1),
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no matter whether the stock price S(1) goes up to $120 or down to $80. This
is known as replicating the option.

Step 2
Compute the time 0 value of the investment in stock and bonds. It will be
shown that it must be equal to the option price,

xS(0) + yA(0) = C(0),

because an arbitrage opportunity would exist otherwise. This step will be re-
ferred to as pricing or valuing the option.

Step 1 (Replicating the Option)
The time 1 value of the investment in stock and bonds will be

xS(1) + yA(1) =
{

x120 + y110 if stock goes up,
x80 + y110 if stock goes down.

Thus, the equality xS(1) + yA(1) = C(1) between two random variables can
be written as {

x120 + y110 = 20,
x80 + y110 = 0.

The first of these equations covers the case when the stock price goes up to
$120, whereas the second equation corresponds to the case when it drops to $80.
Because we want the value of the investment in stock and bonds at time 1 to
match exactly that of the option no matter whether the stock price goes up
or down, these two equations are to be satisfied simultaneously. Solving for x

and y, we find that
x =

1
2
, y = − 4

11
.

To replicate the option we need to buy 1
2 a share of stock and take a short

position of − 4
11 in bonds (or borrow 4

11 × 100 = 400
11 dollars in cash).

Step 2 (Pricing the Option)
We can compute the value of the investment in stock and bonds at time 0:

xS(0) + yA(0) =
1
2
× 100 − 4

11
× 100 ∼= 13.6364

dollars. The following proposition shows that this must be equal to the price
of the option.

Proposition 1.3

If the option can be replicated by investing in the above portfolio of stock and
bonds, then C(0) = 1

2S(0) − 4
11A(0), or else an arbitrage opportunity would

exist.
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Proof

Suppose that C(0) + 4
11A(0) > 1

2S(0). If this is the case, then at time 0:

• Issue and sell 1 option for C(0) dollars.
• Borrow 4

11 × 100 = 400
11 dollars in cash (or take a short position y = − 4

11 in
bonds by selling them).

• Purchase x = 1
2 shares of stock for xS(0) = 1

2 × 100 = 50 dollars.

The cash balance of these transactions is positive, C(0) + 4
11A(0)− 1

2S(0) > 0.
Invest this amount risk-free. The resulting portfolio consisting of shares, risk-
free investments and a call option has initial value V (0) = 0. Subsequently, at
time 1:

• If stock goes up, then settle the option by paying the difference of $20
between the market price of one share and the strike price. You will pay
nothing if stock goes down. The cost to you will be C(1), which covers both
possibilities.

• Repay the loan with interest (or close your short position y = − 4
11 in bonds).

This will cost you 4
11 × 110 = 40 dollars.

• Sell the stock for 1
2S(1) obtaining either 1

2 × 120 = 60 dollars if the price
goes up, or 1

2 × 80 = 40 dollars if it goes down.

The cash balance of these transactions will be zero, −C(1)+ 1
2S(1)− 4

11A(1) = 0,
regardless of whether stock goes up or down. But you will be left with the initial
risk-free investment of C(0) + 4

11A(0) − 1
2S(0) plus interest, thus realising an

arbitrage opportunity.
On the other hand, if C(0) + 4

11A(0) < 1
2S(0), then, at time 0:

• Buy 1 option for C(0) dollars.
• Buy 4

11 bonds for 4
11 × 100 = 400

11 dollars.
• Sell short x = 1

2 shares of stock for 1
2 × 100 = 50 dollars.

The cash balance of these transactions is positive, −C(0)− 4
11A(0)+ 1

2S(0) > 0,

and can be invested risk-free. In this way you will have constructed a portfolio
with initial value V (0) = 0. Subsequently, at time 1:

• If stock goes up, then exercise the option, receiving the difference of $20
between the market price of one share and the strike price. You will receive
nothing if stock goes down. Your income will be C(1), which covers both
possibilities.

• Sell the bonds for 4
11A(1) = 4

11 × 110 = 40 dollars.
• Close the short position in stock, paying 1

2S(1), that is, 1
2 ×120 = 60 dollars

if the price goes up, or 1
2 × 80 = 40 dollars if it goes down.

The cash balance of these transactions will be zero, C(1)+ 4
11A(1)− 1

2S(1) = 0,
regardless of whether stock goes up or down. But you will be left with an
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arbitrage profit resulting from the risk-free investment of −C(0) − 4
11A(0) +

1
2S(0) plus interest, again a contradiction with the No-Arbitrage Principle.

Here we see once more that the arbitrage strategy follows a common sense
pattern: Sell (or sell short if necessary) expensive securities and buy cheap ones,
as long as all your financial obligations arising in the process can be discharged,
regardless of what happens in the future.

Proposition 1.3 implies that today’s price of the option must be

C(0) =
1
2
S(0) − 4

11
A(0) ∼= 13.6364

dollars. Anyone who would sell the option for less or buy it for more than this
price would be creating an arbitrage opportunity, which amounts to handing
out free money. This completes the second step of our solution.

Remark 1.2

Note that the probabilities p and 1−p of stock going up or down are irrelevant
in pricing and replicating the option. This is a remarkable feature of the theory
and by no means a coincidence.

Remark 1.3

Options may appear to be superfluous in a market in which they can be repli-
cated by stock and bonds. In the simplified one-step model this is in fact a valid
objection. However, in a situation involving multiple time steps (or continuous
time) replication becomes a much more onerous task. It requires adjustments
to the positions in stock and bonds at every time instant at which there is a
change in prices, resulting in considerable management and transaction costs.
In some cases it may not even be possible to replicate an option precisely. This
is why the majority of investors prefer to buy or sell options, replication being
normally undertaken only by specialised dealers and institutions.

Exercise 1.7

Let the bond and stock prices A(0), A(1), S(0), S(1) be as above. Com-
pute the price C(0) of a call option with exercise time 1 and a) strike
price $90, b) strike price $110.

Exercise 1.8

Let the prices A(0), S(0), S(1) be as above. Compute the price C(0) of
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a call option with strike price $100 and exercise time 1 if a) A(1) = 105
dollars, b) A(1) = 115 dollars.

A put option with strike price $100 and exercise time 1 gives the right to
sell one share of stock for $100 at time 1. This kind of option is worthless if
the stock goes up, but it brings a profit otherwise, the payoff being

P (1) =
{

0 if stock goes up,
20 if stock goes down,

given that the prices A(0), A(1), S(0), S(1) are the same as above. The notion
of a portfolio may be extended to allow positions in put options, denoted by z,

as before.
The replicating and pricing procedure for puts follows the same pattern as

for call options. In particular, the price P (0) of the put option is equal to the
time 0 value of a replicating investment in stock and bonds.

Remark 1.4

There is some similarity between a put option and a short forward position:
both involve selling an asset for a fixed price at a certain time in the future.
However, an essential difference is that the holder of a short forward contract
is committed to selling the asset for the fixed price, whereas the owner of a put
option has the right but no obligation to sell. Moreover, an investor who wants
to buy a put option will have to pay for it, whereas no payment is involved
when a forward contract is exchanged.

Exercise 1.9

Once again, let the bond and stock prices A(0), A(1), S(0), S(1) be as
above. Compute the price P (0) of a put option with strike price $100.

An investor may wish to trade simultaneously in both kinds of options and,
in addition, to take a forward position. In such cases new symbols z1, z2, z3, . . .

will need to be reserved for all additional securities to describe the positions
in a portfolio. A common feature of these new securities is that their payoffs
depend on the stock prices. Because of this they are called derivative securities
or contingent claims . The general properties of derivative securities will be
discussed in Chapter 7. In Chapter 8 the pricing and replicating schemes will
be extended to more complicated (and more realistic) market models, as well
as to other financial instruments.
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1.7 Managing Risk with Options

The availability of options and other derivative securities extends the possible
investment scenarios. Suppose that your initial wealth is $1, 000 and compare
the following two investments in the setup of the previous section:

• buy 10 shares; at time 1 they will be worth

10 × S(1) =
{

1, 200 if stock goes up,
800 if stock goes down;

or

• buy 1, 000/13.6364 ∼= 73.3333 options; in this case your final wealth will be

73.3333 × C(1) ∼=
{

1, 466.67 if stock goes up,
0.00 if stock goes down.

If stock goes up, the investment in options will produce a much higher return
than shares, namely about 46.67%. However, it will be disastrous otherwise:
you will lose all your money. Meanwhile, when investing in shares, you would
gain just 20% or lose 20%. Without specifying the probabilities we cannot
compute the expected returns or standard deviations. Nevertheless, one would
readily agree that investing in options is more risky than in stock. This can be
exploited by adventurous investors.

Exercise 1.10

In the above setting, find the final wealth of an investor whose initial
capital of $1, 000 is split fifty-fifty between stock and options.

Options can also be employed to reduce risk. Consider an investor planning
to purchase stock in the future. The share price today is S(0) = 100 dollars,
but the investor will only have funds available at a future time t = 1, when the
share price will become

S(1) =
{

160 with probability p,

40 with probability 1 − p,

for some 0 < p < 1. Assume, as before, that A(0) = 100 and A(1) = 110
dollars, and compare the following two strategies:

• wait until time 1, when the funds become available, and purchase the stock
for S(1);

or
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• at time 0 borrow money to buy a call option with strike price $100; then, at
time 1 repay the loan with interest and purchase the stock, exercising the
option if the stock price goes up.

The investor will be open to considerable risk if she chooses to follow the first
strategy. On the other hand, following the second strategy, she will need to
borrow C(0) ∼= 31.8182 dollars to pay for the option. At time 1 she will have
to repay $35 to clear the loan and may use the option to purchase the stock,
hence the cost of purchasing one share will be

S(1) − C(1) + 35 =
{

135 if stock goes up,
75 if stock goes down.

Clearly, the risk is reduced, the spread between these two figures being narrower
than before.

Exercise 1.11

Compute the risk (as measured by the standard deviation of the return)
involved in purchasing one share with and without the option if a) p =
0.25, b) p = 0.5, c) p = 0.75.

Exercise 1.12

Show that the risk (as measured by the standard deviation) of the above
strategy involving an option is a half of that when no option is purchased,
no matter what the probability 0 < p < 1 is.

If two options are bought, then the risk will be reduced to nil:

S(1) − 2 × C(1) + 70 = 110 with probability 1.

This strategy turns out to be equivalent to a long forward contract, since the
forward price of the stock is exactly $110 (see Section 1.5). It is also equivalent
to borrowing money to purchase a share for $100 today and repaying $110 to
clear the loan at time 1.

Chapter 9 on financial engineering will discuss various ways of managing
risk with options: magnifying or reducing risk, dealing with complicated risk
exposure, and constructing payoff profiles tailor made to meet the specific needs
of an investor.



2
Risk-Free Assets

2.1 Time Value of Money

It is a fact of life that $100 to be received after one year is worth less than
the same amount today. The main reason is that money due in the future or
locked in a fixed term account cannot be spent right away. One would therefore
expect to be compensated for postponed consumption. In addition, prices may
rise in the meantime and the amount will not have the same purchasing power
as it would have at present. Finally, there is always a risk, even if a negligible
one, that the money will never be received. Whenever a future payment is
uncertain to some degree, its value today will be reduced to compensate for
the risk. (However, in the present chapter we shall consider situations free from
such risk.) As generic examples of risk-free assets we shall consider a bank
deposit or a bond.

The way in which money changes its value in time is a complex issue of
fundamental importance in finance. We shall be concerned mainly with two
questions:

What is the future value of an amount invested or borrowed today?

What is the present value of an amount to be paid or received at
a certain time in the future?

The answers depend on various factors, which will be discussed in the present
chapter. This topic is often referred to as the time value of money .

21
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2.1.1 Simple Interest

Suppose that an amount is paid into a bank account, where it is to earn interest .
The future value of this investment consists of the initial deposit, called the
principal and denoted by P , plus all the interest earned since the money was
deposited in the account.

To begin with, we shall consider the case when interest is attracted only
by the principal, which remains unchanged during the period of investment.
For example, the interest earned may be paid out in cash, credited to another
account attracting no interest, or credited to the original account after some
longer period.

After one year the interest earned will be rP , where r > 0 is the interest
rate. The value of the investment will thus become V (1) = P + rP = (1 + r)P.

After two years the investment will grow to V (2) = (1 + 2r)P. Consider a
fraction of a year. Interest is typically calculated on a daily basis: the interest
earned in one day will be 1

365rP . After n days the interest will be n
365rP and

the total value of the investment will become V ( n
365 ) = (1 + n

365r)P. This
motivates the following rule of simple interest : The value of the investment at
time t, denoted by V (t), is given by

V (t) = (1 + tr)P, (2.1)

where time t, expressed in years, can be an arbitrary non-negative real number;
see Figure 2.1. In particular, we have the obvious equality V (0) = P. The
number 1+rt is called the growth factor . Here we assume that the interest rate
r is constant. If the principal P is invested at time s, rather than at time 0,
then the value at time t ≥ s will be

V (t) = (1 + (t − s)r)P. (2.2)

Figure 2.1 Principal attracting simple interest at 10% (r = 0.1, P = 1)
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Throughout this book the unit of time will be one year. We shall transform
any period expressed in other units (days, weeks, months) into a fraction of a
year.

Example 2.1

Consider a deposit of $150 held for 20 days and attracting simple interest at
a rate of 8%. This gives t = 20

365 and r = 0.08. After 20 days the deposit will
grow to V ( 20

365 ) = (1 + 20
365 × 0.08) × 150 ∼= 150.66.

The return on an investment commencing at time s and terminating at time
t will be denoted by K(s, t). It is given by

K(s, t) =
V (t) − V (s)

V (s)
. (2.3)

In the case of simple interest

K(s, t) = (t − s)r,

which clearly follows from (2.2). In particular, the interest rate is equal to the
return over one year,

K(0, 1) = r.

As a general rule, interest rates will always refer to a period of one year, fa-
cilitating the comparison between different investments, independently of their
actual duration. By contrast, the return reflects both the interest rate and the
length of time the investment is held.

Exercise 2.1

A sum of $9, 000 paid into a bank account for two months (61 days) to
attract simple interest will produce $9, 020 at the and of the term. Find
the interest rate r and the return on this investment.

Exercise 2.2

How much would you pay today to receive $1, 000 at a certain future
date if you require a return of 2%?

Exercise 2.3

How long will it take for a sum of $800 attracting simple interest to
become $830 if the rate is 9%? Compute the return on this investment.
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Exercise 2.4

Find the principal to be deposited initially in an account attracting sim-
ple interest at a rate of 8% if $1, 000 is needed after three months (91
days).

The last exercise is concerned with an important general problem: Find the
initial sum whose value at time t is given. In the case of simple interest the
answer is easily found by solving (2.1) for the principal, obtaining

V (0) = V (t)(1 + rt)−1. (2.4)

This number is called the present or discounted value of V (t) and (1 + rt)−1 is
the discount factor .

Example 2.2

A perpetuity is a sequence of payments of a fixed amount to be made at equal
time intervals and continuing indefinitely into the future. For example, suppose
that payments of an amount C are to be made once a year, the first payment
due a year hence. This can be achieved by depositing

P =
C

r

in a bank account to earn simple interest at a constant rate r. Such a deposit
will indeed produce a sequence of interest payments amounting to C = rP

payable every year.

In practice simple interest is used only for short-term investments and for
certain types of loans and deposits. It is not a realistic description of the value
of money in the longer term. In the majority of cases the interest already earned
can be reinvested to attract even more interest, producing a higher return than
that implied by (2.1). This will be analysed in detail in what follows.

2.1.2 Periodic Compounding

Once again, suppose that an amount P is deposited in a bank account, at-
tracting interest at a constant rate r > 0. However, in contrast to the case of
simple interest, we assume that the interest earned will now be added to the
principal periodically, for example, annually, semi-annually, quarterly, monthly,
or perhaps even on a daily basis. Subsequently, interest will be attracted not
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just by the original deposit, but also by all the interest earned so far. In these
circumstances we shall talk of discrete or periodic compounding .

Example 2.3

In the case of monthly compounding the first interest payment of r
12P will be

due after one month, increasing the principal to (1 + r
12 )P, all of which will

attract interest in the future. The next interest payment, due after two months,
will thus be r

12 (1 + r
12 )P, and the capital will become (1 + r

12 )2P . After one
year it will become (1 + r

12 )12P, after n months it will be (1 + r
12 )nP, and after

t years (1 + r
12 )12tP . The last formula admits t equal to a whole number of

months, that is, a multiple of 1
12 .

In general, if m interest payments are made per annum, the time between
two consecutive payments measured in years will be 1

m , the first interest pay-
ment being due at time 1

m . Each interest payment will increase the principal
by a factor of 1 + r

m . Given that the interest rate r remains unchanged, after t

years the future value of an initial principal P will become

V (t) =
(
1 +

r

m

)tm

P, (2.5)

because there will be tm interest payments during this period. In this formula
t must be a whole multiple of the period 1

m . The number
(
1 + r

m

)tm is the
growth factor .

The exact value of the investment may sometimes need to be known at time
instants between interest payments. In particular, this may be so if the account
is closed on a day when no interest payment is due. For example, what is the
value after 10 days of a deposit of $100 subject to monthly compounding at
12%? One possible answer is $100, since the first interest payment would be
due only after one whole month. This suggests that (2.5) should be extended
to arbitrary values of t by means of a step function with steps of duration 1

m ,
as shown in Figure 2.2. Later on, in Remark 2.6 we shall see that the extension
consistent with the No-Arbitrage Principle should use the right-hand side of
(2.5) for all t ≥ 0.

Exercise 2.5

How long will it take to double a capital attracting interest at 6% com-
pounded daily?
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Figure 2.2 Annual compounding at 10% (m = 1, r = 0.1, P = 1)

Exercise 2.6

What is the interest rate if a deposit subject to annual compounding is
doubled after 10 years?

Exercise 2.7

Find and compare the future value after two years of a deposit of $100
attracting interest at a rate of 10% compounded a) annually and b) semi-
annually.

Proposition 2.1

The future value V (t) increases if any one of the parameters m, t, r or P

increases, the others remaining unchanged.

Proof

It is immediately obvious from (2.5) that V (t) increases if t, r or P increases.
To show that V (t) increases as the compounding frequency m increases, we
need to verify that if m < k, then

(
1 +

r

m

)tm

<
(
1 +

r

k

)tk

.

The latter clearly reduces to
(
1 +

r

m

)m

<
(
1 +

r

k

)k

,
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which can be verified directly using the binomial formula:

(
1 +

r

m

)m

= 1 + r +
1 − 1

m

2!
r2 + · · · +

(
1 − 1

m

)× · · · × (1 − m−1
m

)
m!

rm

≤ 1 + r +
1 − 1

k

2!
r2 + · · · +

(
1 − 1

k

)× · · · × (1 − m−1
k

)
m!

rm

< 1 + r +
1 − 1

k

2!
r2 + · · · +

(
1 − 1

k

)× · · · × (1 − k−1
k

)
k!

rk

=
(
1 +

r

k

)k

.

The first inequality holds because each term of the sum on the left-hand side
is no greater than the corresponding term on the right-hand side. The second
inequality is true because the sum on the right-hand side contains m − k ad-
ditional non-zero terms as compared to the sum on the left-hand side. This
completes the proof.

Exercise 2.8

Which will deliver a higher future value after one year, a deposit of
$1, 000 attracting interest at 15% compounded daily, or at 15.5% com-
pounded semi-annually?

Exercise 2.9

What initial investment subject to annual compounding at 12% is needed
to produce $1, 000 after two years?

The last exercise touches upon the problem of finding the present value
of an amount payable at some future time instant in the case when periodic
compounding applies. Here the formula for the present or discounted value of
V (t) is

V (0) = V (t)(1 +
r

m
)−tm,

the number (1 + r
m )−tm being the discount factor .

Remark 2.1

Fix the terminal value V (t) of an investment. It is an immediate consequence
of Proposition 2.1 that the present value increases if any one of the factors r,
t, m decreases, the other ones remaining unchanged.
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Exercise 2.10

Find the present value of $100, 000 to be received after 100 years if
the interest rate is assumed to be 5% throughout the whole period and
a) daily or b) annual compounding applies.

One often requires the value V (t) of an investment at an intermediate time
0 < t < T , given the value V (T ) at some fixed future time T . This can be
achieved by computing the present value of V (T ), taking it as the principal,
and running the investment forward up to time t. Under periodic compounding
with frequency m and interest rate r, this obviously gives

V (t) =
(
1 +

r

m

)−(T−t)m

V (T ). (2.6)

To find the return on a deposit attracting interest compounded periodically
we use the general formula (2.3) and readily arrive at

K(s, t) =
V (t) − V (s)

V (s)
= (1 +

r

m
)(t−s)m − 1.

In particular,

K(0,
1
m

) =
r

m
,

which provides a simple way of computing the interest rate given the return.

Exercise 2.11

Find the return over one year under monthly compounding with r =
10%.

Exercise 2.12

Which is greater, the interest rate r or the return K(0, 1) if the com-
pounding frequency m is greater than 1?

Remark 2.2

The return on a deposit subject to periodic compounding is not additive. Take,
for simplicity, m = 1. Then

K(0, 1) = K(1, 2) = r,

K(0, 2) = (1 + r)2 − 1 = 2r + r2,

and clearly K(0, 1) + K(1, 2) �= K(0, 2).
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2.1.3 Streams of Payments

An annuity is a sequence of finitely many payments of a fixed amount due
at equal time intervals. Suppose that payments of an amount C are to be
made once a year for n years, the first one due a year hence. Assuming that
annual compounding applies, we shall find the present value of such a stream
of payments. We compute the present values of all payments and add them up
to get

C

1 + r
+

C

(1 + r)2
+

C

(1 + r)3
+ · · · + C

(1 + r)n
.

It is sometimes convenient to introduce the following seemingly cumbersome
piece of notation:

PA(r, n) =
1

1 + r
+

1
(1 + r)2

+ · · · + 1
(1 + r)n

. (2.7)

This number is called the present value factor for an annuity. It allows us to
express the present value of an annuity in a concise form:

PA(r, n) × C.

The expression for PA(r, n) can be simplified by using the formula

a + qa + q2a + · · · + qn−1a = a
1 − qn

1 − q
.

In our case a = 1
1+r and q = 1

1+r , hence

PA(r, n) =
1 − (1 + r)−n

r
. (2.8)

Remark 2.3

Note that an initial bank deposit of

P = PA(r, n) × C =
C

1 + r
+

C

(1 + r)2
+ · · · + C

(1 + r)n

attracting interest at a rate r compounded annually would produce a stream
of n annual payments of C each. A deposit of C(1 + r)−1 would grow to C

after one year, which is just what is needed to cover the first annuity payment.
A deposit of C(1 + r)−2 would become C after two years to cover the second
payment, and so on. Finally, a deposit of C(1 + r)−n would deliver the last
payment of C due after n years.
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Example 2.4

Consider a loan of $1, 000 to be paid back in 5 equal instalments due at yearly
intervals. The instalments include both the interest payable each year calculated
at 15% of the current outstanding balance and the repayment of a fraction of
the loan. A loan of this type is called an amortised loan. The amount of each
instalment can be computed as

1, 000
PA(15%, 5)

∼= 298.32.

This is because the loan is equivalent to an annuity from the point of view of
the lender.

Exercise 2.13

What is the amount of interest included in each instalment? How much
of the loan is repaid as part of each instalment? What is the outstanding
balance of the loan after each instalment is paid?

Exercise 2.14

How much can you borrow if the interest rate is 18%, you can afford to
pay $10, 000 at the end of each year, and you want to clear the loan in
10 years?

Exercise 2.15

Suppose that you deposit $1, 200 at the end of each year for 40 years,
subject to annual compounding at a constant rate of 5%. Find the bal-
ance after 40 years.

Exercise 2.16

Suppose that you took a mortgage of $100, 000 on a house to be paid
back in full by 10 equal annual instalments, each consisting of the in-
terest due on the outstanding balance plus a repayment of a part of
the amount borrowed. If you decided to clear the mortgage after eight
years, how much money would you need to pay on top of the 8th instal-
ment, assuming that a constant annual compounding rate of 6% applies
throughout the period of the mortgage?

Recall that a perpetuity is an infinite sequence of payments of a fixed amount
C occurring at the end of each year. The formula for the present value of a
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perpetuity can be obtained from (2.7) in the limit as n → ∞:

lim
n→∞PA(r, n) × C =

C

1 + r
+

C

(1 + r)2
+

C

(1 + r)3
+ · · · =

C

r
. (2.9)

The limit amounts to taking the sum of a geometric series.

Remark 2.4

The present value of a perpetuity is given by the same formula as in Exam-
ple 2.2, even though periodic compounding has been used in place of simple
interest. In both cases the annual payment C is exactly equal to the interest
earned throughout the year, and the amount remaining to earn interest in the
following year is always C

r . Nevertheless, periodic compounding allows us to
view the same sequence of payments in a different way: The present value C

r

of the perpetuity is decomposed into infinitely many parts, as in (2.9), each
responsible for producing one future payment of C.

Remark 2.5

Formula (2.8) for the annuity factor is easier to memorise in the following way,
using the formula for a perpetuity: The sequence of n payments of C = 1 can
be represented as the difference between two perpetuities, one starting now
and the other after n years. (Cutting off the tail of a perpetuity, we obtain
an annuity.) In doing so we need to compute the present value of the latter
perpetuity. This can be achieved by means of the discount factor (1 + r)−n.
Hence,

PA(r, n) =
1
r
− 1

r
× 1

(1 + r)n
=

1 − (1 + r)−n

r
.

Exercise 2.17

Find a formula for the present value of an infinite stream of payments
of the form C, C(1+ g), C(1+ g)2, . . . , growing at a constant rate g. By
the tail-cutting procedure find a formula for the present value of n such
payments.
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2.1.4 Continuous Compounding

Formula (2.5) for the future value at time t of a principal P attracting interest
at a rate r > 0 compounded m times a year can be written as

V (t) =
[(

1 +
r

m

)m
r

]tr

P.

In the limit as m → ∞, we obtain

V (t) = etrP, (2.10)

where

e = lim
x→∞

(
1 +

1
x

)x

is the base of natural logarithms. This is known as continuous compounding .
The corresponding growth factor is etr. A typical graph of V (t) is shown in
Figure 2.3.

Figure 2.3 Continuous compounding at 10% (r = 0.1, P = 1)

The derivative of V (t) = etrP is

V ′(t) = retrP = rV (t).

In the case of continuous compounding the rate of the growth is proportional
to the current wealth.

Formula (2.10) is a good approximation of the case of periodic compounding
when the frequency m is large. It is simpler and lends itself more readily to
transformations than the formula for periodic compounding.
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Exercise 2.18

How long will it take to earn $1 in interest if $1, 000, 000 is deposited at
10% compounded continuously?

Exercise 2.19

In 1626 Peter Minuit, governor of the colony of New Netherland, bought
the island of Manhattan from Indians paying with beads, cloth, and
trinkets worth $24. Find the value of this sum in year 2000 at 5% com-
pounded a) continuously and b) annually.

Proposition 2.2

Continuous compounding produces higher future value than periodic com-
pounding with any frequency m, given the same initial principal P and interest
rate r.

Proof

It suffices to verify that

etr > (1 +
r

m
)tm =

[
(1 +

r

m
)

m
r

]rt

.

The inequality holds because the sequence (1+ r
m )

m
r is increasing and converges

to e as m ↗ ∞.

Exercise 2.20

What will be the difference between the value after one year of $100
deposited at 10% compounded monthly and compounded continuously?
How frequent should the periodic compounding be for the difference to
be less than $0.01?

The present value under continuous compounding is obviously given by

V (0) = V (t)e−tr.

In this case the discount factor is e−tr. Given the terminal value V (T ), we
clearly have

V (t) = e−r(T−t)V (T ). (2.11)
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Exercise 2.21

Find the present value of $1, 000, 000 to be received after 20 years as-
suming continuous compounding at 6%.

Exercise 2.22

Given that the future value of $950 subject to continuous compounding
will be $1, 000 after half a year, find the interest rate.

The return K(s, t) defined by (2.3) on an investment subject to continuous
compounding fails to be additive, just like in the case of periodic compounding.
It proves convenient to introduce the logarithmic return

k(s, t) = ln
V (t)
V (s)

. (2.12)

Proposition 2.3

The logarithmic return is additive,

k(s, t) + k(t, u) = k(s, u).

Proof

This is an easy consequence of (2.12):

k(s, t) + k(t, u) = ln
V (t)
V (s)

+ ln
V (u)
V (t)

= ln
V (t)
V (s)

V (u)
V (t)

= ln
V (u)
V (s)

= k(s, u).

If V (t) is given by (2.10), then k(s, t) = r(t−s), which enables us to recover
the interest rate

r =
k(s, t)
t − s

.

Exercise 2.23

Suppose that the logarithmic return over 2 months on an investment
subject to continuous compounding is 3%. Find the interest rate.
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2.1.5 How to Compare Compounding Methods

As we have already noticed, frequent compounding will produce a higher fu-
ture value than less frequent compounding if the interest rates and the initial
principal are the same. We shall consider the general circumstances in which
one compounding method will produce either the same or higher future value
than another method, given the same initial principal.

Example 2.5

Suppose that certificates promising to pay $120 after one year can be purchased
or sold now, or at any time during this year, for $100. This is consistent with a
constant interest rate of 20% under annual compounding. If an investor decided
to sell such a certificate half a year after the purchase, what price would it fetch?
Suppose it is $110, a frequent first guess based on halving the annual profit of
$20. However, this turns out to be too high a price, leading to the following
arbitrage strategy:

• Borrow $1, 000 to buy 10 certificates for $100 each.
• After six months sell the 10 certificates for $110 each and buy 11 new

certificates for $100 each. The balance of these transactions is nil.
• After another six months sell the 11 certificates for $110 each, cashing

$1, 210 in total, and pay $1, 200 to clear the loan with interest. The balance
of $10 would be the arbitrage profit.

A similar argument shows that the certificate price after six months cannot be
too low, say, $109.

The price of a certificate after six months is related to the interest rate
under semi-annual compounding: If this rate is r, then the price is 100

(
1 + r

2

)
dollars and vice versa. Arbitrage will disappear if the corresponding growth
factor

(
1 + r

2

)2 over one year is equal to the growth factor 1.2 under annual
compounding, (

1 +
r

2

)2

= 1.2,

which gives r ∼= 0.1909, or 19.09%. If so, then the certificate price after six
months should be 100

(
1 + 0.1909

2

) ∼= 109.54 dollars.

The idea based on considering the growth factors over a fixed period, typi-
cally one year, can be used to compare any two compounding methods.
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Definition 2.1

We say that two compounding methods are equivalent if the corresponding
growth factors over a period of one year are the same. If one of the growth
factors exceeds the other, then the corresponding compounding method is said
to be preferable.

Example 2.6

Semi-annual compounding at 10% is equivalent to annual compounding at
10.25%. Indeed, in the former case the growth factor over a period of one
year is (

1 +
0.1
2

)2

= 1.1025,

which is the same as the growth factor in the latter case. Both are preferable
to monthly compounding at 9%, for which the growth factor over one year is
only (

1 +
0.09
12

)12

∼= 1.0938.

We can freely switch from one compounding method to another equivalent
method by recalculating the interest rate. In the chapters to follow we shall
normally use either annual or continuous compounding.

Exercise 2.24

Find the rate for continuous compounding equivalent to monthly com-
pounding at 12%.

Exercise 2.25

Find the frequency of periodic compounding at 20% to be equivalent to
annual compounding at 21%.

Instead of comparing the growth factors, it is often convenient to compare
the so-called effective rates as defined below.

Definition 2.2

For a given compounding method with interest rate r the effective rate re is
one that gives the same growth factor over a one year period under annual
compounding.
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In particular, in the case of periodic compounding with frequency m and
rate r the effective rate re satisfies(

1 +
r

m

)m

= 1 + re.

In the case of continuous compounding with rate r

er = 1 + re.

Example 2.7

In the case of semi-annual compounding at 10% the effective rate is 10.25%,
see Example 2.6.

Proposition 2.4

Two compounding methods are equivalent if and only if the corresponding
effective rates re and r′e are equal, re = r′e. The compounding method with
effective rate re is preferable to the other method if and only if re > r′e.

Proof

This is because the growth factors over one year are 1 + re and 1 + r′e, respec-
tively.

Example 2.8

In Exercise 2.8 we have seen that daily compounding at 15% is preferable to
semi-annual compounding at 15.5%. The corresponding effective rates re and
r′e can be found from

1 + re =
(

1 +
0.15
365

)365

∼= 1.1618,

1 + r′e =
(

1 +
0.155

2

)2

∼= 1.1610.

This means that re is about 16.18% and r′e about 16.10%.

Remark 2.6

Recall that formula (2.5) for periodic compounding, that is,

V (t) =
(
1 +

r

m

)tm

P,
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admits only time instants t being whole multiples of the compounding period
1
m . An argument similar to that in Example 2.5 shows that the appropriate no-
arbitrage value of an initial sum P at any time t ≥ 0 should be

(
1 + r

m

)tm
P .

A reasonable extension of (2.5) is therefore to use the right-hand side for all
t ≥ 0 rather than just for whole multiples of 1

m . From now on we shall always
use this extension.

In terms of the effective rate re the future value can be written as

V (t) = (1 + re)
t
P.

for all t ≥ 0. This applies both to continuous compounding and to periodic
compounding extended to arbitrary times as in Remark 2.6. Proposition 2.4
implies that, given the same initial principal, equivalent compounding methods
will produce the same future value for all times t ≥ 0. Similarly, a compounding
method preferable to another one will produce a higher future value for all t > 0.

Remark 2.7

Simple interest does not fit into the scheme for comparing compounding meth-
ods. In this case the future value V (t) is a linear function of time t, whereas it is
an exponential function if either continuous or periodic compounding applies.
The graphs of such functions have at most two intersection points, so they can
never be equal to one another for all times t ≥ 0 (except for the trivial case of
zero principal).

Exercise 2.26

What is the present value of an annuity consisting of monthly payments
of an amount C continuing for n years? Express the answer in terms of
the effective rate re.

Exercise 2.27

What is the present value of a perpetuity consisting of bimonthly pay-
ments of an amount C? Express the answer in terms of the effective
rate re.
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2.2 Money Market

The money market consists of risk-free (more precisely, default-free) securi-
ties. An example is a bond, which is a financial security promising the holder
a sequence of guaranteed future payments. Risk-free means here that these
payments will be delivered with certainty. (Nevertheless, even in this case risk
cannot be completely avoided, since the market prices of such securities may
fluctuate unpredictably; see Chapters 10 and 11.) There are many kinds of
bonds like treasury bills and notes, treasury, mortgage and debenture bonds,
commercial papers, and others with various particular arrangements concern-
ing the issuing institution, duration, number of payments, embedded rights and
guarantees.

2.2.1 Zero-Coupon Bonds

The simplest case of a bond is a zero-coupon bond , which involves just a single
payment. The issuing institution (for example, a government, a bank or a com-
pany) promises to exchange the bond for a certain amount of money F , called
the face value, on a given day T , called the maturity date. Typically, the life
span of a zero-coupon bond is up to one year, the face value being some round
figure, for example 100. In effect, the person or institution who buys the bond
is lending money to the bond writer.

Given the interest rate, the present value of such a bond can easily be
computed. Suppose that a bond with face value F = 100 dollars is maturing in
one year, and the annual compounding rate r is 12%. Then the present value
of the bond should be

V (0) = F (1 + r)−1 ∼= 89.29

dollars.
In reality, the opposite happens: Bonds are freely traded and their prices

are determined by market forces, whereas the interest rate is implied by the
bond prices,

r =
F

V (0)
− 1. (2.13)

This formula gives the implied annual compounding rate. For instance, if a
one-year bond with face value $100 is being traded at $91, then the implied
rate is 9.89%.

For simplicity, we shall consider unit bonds with face value equal to one unit
of the home currency, F = 1.
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Typically, a bond can be sold at any time prior to maturity at the market
price. This price at time t is denoted B(t, T ). In particular, B(0, T ) is the
current, time 0 price of the bond, and B(T, T ) = 1 is equal to the face value.
Again, these prices determine the interest rates by applying formulae (2.6)
and (2.11) with V (t) = B(t, T ), V (T ) = 1. For example, the implied annual
compounding rate satisfies the equation

B(t, T ) = (1 + r)−(T−t).

The last formula has to be suitably modified if a different compounding method
is used. Using periodic compounding with frequency m, we need to solve the
equation

B(t, T ) =
(
1 +

r

m

)−m(T−t)

.

In the case of continuous compounding the equation for the implied rate satisfies

B(t, T ) = e−r(T−t).

Of course all these different implied rates are equivalent to one another, since
the bond price does not depend on the compounding method used.

Remark 2.8

In general, the implied interest rate may depend on the trading time t as well as
on the maturity time T . This is an important issue, which will be discussed in
Chapters 10 and 11. For the time being, we adopt the simplifying assumption
that the interest rate remains constant throughout the period up to maturity.

Exercise 2.28

An investor paid $95 for a bond with face value $100 maturing in six
months. When will the bond value reach $99 if the interest rate remains
constant?

Exercise 2.29

Find the interest rates for annual, semi-annual and continuous com-
pounding implied by a unit bond with B(0.5, 1) = 0.9455.

Note that B(0, T ) is the discount factor and B(0, T )−1 is the growth factor
for each compounding method. These universal factors are all that is needed
to compute the time value of money, without resorting to the corresponding
interest rates. However, interest rates are useful because they are more intuitive.
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For an average bank customer the information that a one-year $100 bond can
be purchased for $92.59 may not be as clear as the equivalent statement that
a deposit will earn 8% interest if kept for one year.

2.2.2 Coupon Bonds

Bonds promising a sequence of payments are called coupon bonds. These pay-
ments consist of the face value due at maturity, and coupons paid regularly,
typically annually, semi-annually, or quarterly, the last coupon due at maturity.
The assumption of constant interest rates allows us to compute the price of a
coupon bond by discounting all the future payments.

Example 2.9

Consider a bond with face value F = 100 dollars maturing in five years, T = 5,
with coupons of C = 10 dollars paid annually, the last one at maturity. This
means a stream of payments of 10, 10, 10, 10, 110 dollars at the end of each
consecutive year. Given the continuous compounding rate r, say 12%, we can
find the price of the bond:

V (0) = 10e−r + 10e−2r + 10e−3r + 10e−4r + 110e−5r ∼= 90.27

dollars.

Exercise 2.30

Find the price of a bond with face value $100 and $5 annual coupons
that matures in four years, given that the continuous compounding rate
is a) 8% or b) 5%.

Exercise 2.31

Sketch the graph of the price of the bond in Exercise 2.30 as a function
of the continuous compounding rate r. What is the value of this function
for r = 0 ? What is the limit as r → ∞ ?

Example 2.10

We continue Example 2.9. After one year, once the first coupon is cashed, the
bond becomes a four-year bond worth

V (1) = 10e−r + 10e−2r + 10e−3r + 110e−4r ∼= 91.78
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dollars. Observe that the total wealth at time 1 is

V (1) + C = V (0)er.

Six months later the bond will be worth

V (1.5) = 10e−0.5r + 10e−1.5r + 10e−2.5r + 110e−3.5r ∼= 97.45

dollars. After four years the bond will become a zero-coupon bond with face
value $110 and price

V (4) = 110e−r ∼= 97.56

dollars.

An investor may choose to sell the bond at any time prior to maturity. The
price at that time can once again be found by discounting all the payments due
at later times.

Exercise 2.32

Sketch the graph of the price of the coupon bond in Examples 2.9
and 2.10 as a function of time.

Exercise 2.33

How long will it take for the price of the coupon bond in Examples 2.9
and 2.10 to reach $95 for the first time?

The coupon can be expressed as a fraction of the face value. Assuming that
coupons are paid annually, we shall write C = iF , where i is called the coupon
rate.

Proposition 2.5

Whenever coupons are paid annually, the coupon rate is equal to the interest
rate for annual compounding if and only if the price of the bond is equal to its
face value. In this case we say that the bond sells at par .

Proof

To avoid cumbersome notation we restrict ourselves to an example. Suppose
that annual compounding with r = i applies, and consider a bond with face
value F = 100 maturing in three years, T = 3. Then the price of the bond is

C

1 + r
+

C

(1 + r)2
+

F + C

(1 + r)3
=

rF

1 + r
+

rF

(1 + r)2
+

F (1 + r)
(1 + r)3
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=
rF

1 + r
+

rF

(1 + r)2
+

F

(1 + r)2
=

rF

1 + r
+

F (1 + r)
(1 + r)2

= F.

Conversely, note that

C

1 + r
+

C

(1 + r)2
+

F + C

(1 + r)3

is one-to-one as a function of r (in fact, a strictly decreasing function), so it
assumes the value F exactly once, and we know this happens for r = i.

Remark 2.9

If a bond sells below the face value, it means that the implied interest rate
is higher than the coupon rate (since the price of a bond decreases when the
interest rate goes up). If the bond price is higher than the face value, it means
that the interest rate is lower than the coupon rate. This may be important
information in real circumstances, where the bond price is determined by the
market and gives an indication of the level of interest rates.

Exercise 2.34

A bond with face value F = 100 and annual coupons C = 8 maturing
after three years, at T = 3, is trading at par. Find the implied continuous
compounding rate.

2.2.3 Money Market Account

An investment in the money market can be realised by means of a financial
intermediary, typically an investment bank, who buys and sells bonds on behalf
of its customers (thus reducing transaction costs). The risk-free position of
an investor is given by the level of his or her account with the bank. It is
convenient to think of this account as a tradable asset, which is indeed the
case, since the bonds themselves are tradable. A long position in the money
market involves buying the asset, that is, investing money. A short position
amounts to borrowing money.

First, consider an investment in a zero-coupon bond closed prior to maturity.
An initial amount A(0) invested in the money market makes it possible to
purchase A(0)/B(0, T ) bonds. The value of each bond will fetch

B(t, T ) = e−(T−t)r = erte−rT = ertB(0, T )
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at time t. As a result, the investment will reach

A(t) =
A(0)

B(0, T )
B(t, T ) = A(0)ert

at time t ≤ T .

Exercise 2.35

Find the return on a 75-day investment in zero-coupon bonds if B(0, 1) =
0.89.

Exercise 2.36

The return on a bond over six months is 7%. Find the implied continuous
compounding rate.

Exercise 2.37

After how many days will a bond purchased for B(0, 1) = 0.92 produce
a 5% return?

The investment in a bond has a finite time horizon. It will be terminated
with A(T ) = A(0)erT at the time T of maturity of the bond. To extend the
position in the money market beyond T one can reinvest the amount A(T ) into
a bond newly issued at time T, maturing at T ′ > T. Taking A(T ) as the initial
investment with T playing the role of the starting time, we have

A(t′) = A(T )er(t′−T ) = A(0)ert′

for T ≤ t′ ≤ T ′. By repeating this argument, we readily arrive at the conclu-
sion that an investment in the money market can be prolonged for as long as
required, the formula

A(t) = A(0)ert (2.14)

being valid for all t ≥ 0.

Exercise 2.38

Suppose that one dollar is invested in zero-coupon bonds maturing after
one year. At the end of each year the proceeds are reinvested in new
bonds of the same kind. How many bonds will be purchased at the
end of year 9? Express the answer in terms of the implied continuous
compounding rate.
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An alternative way to prolong an investment in the money market for as
long as required is to reinvest the face value of any bonds maturing at time T

in other bonds issued at time 0, but maturing at a later time t > T . Having
invested A(0) initially to buy unit bonds maturing at time T , we will have the
sum of A(0)/B(0, T ) at our disposal at time T. At this time we chose a bond
maturing at time t, its price at T being B(T, t). At time t this investment will
be worth

A(0)
B(0, T )B(T, t)

=
A(0)

B(0, t)
= A(0)ert,

the same as in (2.14).
Finally, consider coupon bonds as a tool to manufacture an investment in

the money market. Suppose for simplicity that the first coupon C is due after
one year. At time 0 we buy A(0)/V (0) coupon bonds. After one year we cash the
coupon and sell the bond for V (1), receiving the total sum C + V (1) = V (0)er

(see Example 2.10). Because the interest rate is constant, this sum of money is
certain. In this way we have effectively created a zero-coupon bond with face
value V (0)er maturing at time 1. It means that the scheme worked out above
for zero-coupon bonds applies to coupon bonds as well, resulting in the same
formula (2.14) for A(t).

Exercise 2.39

The sum of $1, 000 is invested in five-year bonds with face value $100
and $8 coupons paid annually. All coupons are reinvested in bonds of the
same kind. Assuming that the bonds are trading at par and the interest
rate remains constant throughout the period to maturity, compute the
number of bonds held during each consecutive year of the investment.

As we have seen, under the assumption that the interest rate is constant,
the function A(t) does not depend on the way the money market account is
run, that is, it neither depends on the types of bonds selected for investment
nor on the method of extending the investment beyond the maturity of the
bonds.

Throughout most of this book we shall assume A(t) to be deterministic and
known. Indeed, we assume that A(t) = ert, where r is a constant interest rate.
Variable interest rates will be considered in Chapter 10 and a random money
market account will be studied in Chapter 11.



This page intentionally left blank 



3
Risky Assets

The future prices of any asset are unpredictable to a certain extent. In this
chapter we shall typically be concerned with common stock, though any security
such as foreign currency, a commodity, or even a partially unpredictable future
cash flow can be considered. Market prices depend on the choices and decisions
made by a great number of agents acting under conditions of uncertainty. It
is therefore reasonable to treat the prices of assets as random. However, little
more can be said in a fully general situation. We shall therefore impose specific
conditions on asset prices, motivated by a need for the mathematical model to
be realistic and relevant on the one hand, and tractable on the other hand.

3.1 Dynamics of Stock Prices

The price of stock at time t will be denoted by S(t). It is assumed to be strictly
positive for all t. We take t = 0 to be the present time, S(0) being the current
stock price, known to all investors. The future prices S(t) for t > 0 remain
unknown, in general. Mathematically, S(t) can be represented as a positive
random variable on a probability space Ω, that is,

S(t) : Ω → (0,∞).

The probability space Ω consists of all feasible price movement ‘scenarios’ ω ∈
Ω. We shall write S(t, ω) to denote the price at time t if the market follows
scenario ω ∈ Ω.

47
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The current stock price S(0) known to all investors is simply a positive
number, but it can be thought of as a constant random variable. The unknown
future prices S(t) for t > 0 are non-constant random variables. This means that
for each t > 0 there are at least two scenarios ω, ω̃ ∈ Ω such that S(t, ω) �=
S(t, ω̃).

We assume that time runs in a discrete manner, t = nτ , where n =
0, 1, 2, 3, . . . and τ is a fixed time step, typically a year, a month, a week, a
day, or even a minute or a second to describe some hectic trading. Because we
take one year as the unit measure of time, a month corresponds to τ = 1/12, a
week corresponds to τ = 1/52, a day to τ = 1/365, and so on.

To simplify our notation we shall write S(0), S(1), S(2), . . . , S(n), . . . instead
of S(0), S(τ), S(2τ), . . . , S(nτ), . . . , identifying n with nτ. This convention will
in fact be adopted for many other time-dependent quantities.

Example 3.1

Consider a market that can follow just two scenarios, boom or recession, de-
noted by ω1 and ω2, respectively. The current share price of a certain stock is
$10, which may rise to $12 after one year if there is a boom or come down to
$7 in the case of recession. In these circumstances Ω = {ω1, ω2} and, putting
τ = 1, we have

Scenario S(0) S(1)
ω1 (boom) 10 12
ω2 (recession) 10 7

Example 3.2

Suppose that there are three possible market scenarios, Ω = {ω1, ω2, ω3}, the
stock prices taking the following values over two time steps:

Scenario S(0) S(1) S(2)
ω1 55 58 60
ω2 55 58 52
ω3 55 52 53

These price movements can be represented as a tree, see Figure 3.1. It is con-
venient to identify the scenarios with paths through the tree leading from the
single node on the left (the ‘root’ of the tree) to the rightmost branch tips.

Such a tree structure of price movements, if found realistic and desirable,
can readily be implemented in a mathematical model.
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Figure 3.1 Tree of price movements in Example 3.2

Exercise 3.1

Sketch a tree representing the scenarios and price movements in Exam-
ple 3.1.

Exercise 3.2

Suppose that the stock price on any given day can either be 5% higher or
4% lower than on the previous day. Sketch a tree representing possible
stock price movements over the next three days, given that the price
today is $20. How many different scenarios can be distinguished?

3.1.1 Return

It proves convenient to describe the dynamics of stock prices S(n) in terms of
returns. We assume that the stock pays no dividends.

Definition 3.1

The rate of return, or briefly the return K(n,m) over a time interval [n,m] (in
fact [mτ, nτ ]), is defined to be the random variable

K(n,m) =
S(m) − S(n)

S(n)
.

The return over a single time step [n − 1, n] will be denoted by K(n), that is

K(n) = K(n − 1, n) =
S(n) − S(n − 1)

S(n − 1)
,

which implies that
S(n) = S(n − 1)(1 + K(n)). (3.1)
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Example 3.3

In the situation considered in Example 3.2 the returns are random variables
taking the following values:

Scenario K(1) K(2)
ω1 5.45% 3.45%
ω2 5.45% −10.34%
ω3 −5.45% 1.92%

Exercise 3.3

Given the following returns and assuming that S(0) = 45 dollars, find
the possible stock prices in a three-step economy and sketch a tree of
price movements:

Scenario K(1) K(2) K(3)
ω1 10% 5% −10%
ω2 5% 10% 10%
ω3 5% −10% 10%

Remark 3.1

If the stock pays a dividend of div(n) at time n, then the definition of return
has to be modified. Typically, when a dividend is paid, the stock price drops
by that amount. Since the right to a dividend is decided prior to the payment
day, the drop of stock price is already reflected in S(n). As a result, an investor
who buys stock at time n − 1 paying S(n − 1) and wishes to sell the stock at
time n will receive S(n) + div(n) and the return must reflect this:

K(n) =
S(n) − S(n − 1) + div(n)

S(n − 1)
.

Exercise 3.4

Introduce the necessary modifications in Exercise 3.3 if a dividend of $1
is paid at the end of each time step.

It is important to understand the relationship between one-step returns and
the return over a longer time interval.
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Example 3.4

Suppose that S(0) = 100 dollars.

1. Consider a scenario in which S(1) = 110 and S(2) = 100 dollars. In this
case K(0, 2) = 0%, while K(1) = 10% and K(2) ∼= −9.09%, the sum of the
one-step returns K(1) and K(2) being positive and greater than K(0, 2).

2. Consider another scenario with lower price S(1) = 90 dollars and with
S(2) = 100 dollars as before. Then K(1) = −10% and K(2) ∼= 11.11%,
their sum being once again greater than K(0, 2) = 0%.

3. In a scenario such that S(1) = 110 and S(2) = 121 dollars we have K(0, 2) =
21%, which is greater than K(1) + K(2) = 10% + 10% = 20%.

Exercise 3.5

Find K(0, 2) and K(0, 3) for the data in Exercise 3.3 and compare the
results with the sums of one-step returns K(1)+K(2) and K(1)+K(2)+
K(3), respectively.

Remark 3.2

The non-additivity of returns, already observed in Chapter 2 for deterministic
returns, is worth pointing out, since it is common practice to compute the av-
erage of recorded past returns as a prediction for the future. This may result in
misrepresenting the information, for example, overestimating the future return
if the historical prices tend to fluctuate, or underestimating if they do not.

Proposition 3.1

The precise relationship between consecutive one-step returns and the return
over the aggregate period is

1 + K(n,m) = (1 + K(n + 1))(1 + K(n + 2)) · · · (1 + K(m)).

Proof

Compare the following two formulae for S(m):

S(m) = S(n)(1 + K(n,m))

and
S(m) = S(n)(1 + K(n + 1))(1 + K(n + 2)) · · · (1 + K(m)).

Both of them follow from Definition 3.1.
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Exercise 3.6

In each of the following three scenarios find the one-step returns, assum-
ing that K(1) = K(2):

Scenario S(0) S(2)
ω1 35 41
ω2 35 32
ω3 35 28

Exercise 3.7

Given that K(1) = 10% or −10%, and K(0, 2) = 21%, 10% or −1%,
find a possible structure of scenarios such that K(2) takes at most two
different values.

The lack of additivity is often an inconvenience. This can be rectified by
introducing the logarithmic return on a risky security, motivated by similar
considerations for risk-free assets in Chapter 2.

Definition 3.2

The logarithmic return over a time interval [n,m] (more precisely, [τn, τm]) is
a random variable k(n,m) defined by

k(n,m) = ln
S(m)
S(n)

.

The one-step logarithmic return will be denoted simply by k(n), that is,

k(n) = k(n − 1, n) = ln
S(n)

S(n − 1)
,

so that
S(n) = S(n − 1)ek(n). (3.2)

The relationship between the return K(m,n) and the logarithmic return
k(m,n) is obvious by comparing their definitions, namely

1 + K(m,n) = ek(m,n).

Because of this we can readily switch from one return to the other.
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Remark 3.3

If the stock pays a dividend of div(n) at time n and this is reflected in the price
S(n), then the following version of the logarithmic return should be used:

k(n) = ln
S(n) + div(n)

S(n − 1)
.

Consecutive one-step logarithmic returns can be combined in an additive
manner to find the return during the overall time period.

Exercise 3.8

For the data in Example 3.2 find the random variables k(1), k(2) and
k(0, 2). Compare k(0, 2) with k(1) + k(2).

Proposition 3.2

If no dividends are paid, then

k(n,m) = k(n + 1) + k(n + 2) + · · · + k(m).

Proof

On the one hand,
S(m) = S(n)ek(n,m)

by the definition of the logarithmic return. On the other hand, using one-step
logarithmic returns repeatedly, we obtain,

S(m) = S(n)ek(n+1)ek(n+2) · · · ek(m) = S(n)ek(n+1)+k(n+2)+···+k(m).

The result follows by comparing these two expressions.

3.1.2 Expected Return

Suppose that the probability distribution of the return K over a certain time
period is known. Then we can compute the mathematical expectation E(K),
called the expected return.

Example 3.5

We estimate the probabilities of recession, stagnation and boom to be 1/4,
1/2, 1/4, respectively. If the predicted annual returns on some stock in these
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scenarios are −6%, 4%, 30%, respectively, then the expected annual return is

−6% × 1
4

+ 4% × 1
2

+ 30% × 1
4

= 8%.

Exercise 3.9

With the probabilities of recession, stagnation and boom equal to 1/2,
1/4, 1/4 and the predicted annual returns in the first two of these scenar-
ios at −5% and 6%, respectively, find the annual return in the remaining
scenario if the expected annual return is known to be 6%.

Exercise 3.10

Suppose that the stock prices in the following three scenarios are

Scenario S(0) S(1) S(2)
ω1 100 110 120
ω2 100 105 100
ω3 100 90 100

with probabilities 1/4, 1/4, 1/2, respectively. Find the expected returns
E(K(1)), E(K(2)) and E(K(0, 2)). Compare 1 + E(K(0, 2)) with (1 +
E(K(1)))(1 + E(K(2))).

The last exercise shows that the relation established in Proposition 3.1 does
not extend to expected returns. For that we need an additional assumption.

Proposition 3.3

If the one-step returns K(n + 1), . . . , K(m) are independent, then

1 + E(K(n,m)) = (1 + E(K(n + 1)))(1 + E(K(n + 2))) · · · (1 + E(K(m))).

Proof

This is an immediate consequence of Proposition 3.1 and the fact that the
expectation of a product of independent random variables is the product of
expectations. (Note that if the K(i) are independent, then so are the random
variables 1 + K(i) for i = n + 1, . . . , m.)
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Exercise 3.11

Suppose that the time step is taken to be three months, τ = 1/4, and
the quarterly returns K(1),K(2),K(3),K(4) are independent and iden-
tically distributed. Find the expected quarterly return E(K(1)) and the
expected annual return E(K(0, 4)) if the expected return E(K(0, 3))
over three quarters is 12%.

Remark 3.4

In the case of logarithmic returns additivity extends to expected returns, even
if the one-step returns are not independent. Namely

E(k(n,m)) = E(k(n + 1)) + E(k(n + 2)) + · · · + E(k(m)).

This is because the expectation of a sum of random variables is the sum of
expectations.

Remark 3.5

In practice it is difficult to estimate the probabilities and returns in each sce-
nario, needed to compute the expected return. What can readily be computed
is the average return over a past period. The result can be used as an estimate
for the expected future return. For example, if the stock prices on the last
10 consecutive days were $98, $100, $99, $95, $88, $82, $89, $98, $101, $105, then
the average of the resulting nine daily returns would be about 0.77%. However,
the average of the last four daily returns would be about 6.18%. (We use log-
arithmic returns because of their additivity.) This shows that the result may
depend heavily on the choice of data. Using historical prices for prediction is a
complex statistical issue belonging to Econometrics, which is beyond the scope
of this book.

3.2 Binomial Tree Model

We shall discuss an extremely important model of stock prices. On the one
hand, the model is easily tractable mathematically because it involves a small
number of parameters and assumes an identical simple structure at each node
of the tree of stock prices. On the other hand, it captures surprisingly many
features of real-world markets.

The model is defined by the following conditions.
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Condition 3.1

The one-step returns K(n) on stock are identically distributed independent
random variables such that

K(n) =
{

u with probability p,

d with probability 1 − p,

at each time step n, where −1 < d < u and 0 < p < 1.

This condition implies that the stock price S(n) can move up or down by a
factor 1 + u or 1 + d at each time step. The inequalities −1 < d < u guarantee
that all prices S(n) will be positive if S(0) is.

Let r be the return on a risk-free investment over a single time step of
length τ .

Condition 3.2

The one-step return r on a risk-free investment is the same at each time step
and

d < r < u.

The last condition describes the movements of stock prices in relation to
risk-free assets such as bonds or cash held in a bank account. The inequalities
d < r < u are justified because of Proposition 1.1 in Chapter 1 (which will be
generalised in Proposition 4.2).

Since S(1)/S(0) = 1+K(1), Condition 3.1 implies that the random variable
S(1) can take two different values,

S(1) =
{

S(0)(1 + u) with probability p,

S(0)(1 + d) with probability 1 − p.

Exercise 3.12

How many different values do the random variables S(2) and S(3) take?
What are these values and the corresponding probabilities?

The values of S(n) along with the corresponding probabilities can be found
for any n by extending the solution to Exercise 3.12. In an n-step tree of stock
prices each scenario (or path through the tree) with exactly i upward and n− i

downward price movements produces the same stock price S(0)(1 + u)i(1 +
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d)n−i at time n. There are
(
n
i

)
such scenarios, the probability of each equal to

pi(1 − p)n−i. As a result,

S(n) = S(0)(1 + u)i(1 + d)n−i with probability
(

n

i

)
pi(1 − p)n−i (3.3)

for i = 0, 1, . . . , n. The stock price S(n) at time n is a discrete random variable
with n + 1 different values. The distribution of S(n) as given by (3.3) is shown
in Figure 3.2 for n = 10, p = 0.5, S(0) = 1, u = 0.1 and d = −0.1.

Figure 3.2 Distribution of S(10)

The number i of upward price movements is a random variable with a
binomial distribution. The same is true for the number n − i of downward
movements. We therefore say that the price process follows a binomial tree. In
an n-step binomial three the set Ω of all scenarios, that is, n-step paths moving
up or down at each step has 2n elements. An example of a two-step binomial
tree of stock prices is shown in Figure 3.3 and a three-step tree in Figure 3.4.

Figure 3.3 Two-step binomial tree of stock prices

In both figures S(0) = 1 for simplicity.
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Figure 3.4 Three-step binomial tree of stock prices

Exercise 3.13

Find d and u if S(1) can take two values, $87 or $76, and the top possible
value of S(2) is $92.

Exercise 3.14

Suppose that the risk-free rate under continuous compounding is 14%,
the time step τ is one month, S(0) = 22 dollars and d = −0.01. Find the
bounds on the middle value of S(2) consistent with Condition 3.2.

Exercise 3.15

Suppose that $32, $28 and x are the possible values of S(2). Find x,
assuming that stock prices follow a binomial tree. Can you complete the
tree? Can this be done uniquely?

Exercise 3.16

Suppose that stock prices follow a binomial tree, the possible values of
S(2) being $121, $110 and $100. Find u and d when S(0) = 100 dollars.
Do the same when S(0) = 104 dollars.

3.2.1 Risk-Neutral Probability

While the future value of stock can never be known with certainty, it is possible
to work out expected stock prices within the binomial tree model. It is then
natural to compare these expected prices and risk-free investments. This simple
idea will lead us towards powerful and surprising applications in the theory of
derivative securities (for example, options, forwards, futures), to be studied in
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later chapters.
To begin with, we shall work out the dynamics of expected stock prices

E(S(n)). For n = 1

E(S(1)) = pS(0)(1 + u) + (1 − p)S(0)(1 + d) = S(0)(1 + E(K(1))),

where
E(K(1)) = pu + (1 − p)d

is the expected one-step return. This extends to any n as follows.

Proposition 3.4

The expected stock prices for n = 0, 1, 2, . . . are given by

E(S(n)) = S(0)(1 + E(K(1)))n.

Proof

Since the one-step returns K(1),K(2), . . . are independent, so are the random
variables 1 + K(1), 1 + K(2), . . . . It follows that

E(S(n)) = E(S(0)(1 + K(1))(1 + K(2)) · · · (1 + K(n)))

= S(0)E(1 + K(1))E(1 + K(2)) · · ·E(1 + K(n))

= S(0)(1 + E(K(1)))(1 + E(K(2))) · · · (1 + E(K(n))).

Because the K(n) are identically distributed, they all have the same expecta-
tion,

E(K(1)) = E(K(2)) = · · · = E(K(n)),

which proves the formula for E(S(n)).

If the amount S(0) were to be invested risk-free at time 0, it would grow to
S(0)(1 + r)n after n steps. Clearly, to compare E(S(n)) and S(0)(1 + r)n we
only need to compare E(K(1)) and r.

An investment in stock always involves an element of risk, simply because
the price S(n) is unknown in advance. A typical risk-averse investor will re-
quire that E(K(1)) > r, arguing that he or she should be rewarded with a
higher expected return as a compensation for risk. The reverse situation when
E(K(1)) < r may nevertheless be attractive to some investors if the risky re-
turn is high with small non-zero probability and low with large probability.
(A typical example is a lottery, where the expected return is negative.) An
investor of this kind can be called a risk-seeker. We shall return to this topic
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in Chapter 5, where a precise definition of risk will be developed. The border
case of a market in which E(K(1)) = r is referred to as risk-neutral.

It proves convenient to introduce a special symbol p∗ for the probability as
well as E∗ for the corresponding expectation satisfying the condition

E∗(K(1)) = p∗u + (1 − p∗)d = r (3.4)

for risk-neutrality, which implies that

p∗ =
r − d

u − d
.

We shall call p∗ the risk-neutral probability and E∗ the risk-neutral expecta-
tion. It is important to understand that p∗ is an abstract mathematical object,
which may or may not be equal to the actual market probability p. Only in a
risk-neutral market do we have p = p∗. Even though the risk-neutral probabil-
ity p∗ may have no relation to the actual probability p, it turns out that for
the purpose of valuation of derivative securities the relevant probability is p∗,
rather than p. This application of the risk-neutral probability, which is of great
practical importance, will be discussed in detail in Chapter 8.

Exercise 3.17

Let u = 2/10 and r = 1/10. Investigate the properties of p∗ as a function
of d.

Exercise 3.18

Show that d < r < u if and only if 0 < p∗ < 1.

Condition (3.4) implies that

p∗(u − r) + (1 − p∗)(d − r) = 0.

Geometrically, this means that the pair (p∗, 1 − p∗) regarded as a vector on
the plane R

2 is orthogonal to the vector with coordinates (u − r, d − r), which
represents the possible one-step gains (or losses) of an investor holding a single
share of stock, the purchase of which was financed by a cash loan attracting
interest at a rate r, see Figure 3.5. The line joining the points (1, 0) and (0, 1)
consists of all points with coordinates (p, 1− p), where 0 < p < 1. One of these
points corresponds to the actual market probability and one to the risk-neutral
probability.

Another interpretation of condition (3.4) for the risk-neutral probability is
illustrated in Figure 3.6. If masses p∗ and 1 − p∗ are attached at the points
with coordinates u and d on the real axis, then the centre of mass will be at r.
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Figure 3.5 Geometric interpretation of risk-neutral probability p∗

Figure 3.6 Barycentric interpretation of risk-neutral probability p∗

3.2.2 Martingale Property

By Proposition 3.4 the expectation of S(n) with respect to the risk-neutral
probability p∗ is

E∗(S(n)) = S(0)(1 + r)n, (3.5)

since r = E∗(K(1)).

Example 3.6

Consider a two-step binomial tree model such that S(0) = 100 dollars, u = 0.2,
d = −0.1 and r = 0.1. Then p∗ = 2/3 is the risk-neutral probability, and the
expected stock price after two steps is

E∗(S(2)) = S(0)(1 + r)2 = 121

dollars. After one time step, once it becomes known whether the stock price has
gone up or down, we shall need to recompute the expectation of S(2). Suppose
that the stock price has gone up to $120 after the first step. In these circum-
stances the set of possible scenarios reduces to those for which S(1) = 120
dollars, and the tree of stock prices reduces to the subtree in Figure 3.7. Given
that S(1) = 120 dollars, the risk-neutral expectation of S(2) will therefore be
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Figure 3.7 Subtree such that S(1) = 120 dollars

2
3 ×144+ 1

3 ×108 = 132 dollars, which is equal to 120(1+r). Formally, this can
be written using the conditional expectation1 of S(2) given that S(1) = 120,

E∗(S(2)|S(1) = 120) = 120(1 + r).

Similarly, if the stock price drops to $90 after one time step, the set of possible
scenarios will reduce to those for which S(1) = 90 dollars, and the tree of stock
prices will reduce to the subtree in Figure 3.8. Given that S(1) = 90 dollars,

Figure 3.8 Subtree such that S(1) = 90 dollars

the risk-neutral expectation of S(2) will be 2
3 ×108+ 1

3 ×81 = 99 dollars, which
is equal to 90(1 + r). This can be written as

E∗(S(2)|S(1) = 90) = 90(1 + r).

The last two formulae involving conditional expectation can be written as a
single equality, properly understood:

E∗(S(2)|S(1)) = S(1)(1 + r).

This analysis can be extended to any time step in the binomial tree model.
Suppose that n time steps have passed and the stock price has become S(n).
What is the risk-neutral expectation of the price S(n+1) after one more step?
1 The conditional expectation of a random variable ξ given an event A such that

P (A) �= 0 is defined by E(ξ|A) = E(ξ1A)/P (A), where 1A is the indicator random
variable, equal to 1 on A and 0 on the complement of A.
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Proposition 3.5

Given that the stock price S(n) has become known at time n, the risk-neutral
conditional expectation of S(n + 1) will be

E∗(S(n + 1)|S(n)) = S(n)(1 + r).

Proof

Suppose that S(n) = x after n time steps. Then

E∗(S(n + 1)|S(n) = x) = p∗x(1 + u) + (1 − p∗)x(1 + d)

because S(n + 1) takes the value x(1 + u) with probability p∗ and x(1 + d)
with probability 1− p∗. But p∗(1 + u) + (1− p∗)(1 + d) = 1 + r by (3.4), which
implies that

E∗(S(n + 1)|S(n) = x) = x(1 + r)

for any possible value x of S(n), completing the proof.

Dividing both sides of the equality in Proposition 3.5 by (1 + r)n+1, we
obtain the following important result for the discounted stock prices S̃(n) =
S(n) (1 + r)−n.

Corollary 3.6 (Martingale Property)

For any n = 0, 1, 2, . . .

E∗(S̃(n + 1)|S(n)) = S̃(n).

We say that the discounted stock prices S̃(n) form a martingale under the
risk-neutral probability p∗. The probability p∗ itself is also referred to as the
martingale probability .

Exercise 3.19

Let r = 0.2. Find the risk-neutral conditional expectation of S(3) given
that S(2) = 110 dollars.

3.3 Other Models

This section may be skipped at first reading because the main ideas to follow
later do not depend on the models presented here.
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3.3.1 Trinomial Tree Model

A natural generalisation of the binomial tree model extends the range of possi-
ble values of the one-step returns K(n) to three. The idea is to allow the price
not only to move up or down, but also to take an intermediate value at any
given step.

Condition 3.3

The one-step returns K(n) are independent random variables of the form

K(n) =




u with probability p,

n with probability q,

d with probability 1 − p − q,

where d < n < u and 0 < p, q, p + q < 1.

This means that u and d represent upward and downward price movements,
as before, whereas n stands for the middle price movement, typically a neutral
one, n = 0.

Condition 3.4

The one-step return r on a risk-free investment is the same at each time step
and

d < r < u.

Since S(1)/S(0) = 1 + K(1), Condition 3.3 implies that S(1) takes three
different values,

S(1) =




S(0)(1 + u)
S(0)(1 + n)
S(0)(1 + d)

with probability p,

with probability q,

with probability 1 − p − q.

Exercise 3.20

How many different values does the random variable S(2) take? What
are these values and the corresponding probabilities?

The condition E∗(K(n)) = r for risk-neutral probabilities p∗, q∗ can be
written as

p∗(u − r) + q∗(n − r) + (1 − p∗ − q∗)(d − r) = 0. (3.6)
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The triple (p∗, q∗, 1 − p∗ − q∗) regarded as a vector in R
3 is orthogonal to the

vector with coordinates (u − r, n − r, d − r) representing the possible one-step
gains (or losses) of an investor holding a singe share of stock, the purchase of
which was financed by a cash loan. This means that (p∗, q∗, 1− p∗ − q∗) lies on
the intersection of the triangle {(a, b, c) : a, b, c ≥ 0, a+b+c = 1} and the plane
orthogonal to the gains vector (u−r, n−r, d−r), as in Figure 3.9. Condition 3.4

Figure 3.9 Geometric interpretation of risk-neutral probabilities p∗, q∗

guarantees that the intersection is non-empty, since the line containing the
vector (u − r, n − r, d − r) does not pass through the positive octant. In this
case there are infinitely many risk-neutral probabilities, the intersection being
a line segment.

Another interpretation of condition (3.6) for the risk-neutral probability is
illustrated in Figure 3.10. If masses p∗, q∗ and 1 − p∗ − q∗ are attached at the
points with coordinates u, n and d on the real axis, then the centre of mass
will be at r.

Figure 3.10 Barycentric interpretation of risk-neutral probabilities p∗, q∗

Exercise 3.21

Let u = 0.2, n = 0, d = −0.1, and r = 0. Find all risk-neutral probabili-
ties.
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3.3.2 Continuous-Time Limit

Discrete-time and discrete-price models have apparent disadvantages. They
clearly restrict the range of asset price movements as well as the set of time
instants at which these movements may occur. In this section we shall outline
an approach free from such restrictions. It will be obtained by passing to the
continuous-time limit from the binomial tree model.

We shall consider a sequence of binomial tree models with time step τ = 1
N ,

letting N → ∞. For all binomial tree models in the approximating sequence it
will be assumed that the probability of upward and downward price movements
is 1

2 in each step.
In this context it proves convenient to use the logarithmic return

k(n) = ln(1 + K(n)) =
{

ln(1 + u) with probability 1/2,
ln(1 + d) with probability 1/2.

In place of the risk-free rate of return over one time step, we shall use the
equivalent continuous compounding rate r, so that the return over a time step
of length τ will be eτr.

We denote by m the expectation and by σ the standard deviation of the
logarithmic return k(1)+k(2)+· · ·+k(N) over the unit time interval from 0 to 1,
consisting of N steps of τ . The logarithmic returns k(1), k(2), . . . , k(N)
are identically distributed and independent, just as K(1),K(2), . . . ,K(N) are.
It follows that

m = E (k(1) + k(2) + · · · + k(N))

= E(k(1)) + E(k(2)) + · · · + E(k(N)) = NE(k(n)),

σ2 = Var (k(1) + k(2) + · · · + k(N))

= Var (k(1)) + Var (k(2)) + · · · + Var (k(N)) = NVar (k(n))

for each n = 1, 2, . . . , N . This means that each k(n) has expectation m
N = mτ

and standard deviation
√

σ2

N = σ
√

τ , so the two possible values of each k(n)
must be

ln(1 + u) = mτ + σ
√

τ ,

ln(1 + d) = mτ − σ
√

τ .
(3.7)

Exercise 3.22

Find m and σ for u = 0.02, d = −0.01 and τ = 1/12.

length
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Introducing a sequence of independent random variables ξ(n), each with
two values

ξ(n) =
{

+
√

τ with probability 1/2,
−√

τ with probability 1/2,

we can write the logarithmic return as

k(n) = mτ + σξ(n).

Exercise 3.23

Find the expectation and variance of ξ(n) and k(n).

Exercise 3.24

Write S(1) and S(2) in terms of m, σ, τ , ξ(1) and ξ(2).

Next, we introduce an important sequence of random variables w(n), called
a symmetric random walk, such that

w(n) = ξ(1) + ξ(2) + · · · + ξ(n),

and w(0) = 0. Clearly, ξ(n) = w(n) − w(n − 1). Because of the last equality,
the ξ(n) are referred to as the increments of w(n).

From now on we shall often write S(t) and w(t) instead of S(n) and w(n)
for t = τn, where n = 1, 2, . . . .

Proposition 3.7

The stock price at time t = τn is given by

S(t) = S(0) exp(mt + σw(t)).

Proof

By (3.2)

S(t) = S(nτ) = S(nτ − τ)ek(n)

= S(nτ − 2τ)ek(n−1)+k(n)

= · · · = S(0)ek(1)+···+k(n)

= S(0)emnτ+σ(ξ(1)+···+ξ(n))

= S(0)emt+σw(t),

as required.
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In order to pass to the continuous-time limit we use the approximation

ex ≈ 1 + x +
1
2
x2,

accurate for small values of x, to obtain

S(nτ + τ)
S(nτ)

= ek(n+1) ≈ 1 + k(n + 1) +
1
2
k(n + 1)2.

Then, we compute

k(n + 1)2 = (mτ + σξ(n + 1))2 = σ2τ + · · · ,

where the dots represent all terms with powers of τ higher than 1, which will
be omitted because they are much smaller than the leading term whenever τ

is small. Next,

S(nτ + τ)
S(nτ)

≈ 1 + mτ + σξ(n + 1) +
1
2
σ2τ

= 1 +
(

m +
1
2
σ2

)
τ + σξ(n + 1),

and so

S(nτ + τ) − S(nτ) ≈
(

m +
1
2
σ2

)
S(nτ)τ + σS(nτ)ξ(n + 1).

Since ξ(n + 1) = w(nτ + τ) − w(nτ), we obtain an approximate equation
describing the dynamics of stock prices:

S(t + τ) − S(t) ≈
(

m +
1
2
σ2

)
S(t)τ + σS(t)(w(t + τ) − w(t)), (3.8)

where t = nτ . The solution S(t) of this approximate equation is given by the
same formula as in Proposition 3.7.

For any N = 1, 2, . . . we consider a binomial tree model with time step of
length τ = 1

N . Let SN (t) be the corresponding stock prices and let wN (t) be
the corresponding symmetric random walk with increments ξN (t) = wN (t) −
wN (t − 1

N ), where t = n
N is the time after n steps.

Exercise 3.25

Compute the expectation and variance of wN (t), where t = n
N .
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We shall use the Central Limit Theorem2 to obtain the limit as N → ∞ of
the random walk wN (t). To this end we put

x(n) =
k(n) − mτ

σ
√

τ

for each n = 1, 2, . . . , which is a sequence of independent identically distributed
random variables, each with expectation 0 and variance 1. The Central Limit
Theorem implies that

x(1) + x(2) + · · · + x(n)√
n

→ X

in distribution as n → ∞, where X is a random variable with standard normal
distribution (mean 0 and variance 1).

Let us fix any t > 0. Because the random walk wN is only defined at discrete
times being whole multiples of the step τ = 1

N , we consider wN (tN ), where tN
is the whole multiple of 1

N nearest to t. Then, clearly, NtN is a whole number
for each N , and we can write

wN (tN ) =
√

tN
x(1) + x(2) + · · · + x(NtN )√

NtN
.

As N → ∞, we have tN → t and NtN → ∞, so that

wN (tN ) → W (t)

in distribution, where W (t) =
√

tX. The last equality means that W (t) is
normally distributed with mean 0 and variance t.

This argument, based on the Central Limit Theorem, works for any single
fixed time t > 0. It is possible to extend the result to obtain a limit for all
times t ≥ 0 simultaneously, but this is beyond the scope of this book. The limit
W (t) is called the Wiener process (or Brownian motion). It inherits many of
the properties of the random walk, for example:

1. W (0) = 0, which corresponds to wN (0) = 0.

2. E(W (t)) = 0, corresponding to E(wN (t)) = 0 (see the solution of Exer-
cise 3.25).

3. Var(W (t)) = t, with the discrete counterpart Var(wN (t)) = t (see the solu-
tion of Exercise 3.25).

4. The increments W (t3)−W (t2) and W (t2)−W (t1) are independent for 0 ≤
t1 ≤ t2 ≤ t3; so are the increments wN (t3) − wN (t2) and wN (t2) − wN (t1).

2 See, for example, Capiński and Zastawniak (2001).
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5. W (t) has a normal distribution with mean 0 and variance t, that is, with
density 1√

2πt
e−

x2
2t . This is related to the distribution of wN (t). The latter is

not normal, but approaches the normal distribution in the limit according
to the Central Limit Theorem.

An important difference between W (t) and wN (t) is that W (t) is defined for
all t ≥ 0, whereas the time in wN (t) is discrete, t = n/N for n = 0, 1, 2, . . . .

The price process obtained in the limit from SN (t) as N → ∞ will be
denoted by S(t). While SN (t) satisfies the approximate equation (3.8) with the
appropriate substitutions, namely

SN (t +
1
N

) − SN (t) ≈
(

m +
1
2
σ2

)
SN (t)

1
N

+ σSN (t)(wN (t +
1
N

) − wN (t)),

the continuous-time stock prices S(t) satisfy an equation of the form

dS(t) =
(

m +
1
2
σ2

)
S(t)dt + σS(t)dW (t). (3.9)

Here dS(t) = S(t+dt)−S(t) and dW (t) = W (t+dt)−W (t) are the increments
of S(t) and W (t) over an infinitesimal time interval dt. The explicit formulae
for the solutions are also similar,

SN (t) = SN (0) exp(mt + σwN (t))

in the discrete case, whereas

S(t) = S(0) exp(mt + σW (t))

in the continuous case.

Figure 3.11 Density of the distribution of S(10)

Since W (t) has a normal distribution with mean 0 and variance t, it follows
that lnS(t) has a normal distribution with mean lnS(0)+mt and variance σ2t.
Because of this it is said that the continuous-time price process S(t) has the log
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normal distribution. The number σ is called the volatility of the price S(t). The
density of the distribution of S(t) is shown in Figure 3.11 for t = 10, S(0) = 1,
m = 0 and σ = 0.1. This can be compared with the discrete distribution in
Figure 3.2.

Remark 3.6

Equation (3.9) and the increments dS(t), dW (t) and dt are introduced above
only informally by analogy with the discrete case. They can be given a pre-
cise status in Stochastic Calculus, a theory with fundamental applications in
advanced mathematical finance. In particular, (3.9) is an example of what is
known as a stochastic differential equation.
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4
Discrete Time Market Models

Having discussed a number of different models of stock price dynamics, we
shall now generalise and pursue a little further some of the ideas introduced in
Chapter 1. In particular, we shall reformulate and extend the general notions
and assumptions underlying mathematical finance already mentioned in that
chapter.

As in Chapter 3, we assume that time runs in steps of fixed length τ . For
many time-dependent quantities we shall simplify the notation by writing n in
place of the time t = nτ of the nth step.

4.1 Stock and Money Market Models

Suppose that m risky assets are traded. These will be referred to as stocks. Their
prices at time n = 0, 1, 2, . . . are denoted by S1(n), . . . , Sm(n). In addition,
investors have at their disposal a risk-free asset, that is, an investment in the
money market. Unless stated otherwise, we take the initial level of the risk-
free investment to be one unit of the home currency, A(0) = 1. However, in
some numerical examples and exercises we shall often take A(0) = 100 for
convenience. Because the money market account can be manufactured using
bonds (see Chapter 2), we shall frequently refer to a risk-free investment as a
position in bonds, finding it convenient to think of A(n) as the bond price at
time n.

The risky positions in assets number 1, . . . , m will be denoted by x1, . . . , xm,
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respectively, and the risk-free position by y. The wealth of an investor holding
such positions at time n will be

V (n) =
m∑

j=1

xjSj(n) + yA(n). (4.1)

Assumptions 1.1 to 1.5 of Chapter 1 can readily be adapted to this general
setting. The motivation and interpretation of these assumptions are the same
as in Chapter 1, with the natural changes from one to several time steps and
from one to several risky assets.

Assumption 4.1 (Randomness)

The future stock prices S1(n), . . . , Sm(n) are random variables for any n =
1, 2, . . . . The future prices A(n) of the risk-free security for any n = 1, 2, . . . are
known numbers.

Assumption 4.2 (Positivity of Prices)

All stock and bond prices are strictly positive,

S(n) > 0 and A(n) > 0 for n = 0, 1, 2, . . . .

Assumption 4.3 (Divisibility, Liquidity and Short Selling)

An investor may buy, sell and hold any number xk of stock shares of each kind
k = 1, . . . , m and take any risk-free position y, whether integer or fractional,
negative, positive or zero. In general,

x1, . . . , xm, y ∈ R.

Assumption 4.4 (Solvency)

The wealth of an investor must be non-negative at all times,

V (n) ≥ 0 for n = 0, 1, 2, . . . .

Assumption 4.5 (Discrete Unit Prices)

For each n = 0, 1, 2, . . . the share prices S1(n), . . . , Sm(n) are random variables
taking only finitely many values.
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4.1.1 Investment Strategies

The positions held by an investor in the risky and risk-free assets can be altered
at any time step by selling some assets and investing the proceeds in other
assets. In real life cash can be taken out of the portfolio for consumption or
injected from other sources. Nevertheless, we shall assume that no consumption
or injection of funds takes place in our models to keep things as simple as
possible.

Decisions made by any investor of when to alter his or her portfolio and
how many assets to buy or sell are based on the information currently available.
We are going to exclude the unlikely possibility that investors could foresee the
future, as well as the somewhat more likely (but illegal) one that they will
act on insider information. However, all the historical information about the
market up to and including the time instant when a particular trading decision
is executed will be freely available.

Example 4.1

Let m = 2 and suppose that

S1(0) = 60, S1(1) = 65, S1(2) = 75,
S2(0) = 20, S2(1) = 15, S2(2) = 25,
A(0) = 100, A(1) = 110, A(2) = 121,

in a certain market scenario. At time 0 initial wealth V (0) = 3, 000 dollars is
invested in a portfolio consisting of x1(1) = 20 shares of stock number one,
x2(1) = 65 shares of stock number two, and y(1) = 5 bonds. Our notational
convention is to use 1 rather than 0 as the argument in x1(1), x2(1) and y(1) to
reflect the fact that this portfolio will be held over the first time step. At time 1
this portfolio will be worth V (1) = 20× 65+65× 15+5× 110 = 2, 825 dollars.
At that time the number of assets can be altered by buying or selling some of
them, as long as the total value remains $2, 825. For example, we could form a
new portfolio consisting of x1(2) = 15 shares of stock one, x2(2) = 94 shares of
stock two, and y(2) = 4 bonds, which will be held during the second time step.
The value of this portfolio will be V (2) = 15× 75 + 94× 25 + 4× 121 = 3, 959
dollars at time 2, when the positions in stocks and bonds can be adjusted once
again, as long as the total value remains $3, 959, and so on. However, if no
adjustments are made to the original portfolio, then it will be worth $2, 825 at
time 1 and $3, 730 at time 2.
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Definition 4.1

A portfolio is a vector (x1(n), . . . , xm(n), y(n)) indicating the number of shares
and bonds held by an investor between times n − 1 and n. A sequence of
portfolios indexed by n = 1, 2, . . . is called an investment strategy. The wealth
of an investor or the value of the strategy at time n ≥ 1 is

V (n) =
m∑

j=1

xj(n)Sj(n) + y(n)A(n).

At time n = 0 the initial wealth is given by

V (0) =
m∑

j=1

xj(1)Sj(0) + y(1)A(0).

We have seen in Example 4.1 that the contents of a portfolio can be adjusted
by buying or selling some assets at any time step, as long as the current value
of the portfolio remains unaltered.

Definition 4.2

An investment strategy is called self-financing if the portfolio constructed at
time n ≥ 1 to be held over the next time step n + 1 is financed entirely by the
current wealth V (n), that is,

m∑
j=1

xj(n + 1)Sj(n) + y(n + 1)A(n) = V (n). (4.2)

Example 4.2

Let the stock and bond prices be as in Example 4.1. Suppose that an initial
wealth of V (0) = 3, 000 dollars is invested by purchasing x1(1) = 18.22 shares
of the first stock, short selling x2(1) = −16.81 shares of the second stock,
and buying y(1) = 22.43 bonds. The time 1 value of this portfolio will be
V (1) = 18.22 × 65 − 16.81 × 15 + 22.43 × 110 = 3, 399.45 dollars. The investor
will benefit from the drop of the price of the shorted stock. This example
illustrates the fact that portfolios containing fractional or negative numbers of
assets are allowed.

We do not impose any restrictions on the numbers x1(n), . . . , xm(n), y(n).
The fact that they can take non-integer values is referred to as divisibility.
Negative xj(n) means that stock number j is sold short (in other words, a
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short position is taken in stock j), negative y(n) corresponds to borrowing
cash (taking a short position in the money market, for example, by issuing and
selling a bond). The absence of any bounds on the size of these numbers means
that the market is liquid, that is, any number of assets of each type can be
purchased or sold at any time.

In practice some security measures to control short selling may be imple-
mented by stock exchanges. Typically, investors are required to pay a certain
percentage of the short sale as a security deposit to cover possible losses. If their
losses exceed the deposit, the position must be closed. The deposit creates a
burden on the portfolio, particularly if it earns no interest for the investor.
However, restrictions of this kind may not concern dealers who work for ma-
jor financial institutions holding large numbers of shares deposited by smaller
investors. These shares may be borrowed internally in lieu of short selling.

Example 4.3

We continue assuming that stock prices follow the scenario in Example 4.1.
Suppose that 20 shares of the first stock are sold short, x1(1) = −20. The
investor will receive 20 × 60 = 1, 200 dollars in cash, but has to pay a security
deposit of, say 50%, that is, $600. One time step later she will suffer a loss
of 20 × 65 − 1, 200 = 100 dollars. This is subtracted from the deposit and
the position can be closed by withdrawing the balance of 600 − 100 = 400
dollars. On the other hand, if 60 shares of the second stock are shorted, that is,
x2(1) = −60, then the investor will make a profit of 1, 200−60×15 = 300 dollars
after one time step. The position can be closed with final wealth 600+300 = 900
dollars. In both cases the final balance should be reduced by 600 × 0.1 = 60
dollars, the interest that would have been earned on the amount deposited, had
it been invested in the money market.

An investor constructing a portfolio at time n has no knowledge of future
stock prices. In particular, no insider dealing is allowed. Investment decisions
can be based only on the performance of the market to date. This is reflected
in the following definition.

Definition 4.3

An investment strategy is called predictable if for each n = 0, 1, 2, . . . the port-
folio (x1(n + 1), . . . , xm(n + 1), y(n + 1)) constructed at time n depends only
on the nodes of the tree of market scenarios reached up to and including time n.

The next proposition shows that the position taken in the risk-free asset is
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always determined by the current wealth and the positions in risky assets.

Proposition 4.1

Given the initial wealth V (0) and a predictable sequence (x1(n), . . . , xm(n)),
n = 1, 2, . . . of positions in risky assets, it is always possible to find a sequence
y(n) of risk-free positions such that (x1(n), . . . , xm(n), y(n)) is a predictable
self-financing investment strategy.

Proof

Put

y(1) =
V (0) − x1(1)S1(0) − · · · − xm(1)Sm(0)

A(0)
and then compute

V (1) = x1(1)S1(1) + · · · + xm(1)Sm(1) + y(1)A(1).

Next,

y(2) =
V (1) − x1(2)S1(1) − · · · − xm(2)Sm(1)

A(1)
,

V (2) = x1(2)S1(2) + · · · + xm(2)Sm(2) + y(2)A(2),

and so on. This clearly defines a self-financing strategy. The strategy is pre-
dictable because y(n + 1) can be expressed in terms of stock and bond prices
up to time n.

Exercise 4.1

Find the number of bonds y(1) and y(2) held by an investor during the
first and second steps of a predictable self-financing investment strategy
with initial value V (0) = 200 dollars and risky asset positions

x1(1) = 35.24, x1(2) = −40.50,

x2(1) = 24.18, x2(2) = 10.13,

if the prices of assets follow the scenario in Example 4.1. Also find the
time 1 value V (1) and time 2 value V (2) of this strategy.

Example 4.4

Once again, suppose that the stock and bond prices follow the scenario in
Example 4.1. If an amount V (0) = 100 dollars were invested in a portfolio with
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x1(1) = −12, x2(1) = 31 and y(1) = 2, then it would lead to insolvency, since
the time 1 value of this portfolio is negative, V (1) = −12×65+31×15+2×110 =
−95 dollars .

Such a portfolio, which is excluded by Assumption 4.4, would be impossible
to construct in practice. No short position will be allowed unless it can be
closed at any time and in any scenario (if necessary, by selling other assets in
the portfolio to raise cash). This means that the wealth of an investor must be
non-negative at all times.

Definition 4.4

A strategy is called admissible if it is self-financing, predictable, and for each
n = 0, 1, 2, . . .

V (n) ≥ 0

with probability 1.

Exercise 4.2

Consider a market consisting of one risk-free asset with A(0) = 10 and
A(1) = 11 dollars, and one risky asset such that S(0) = 10 and S(1) =
13 or 9 dollars. On the x, y plane draw the set of all portfolios (x, y)
such that the one-step strategy involving risky position x and risk-free
position y is admissible.

4.1.2 The Principle of No Arbitrage

We are ready to formulate the fundamental principle underlying all mathe-
matical models in finance. It generalises the simplified one-step version of the
No-Arbitrage Principle in Chapter 1 to models with several time steps and
several risky assets. Whereas the notion of a portfolio is sufficient to state the
one-step version, in the general setting we need to use a sequence of portfolios
forming an admissible investment strategy. This is because investors can adjust
their positions at each time step.

Assumption 4.6 (No-Arbitrage Principle)

There is no admissible strategy such that V (0) = 0 and V (n) > 0 with positive
probability for some n = 1, 2, . . . .
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Exercise 4.3

Show that the No-Arbitrage Principle would be violated if there was a
self-financing predictable strategy with initial value V (0) = 0 and final
value 0 �= V (2) ≥ 0, such that V (1) < 0 with positive probability.

The strategy in Exercise 4.3 clearly violates the solvency assumption (As-
sumption 4.4), since V (1) may be negative. In fact, this assumption is not essen-
tial for the formulation of the No-Arbitrage Principle. An admissible strategy
realising an arbitrage opportunity can be found whenever there is a predictable
self-financing strategy (possibly violating Assumption 4.4) such that V (0) = 0
and 0 �= V (n) ≥ 0 for some n > 0.

Exercise 4.4

Consider a market with one risk-free asset and one risky asset that follows
the binomial tree model. Suppose that whenever stock goes up, you
can predict that it will go down at the next step. Find a self-financing
(but not necessarily predictable) strategy with V (0) = 0, V (1) ≥ 0 and
0 �= V (2) ≥ 0.

This exercise indicates that predictability is an essential assumption in the
No-Arbitrage Principle. An investor who could foresee the future behaviour of
stock prices (here, if stock goes down at one step, you can predict what it will
do at the next step) would always be able to find a suitable investment strategy
to ensure a risk-free profit.

Exercise 4.5

Consider a market with a risk-free asset such that A(0) = 100, A(1) =
110, A(2) = 121 dollars and a risky asset, the price of which can follow
three possible scenarios,

Scenario S(0) S(1) S(2)
ω1 100 120 144
ω2 100 120 96
ω3 100 90 96

Is there an arbitrage opportunity if a) there are no restrictions on short
selling, and b) no short selling of the risky asset is allowed?
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Exercise 4.6

Given the bond and stock prices in Exercise 4.5, is there an arbitrage
strategy if short selling of stock is allowed, but the number of units of
each asset in a portfolio must be an integer?

Exercise 4.7

Given the bond and stock prices in Exercise 4.5, is there an arbitrage
strategy if short selling of stock is allowed, but transaction costs of 5%
of the transaction volume apply whenever stock is traded.

4.1.3 Application to the Binomial Tree Model

We shall see that in the binomial tree model with several time steps Condi-
tion 3.2 is equivalent to the lack of arbitrage.

Proposition 4.2

The binomial tree model admits no arbitrage if and only if d < r < u.

Proof

We shall begin with a one-step binomial tree. This will then be used as a
building block in the case of several time steps.

One step. Suppose that r ≤ d. If so, then:

• Borrow 1 dollar at the risk-free rate.
• Buy 1/S(0) shares.

That is to say, construct a portfolio with x = 1/S(0) and y = −1, the value
of which is V (0) = 0. After one step, either S(1) = S(0)(1 + d) and V (1) =
−r+d ≥ 0, or S(1) = S(0)(1+u) and V (1) = −r+u > 0, leading to arbitrage.

Suppose that u ≤ r. In this case:

• Buy one bond.
• Sell short 1/S(0) shares.

The resulting portfolio with x = −1/S(0) and y = 1 will once again have initial
value V (0) = 0. After one step this portfolio will be worth V (1) = r − u ≥ 0 if
the stock price goes up, or V (1) = r − d > 0 if it goes down, also realising an
arbitrage opportunity.

Finally, suppose that d < r < u. Every portfolio with V (0) = 0 must be
of the form x = a/S(0) and y = −a for some real number a. Consider the
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following three cases:

1) a = 0 (a trivial portfolio consisting of no cash and no stock). Then V (1) = 0
identically.

2) a > 0 (a cash loan invested in stock). Then V (1) = a(d− r) < 0 if the price
of stock goes down.

3) a < 0 (a long position in bonds financed by shorting stock). In this case
V (1) = a(u − r) < 0 if stock goes up.

Arbitrage is clearly impossible when d < r < u.
The above argument shows that d < r < u if and only if there is no arbitrage

in the one-step case.
Several steps. Let d < r < u and suppose there is an arbitrage strategy.

The tree of stock prices can be considered as a collection of one-step subtrees,
as in Figure 4.1. By taking the smallest n for which V (n) �= 0, we can find a
one-step subtree with V (n − 1) = 0 at its root and V (n) ≥ 0 at each node
growing out of this root, with V (n) > 0 at one or more of these nodes. By the
one-step case this is impossible if d < r < u, leading to a contradiction.

Figure 4.1 One-step subtrees in a two-step binomial model

Conversely, suppose that there is no arbitrage in the binomial tree model
with several steps. Then for any strategy such that V (0) = 0 it follows that
V (n) = 0 for any n and, in particular, V (1) = 0. This implies that d < r < u

by the above argument in the one-step case.

We shall conclude this chapter with a brief discussion of a fundamental re-
lationship between the risk-neutral probability and the No-Arbitrage Principle.
First, we observe that the lack of arbitrage is equivalent to the existence of a
risk-neutral probability in the binomial tree model.

Proposition 4.3

The binomial tree model admits no arbitrage if and only if there exists a risk-
neutral probability p∗ such that 0 < p∗ < 1.
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Proof

This is an immediate consequence of Exercise 3.18 and Proposition 4.2.

4.1.4 Fundamental Theorem of Asset Pricing

In this section, which can be omitted on first reading, we return to the general
setting under Assumptions 4.1 to 4.5.

We already know that the discounted stock prices in the binomial tree model
form a martingale under the risk-neutral probability, see Proposition 3.5 and
Corollary 3.6. The following result extends these observations to any discrete
model.

Theorem 4.4 (Fundamental Theorem of Asset Pricing)

The No-Arbitrage Principle is equivalent to the existence of a probability P∗
on the set of scenarios Ω such that P∗(ω) > 0 for each scenario ω ∈ Ω and the
discounted stock prices S̃j(n) = Sj(n)/A(n) satisfy

E∗(S̃j(n + 1)|S(n)) = S̃j(n) (4.3)

for any j = 1, . . . , m and n = 0, 1, 2, . . . , where E∗( · |S(n)) denotes the
conditional expectation with respect to probability P∗ computed once the stock
price S(n) becomes known at time n.

The proof of the Fundamental Theorem of Asset Pricing is quite technical
and will be omitted.

Definition 4.5

A sequence of random variables X(0), X(1), X(2), . . . such that

E∗(X(n + 1)|S(n)) = X(n)

for each n = 0, 1, 2, . . . is said to be a martingale with respect to P∗.

Condition (4.3) can be expressed by saying that the discounted stock prices
S̃j(0), S̃j(1), S̃j(2), . . . form a martingale with respect to P∗. The latter is called
a risk-neutral or martingale probability on the set of scenarios Ω. Moreover, E∗
is called a risk-neutral or martingale expectation.



84 Mathematics for Finance

Example 4.5

Let A(0) = 100, A(1) = 110, A(2) = 121 and suppose that stock prices can
follow four possible scenarios:

Scenario S(0) S(1) S(2)
ω1 90 100 112
ω2 90 100 106
ω3 90 80 90
ω4 90 80 80

The tree of stock prices is shown in Figure 4.2. The risk-neutral probability P∗
is represented by the branching probabilities p∗, q∗, r∗ at each node. Condition

Figure 4.2 Tree of stock prices in Example 4.5

(4.3) for S̃(n) = S(n)/A(n) can be written in the form of three equations, one
for each node of the tree,

100
110

p∗ +
80
110

(1 − p∗) =
90
100

,

112
121

q∗ +
106
121

(1 − q∗) =
100
110

,

90
121

r∗ +
80
121

(1 − r∗) =
80
110

.

These can be solved to find

p∗ =
19
20

, q∗ =
2
3
, r∗ =

4
5
.

For each scenario (each path through the tree) the corresponding risk-neutral
probability can be computed as follows:

P∗(ω1) = p∗q∗ =
19
20

× 2
3

=
19
30

,

P∗(ω2) = p∗(1 − q∗) =
19
20

×
(

1 − 2
3

)
=

19
60

,

P∗(ω3) = (1 − p∗)r∗ =
(

1 − 19
20

)
× 4

5
=

1
25

,

P∗(ω4) = (1 − p∗)(1 − r∗) =
(

1 − 19
20

)
×
(

1 − 4
5

)
=

1
100

.
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By Theorem 4.4 the existence of a risk-neutral probability implies that there
is no arbitrage.

4.2 Extended Models

Securities such as stock, which are traded independently of other assets, are
called primary securities. By contrast, derivative securities such as, for exam-
ple, options or forwards (in Chapter 1 we have seen some simple examples of
these) are legal contracts conferring certain financial rights or obligations upon
the holder, contingent on the prices of other securities, referred to as the un-
derlying securities. An underlying security may be a primary security, as for a
forward contract on stock, but it may also be a derivative security, as in the
case of an option on futures. A derivative security cannot exist in its own right,
unless the underlying security or securities are traded. Derivative securities are
also referred to as contingent claims because their value is contingent on the
underlying securities.

For example, the holder of a long forward contract on a stock is committed
to buying the stock for the forward price at a specified time of delivery, no
matter how much the actual stock price turns out to be at that time. The
value of the forward position is contingent on the stock. It will become positive
if the market price of stock turns out to be higher than the forward price on
delivery. If the stock price turns out to be lower than the forward price, then
the value of the forward position will be negative.

Remark 4.1

The assumptions in Section 4.1, including the No-Arbitrage Principle, are
stated for strategies consisting of primary securities only, such as stocks and
bonds (or the money market account). Nevertheless, in many texts they are
invoked in arbitrage proofs involving strategies constructed out of derivative
securities in addition to stocks and bonds. To avoid this inaccuracy the as-
sumptions need to be extended to strategies consisting of both primary and
derivative securities.

The setting of Section 4.1, involving portfolios of risky stocks and the money
market account, will be extended to include risky securities of various other
kinds in addition to (and sometimes in place of) stock. In particular, to cover
real-life situations we need to include derivative securities such as forwards or
options, but also primary securities such as bonds of various maturities, the
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future prices of which may be random (except, of course, at maturity). We
shall also relax the assumption that an investment in a money market account
should be risk-free, with a view towards modelling random interest rates. In
this way we prepare the stage for a detailed study of derivative securities in
Chapters 6, 7 and 8, and random bond prices and the term structure of interest
rates in Chapters 10 and 11.

Securities of various kinds will be treated on a similar footing as stock in
Section 4.1. We shall denote by S1(n), . . . , Sm(n) the time n prices of m dif-
ferent primary securities, typically m different stocks, though they may also
include other assets such as foreign currency, commodities or bonds of vari-
ous maturities. Moreover, the price of one distinguished primary security, the
money market account, will be denoted by A(n). In addition, we introduce k

different derivative securities such as forwards, call and put options, or indeed
any other contingent claims, whose time n market prices will be denoted by
D1(n), . . . , Dk(n).

As opposed to stocks and bonds, we can no longer insist that the prices of all
derivative securities should be positive. For example, at the time of exchanging
a forward contract its value is zero, which may and often does become negative
later on because the holder of a long forward position may have to buy the
stock above its market price at delivery. The future prices S1(n), . . . , Sm(n) and
A(n) of primary securities and the future prices D1(n), . . . , Dk(n) of derivative
securities may be random for n = 1, 2, . . . , but we do not rule out the possibility
that some of them, such as the prices of bonds at maturity, may in fact be
known in advance, being represented by constant random variables or simply
real numbers. All the current prices S1(0), . . . , Sm(0), A(0), D1(0), . . . , Dk(0)
are of course known at time 0, that is, are also just real numbers.

The positions in primary securities, including the money market account,
will be denoted by x1, . . . , xm and y, and those in derivative securities by
z1, . . . , zk, respectively. The wealth of an investor holding such positions at
time n will be

V (n) =
m∑

j=1

xjSj(n) + yA(n) +
k∑

i=1

ziDi(n),

which extends formula (4.1).
The assumptions in Section 4.1 need to be replaced by the following.

Assumption 4.1a (Randomness)

The asset prices S1(n), . . . , Sm(n), A(n), D1(n), . . . , Dk(n) are random vari-
ables for any n = 1, 2, . . . .
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Assumption 4.2a (Positivity of Prices)

The prices of primary securities, including the money market account, are pos-
itive,

S1(n), . . . , Sm(n), A(n) > 0 for n = 0, 1, 2, . . . .

Assumption 4.3a (Divisibility, Liquidity and Short Selling)

An investor may buy, sell and hold any number of assets, whether integer or
fractional, negative, positive or zero. In general,

x1, . . . , xm, y, z1, . . . , zk ∈ R.

Assumption 4.4a (Solvency)

The wealth of an investor must be non-negative at all times,

V (n) ≥ 0 for n = 0, 1, 2, . . . .

Assumption 4.5a (Discrete Unit Prices)

For each n = 0, 1, 2, . . . the prices S1(n), . . . , Sm(n), A(n), D1(n), . . . , Dk(n) are
random variables taking only finitely many values.

Definitions 4.1 to 4.4 also extend immediately to the case in hand.

Definition 4.1a

A portfolio is a vector

(x1(n), . . . , xm(n), y(n), z1(n), . . . , zk(n))

indicating the number of primary and derivative securities held by an investor
between times n − 1 and n. A sequence of portfolios indexed by n = 1, 2, . . .

is called an investment strategy. The wealth of an investor or the value of the
strategy at time n ≥ 1 is

V (n) =
m∑

j=1

xj(n)Sj(n) + y(n)A(n) +
k∑

i=1

zi(n)Di(n).

At time n = 0 the initial wealth is given by

V (0) =
m∑

j=1

xj(1)Sj(0) + y(1)A(0) +
k∑

i=1

zi(1)Di(0).
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Definition 4.2a

An investment strategy is called self-financing if the portfolio constructed at
time n ≥ 1 to be held over the next time step n + 1 is financed entirely by the
current wealth V (n), that is,

m∑
j=1

xj(n + 1)Sj(n) + y(n + 1)A(n) +
k∑

i=1

zi(n + 1)Di(n) = V (n).

Definition 4.3a

An investment strategy is called predictable if for each n = 0, 1, 2, . . . the port-
folio

(x1(n + 1), . . . , xm(n + 1), y(n + 1), z1(n + 1), . . . , zk(n + 1))

constructed at time n depends only on the nodes of the tree of market scenarios
reached up to and including time n.

Definition 4.4a

A strategy is called admissible if it is self-financing, predictable, and for each
n = 0, 1, 2, . . .

V (n) ≥ 0

with probability 1.

The No-Arbitrage Principle extends without any modifications.

Assumption 4.6a (No-Arbitrage Principle)

There is no admissible strategy such that V (0) = 0 and V (n) > 0 with positive
probability for some n = 1, 2, . . . .

Finally, the Fundamental Theorem of Asset Pricing takes the following form.

Theorem 4.4a (Fundamental Theorem of Asset Pricing)

The No-Arbitrage Principle is equivalent to the existence of a probability P∗
on the set of scenarios Ω such that P∗(ω) > 0 for each scenario ω ∈ Ω and the
discounted prices of primary and derivative securities S̃j(n) = Sj(n)/A(n) and
D̃i(n) = Di(n)/A(n) form martingales with respect to P∗, that is, satisfy

E∗(S̃j(n + 1)|S(n)) = S̃j(n), E∗(D̃i(n + 1)|S(n)) = D̃i(n)
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for any j = 1, . . . , m, any i = 1, . . . , k and any n = 0, 1, 2, . . . , where E∗( · |S(n))
denotes the conditional expectation with respect to probability P∗ computed
once the stock price S(n) becomes known at time n.

Example 4.6

We shall use the same scenarios ω1, ω2, ω3, ω4, stock prices S(0), S(1), S(2)
and money market prices A(0), A(1), A(2) as in Example 4.5. In addition, we
consider a European call option giving the holder the right (but no obligation)
to buy the stock for the strike price of X = 85 dollars at time 2.

In this situation we need to consider an extended model with three assets,
the stock, the money market, and the option, with unit prices S(n), A(n), CE(n),
respectively, where CE(n) is the market price of the option at time n = 0, 1, 2.

The time 2 option price is determined by the strike price and the stock
price,

CE(2) = max{S(2) − X, 0}.
The prices CE(0) and CE(1) can be found using the Fundamental Theorem
of Asset Pricing. (Which explains the name of the theorem!) According to the
theorem, there is a probability P∗ such that the discounted stock and option
prices S̃(n) = S(n)/A(n) and C̃E(n) = CE(n)/A(n) are martingales, or else
an arbitrage opportunity would exist. However, there is only one probability
P∗ turning S̃(n) into a martingale, namely that found in Example 4.5. As a
result, C̃E(n) must be a martingale with respect to the same probability P∗.
This gives

CE(1) =
A(1)
A(2)

E∗(CE(2)|S(1)) and CE(0) =
A(0)
A(1)

E∗(CE(1)).

The values of P∗ for each scenario found in Example 4.5 can now be used to
compute CE(1) and then CE(0). For example,

CE(1, ω1) = CE(1, ω2) =
A(1)
A(2)

P∗(ω1)CE(2, ω1) + P∗(ω2)CE(2, ω2)
P∗(ω1) + P∗(ω2)

=
110
121

19
30 × 27 + 19

60 × 21
19
30 + 19

60

∼= 22.73

dollars. Proceeding in a similar way, we obtain

Scenario CE(0) CE(1) CE(2)
ω1 19.79 22.73 27.00
ω2 19.79 22.73 21.00
ω3 19.79 3.64 5.00
ω4 19.79 3.64 0.00
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Exercise 4.8

Apply the Fundamental Theorem of Asset Pricing to find the time 0
and 1 prices of a put option with strike price $110 maturing after two
steps, given the same scenarios ω1, ω2, ω3, ω4, stock prices S(0), S(1), S(2)
and money market prices A(0), A(1), A(2) as in Example 4.5.



5
Portfolio Management

An investment in a risky security always carries the burden of possible losses
or poor performance. In this chapter we analyse the advantages of spreading
the investment among several securities. Even though the mathematical tools
involved are quite simple, they lead to formidable results.

5.1 Risk

First of all, we need to identify a suitable quantity to measure risk. An invest-
ment in bonds returning, for example, 8% at maturity is free of risk, in which
case the measure of risk should be equal to zero. If the return on an investment
is, say 11% or 13%, depending on the market scenario, then the risk is clearly
smaller as compared with an investment returning 2% or 22%, respectively.
However, the spread of return values can hardly be used to measure risk be-
cause it ignores the probabilities. If the return rate is 22% with probability 0.99
and 2% with probability 0.01, the risk can be considered quite small, whereas
the same rates of return occurring with probability 0.5 each would indicate a
rather more risky investment. The desired quantity needs to capture the follow-
ing two aspects of risk: 1) the distances between a certain reference value and
the rates of return in each market scenario and 2) the probabilities of different
scenarios.

The return K on a risky investment is a random variable. It is natural to
take the expectation E(K) as the reference value. The variance Var(K) turns

91
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out to be a convenient measure of risk.

Exercise 5.1

Compute the risk Var(K1), Var(K2) and Var(K3) in each of the following
three investment projects, where the returns K1, K2 and K3 depend on
the market scenario:

Scenario Probability Return K1 Return K2 Return K3

ω1 0.25 12% 11% 2%
ω2 0.75 12% 13% 22%

Which of these is the most risky and the least risky project?

Exercise 5.2

Consider two scenarios, ω1 with probability 1
4 and ω2 with probability 3

4 .
Suppose that the return on a certain security is K1(ω1) = −2% in the
first scenario and K1(ω2) = 8% in the second scenario. If the return on
another security is K2(ω1) = −4% in the first scenario, find the return
K2(ω2) in the other scenario such that the two securities have the same
risk.

In some circumstances the standard deviation σK =
√

Var(K) of the return
is a more convenient measure of risk. If a quantity is measured in certain units,
then the standard deviation will be expressed in the same units, so it can be
related directly to the original quantity, in contrast to variance, which will be
expressed in squared units.

Example 5.1

Let the return on an investment be K = 3% or −1%, both with probability
0.5. Then the risk is

Var(K) = 0.0004 or σK = 0.02,

depending on whether we choose the variance or standard deviation. Now sup-
pose that the return on another investment is double that on the first invest-
ment, being equal to 2K = 6% or −2%, also with probability 0.5 each. Then
the risk of the second investment will be

Var(2K) = 0.0016 or σ2K = 0.04.

The risk as measured by the variance is quadrupled, while the standard devi-
ation is simply doubled.
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This illustrates the following general rule:

Var(aK) = a2Var(K),

σaK = |a|σK

for any real number a.

Remark 5.1

Another natural way to quantify risk would be to use the variance Var(k) (or
the standard deviation σk) of the logarithmic return k. The choice between K

and k is dictated to a large extent by the properties needed to handle the task
in hand. For example, if one is interested in a sequence of investments following
one another in time, then the variance of the logarithmic return may be more
useful as a measure of risk. This is because of the additivity of risks based on
logarithmic returns:

Var(k(0, n)) = Var(k(1)) + · · · + Var(k(n)),

where k(i) is the logarithmic return in time step i = 1, . . . , n and k(0, n) is the
logarithmic return over the whole time interval from 0 to n, provided that the
k(i) are independent. The above formula holds because k(0, n) = k(1) + · · · +
k(n) by Proposition 3.2, and the variance of a sum of independent random
variables is the sum of their variances. (This is not necessarily so without
independence.)

However, in the present chapter we shall be concerned with a portfolio of
several securities held simultaneously over a single time step. The properties
of E(K) and Var(K), where K is the ordinary return on the portfolio (see
formulae (5.4) and (5.5) below), are much more convenient for this purpose
than those for the logarithmic return.

Exercise 5.3

Consider two risky securities with returns K1 and K2 given by

Scenario Probability Return K1 Return K2

ω1 0.5 10.53% 7.23%
ω2 0.5 13.87% 10.57%

Compute the corresponding logarithmic returns k1 and k2 and compare
Var(k1) with Var(k2) and Var(K1) with Var(K2).



94 Mathematics for Finance

5.2 Two Securities

We begin a detailed discussion of the relationship between risk and expected
return in the simple situation of a portfolio with just two risky securities.

Example 5.2

Suppose that the prices of two stocks behave as follows:

Scenario Probability Return K1 Return K2

ω1 0.5 10% −5%
ω2 0.5 −5% 10%

If we split our money equally between these two stocks, then we shall earn 5%
in each scenario (losing 5% on one stock, but gaining 10% on the other). Even
though an investment in either stock separately involves risk, we have reduced
the overall risk to nil by splitting the investment between the two stocks. This is
a simple example of diversification, which is particularly effective here because
the returns are negatively correlated.

In addition to the description of a portfolio in terms of the number of shares
of each security held (developed in Section 4.1), we shall introduce another very
convenient notation to describe the allocation of funds between the securities.

Example 5.3

Suppose that the prices of two kinds of stock are S1(0) = 30 and S2(0) = 40
dollars. We prepare a portfolio worth V (0) = 1, 000 dollars by purchasing
x1 = 20 shares of stock number 1 and x2 = 10 shares of stock number 2. The
allocation of funds between the two securities is

w1 =
30 × 20
1, 000

= 60%, w2 =
10 × 40
1, 000

= 40%.

The numbers w1 and w2 are called the weights . If the stock prices change to
S1(1) = 35 and S2(1) = 39 dollars, then the portfolio will be worth V (1) =
20 × 35 + 10 × 39 = 1, 090 dollars. Observe that this amount is no longer split
between the two securities as 60% to 40%, but as follows:

20 × 35
1, 090

∼= 64.22%,
10 × 39
1, 090

∼= 35.78%,

even though the actual number of shares of each stock in the portfolio remains
unchanged.
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The weights are defined by

w1 =
x1S1(0)
V (0)

, w2 =
x2S2(0)
V (0)

,

where x1 and x2 are share numbers of stock 1 and 2 in the portfolio. This
means that wk is the percentage of the initial value of the portfolio invested in
security number k. Observe that the weights always add up to 100%,

w1 + w2 =
x1S1(0) + x2S2(0)

V (0)
=

V (0)
V (0)

= 1. (5.1)

If short selling is allowed, then one of the weights may be negative and the
other one greater than 100%.

Example 5.4

Suppose that a portfolio worth V (0) = 1, 000 dollars is constructed by taking
a long position in stock number 1 and a short position in stock number 2 in
Example 5.3 with weights w1 = 120% and w2 = −20%. The portfolio will
consist of

x1 = w1
V (0)
S1(0)

= 120% × 1, 000
30

= 40,

x2 = w2
V (0)
S2(0)

= −20% × 1, 000
40

= −5

shares of type 1 and 2. If the stock prices change as in Example 5.3, then this
portfolio will be worth

V (1) = x1S1(1) + x2S2(1) = V (0)
(

w1
S1(1)
S1(0)

+ w2
S2(1)
S2(0)

)

= 1, 000
(

120% × 35
30

− 20% × 39
40

)
= 1, 205

dollars, benefiting from both the rise of the price of stock 1 and the fall of
stock 2. However, a small investor may have to face some restrictions on short
selling. For example, it may be necessary to pay a security deposit equal to
50% of the sum raised by shorting stock number 2. The deposit, which would
amount to 50% × 200 = 100 dollars, can be borrowed at the risk-free rate and
the interest paid on this loan will need to be subtracted from the final value
V (1) of the portfolio.
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Exercise 5.4

Compute the value V (1) of a portfolio worth initially V (0) = 100
dollars that consists of two securities with weights w1 = 25% and
w2 = 75%, given that the security prices are S1(0) = 45 and S2(0) = 33
dollars initially, changing to S1(1) = 48 and S2(1) = 32 dollars.

We can see in Example 5.4 and Exercise 5.4 that V (1)/V (0) depends on
the prices of securities only through the ratios S1(1)/S1(0) = 1 + K1 and
S2(1)/S2(0) = 1 + K2. This indicates that the return on the portfolio should
depend only on the weights w1, w2 and the returns K1,K2 on each of the two
securities.

Proposition 5.1

The return KV on a portfolio consisting of two securities is the weighted average

KV = w1K1 + w2K2, (5.2)

where w1 and w2 are the weights and K1 and K2 the returns on the two
components.

Proof

Suppose that the portfolio consists of x1 shares of security 1 and x2 shares of
security 2. Then the initial and final values of the portfolio are

V (0) = x1S1(0) + x2S2(0),

V (1) = x1S1(0)(1 + K1) + x2S2(0)(1 + K2)

= V (0) (w1(1 + K1) + w2(1 + K2)) .

As a result, the return on the portfolio is

KV =
V (1) − V (0)

V (0)
= w1K1 + w2K2.

Exercise 5.5

Find the return on a portfolio consisting of two kinds of stock with
weights w1 = 30% and w2 = 70% if the returns on the components are



5. Portfolio Management 97

as follows:
Scenario Return K1 Return K2

ω1 12% −4%
ω2 10% 7%

Remark 5.2

A similar formula to (5.2) holds for logarithmic returns,

ekV = w1ek1 + w2ek2 . (5.3)

However, this is not particularly useful if the expectations and variances or
standard deviations of returns need to be related to the weights. On the other
hand, as will be seen below, formula (5.2) lends itself well to this task.

Exercise 5.6

Verify formula (5.3).

5.2.1 Risk and Expected Return on a Portfolio

The expected return on a portfolio consisting of two securities can easily be
expressed in terms of the weights and the expected returns on the components,

E(KV ) = w1E(K1) + w2E(K2). (5.4)

This follows at once from (5.2) by the additivity of mathematical expectation.

Example 5.5

Consider three scenarios with the probabilities given below (a trinomial model).
Let the returns on two different stocks in these scenarios be as follows:

Scenario Probability Return K1 Return K2

ω1 (recession) 0.2 −10% −30%
ω2 (stagnation) 0.5 0% 20%
ω3 (boom) 0.3 10% 50%

The expected returns on stock are

E(K1) = −0.2 × 10% + 0.5 × 0% + 0.3 × 10% = 1%,

E(K2) = −0.2 × 30% + 0.5 × 20% + 0.3 × 50% = 19%.
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Suppose that w1 = 60% of available funds is invested in stock 1 and 40% in
stock 2. The expected return on such a portfolio is

E(KV ) = w1E(K1) + w2E(K2)

= 0.6 × 1% + 0.4 × 19% = 8.2%.

Exercise 5.7

Compute the weights in a portfolio consisting of two kinds of stock if
the expected return on the portfolio is to be E(KV ) = 20%, given the
following information on the returns on stock 1 and 2:

Scenario Probability Return K1 Return K2

ω1 (recession) 0.1 −10% 10%
ω2 (stagnation) 0.5 0% 20%
ω3 (boom) 0.4 20% 30%

To compute the variance of KV we need to know not only the variances
of the returns K1 and K2 on the components in the portfolio, but also the
covariance between the two returns.

Theorem 5.2

The variance of the return on a portfolio is given by

Var(KV ) = w2
1Var(K1) + w2

2Var(K2) + 2w1w2Cov(K1,K2). (5.5)

Proof

Substituting KV = w1K1 + w2K2 and collecting the terms with w2
1, w2

2 and
w1w2, we compute

Var(KV ) = E(K2
V ) − E(KV )2

= w2
1[E(K2

1 ) − E(K1)2] + w2
2[E(K2

2 ) − E(K2)2]

+2w1w2[E(K1K2) − E(K1)E(K2)]

= w2
1Var(K1) + w2

2Var(K2) + 2w1w2Cov(K1,K2).
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To avoid clutter, we introduce the following notation for the expectation
and variance of a portfolio and its components:

µV = E(KV ), σV =
√

Var(KV ),
µ1 = E(K1), σ1 =

√
Var(K1),

µ2 = E(K2), σ2 =
√

Var(K2).

We shall also use the correlation coefficient

ρ12 =
Cov(K1,K2)

σ1σ2
. (5.6)

Formulae (5.4) and (5.5) can be written as

µV = w1µ1 + w2µ2, (5.7)

σ2
V = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2. (5.8)

Remark 5.3

For risky securities the returns K1 and K2 are always assumed to be non-
constant random variables. Because of this σ1, σ2 > 0 and ρ12 is well defined,
since the denominator σ1σ2 in (5.6) is non-zero.

Example 5.6

We use the following data:

Scenario Probability Return K1 Return K2

ω1 (recession) 0.4 −10% 20%
ω2 (stagnation) 0.2 0% 20%
ω3 (boom) 0.4 20% 10%

We want to compare the risk of a portfolio such that w1 = 40% and w2 =
60% with the risks of its components as measured by the variance. Direct
computations give

σ2
1
∼= 0.0184, σ2

2
∼= 0.0024, ρ12

∼= −0.96309.

By (5.8)

σ2
V
∼= (0.4)2 × 0.0184 + (0.6)2 × 0.0024

+2 × 0.4 × 0.6 × (−0.96309) ×
√

0.0184 ×
√

0.0024
∼= 0.000736.

Observe that the variance σ2
V is smaller than σ2

1 and σ2
2 .
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Example 5.7

Consider another portfolio with weights w1 = 80% and w2 = 20%, all other
things being the same as in Example 5.6. Then

σ2
V
∼= (0.8)2 × 0.0184 + (0.2)2 × 0.0024

+2 × 0.8 × 0.2 × (−0.96309) ×
√

0.0184 ×
√

0.0024
∼= 0.009824,

which is between σ2
1 and σ2

2 .

Proposition 5.3

The variance σ2
V of a portfolio cannot exceed the greater of the variances σ2

1

and σ2
2 of the components,

σ2
V ≤ max{σ2

1 , σ2
2},

if short sales are not allowed.

Proof

Let us assume that σ2
1 ≤ σ2

2 . If short sales are not allowed, then w1, w2 ≥ 0 and

w1σ1 + w2σ2 ≤ (w1 + w2)σ2 = σ2.

Since the correlation coefficient satisfies −1 ≤ ρ12 ≤ 1, it follows that

σ2
V = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2

≤ w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2σ1σ2

= (w1σ1 + w2σ2)
2 ≤ σ2

2 .

If σ2
1 ≥ σ2

2 , the proof is analogous.

Example 5.8

Now consider a portfolio with weights w1 = −50% and w2 = 150% (allowing
short sales of security 1), all the other data being the same as in Example 5.6.
The variance of this portfolio is

σ2
V
∼= (−0.5)2 × 0.0184 + (1.5)2 × 0.0024

+2 × (−0.5) × 1.5 × (−0.96309) ×
√

0.0184 ×
√

0.0024
∼= 0.0196,

which is greater than both σ2
1 and σ2

2 .
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Exercise 5.8

Using the data in Example 5.6, find the weights in a portfolio with
expected return µV = 46% and compute the risk σ2

V of this portfolio.

The correlation coefficient always satisfies −1 ≤ ρ12 ≤ 1. The next propo-
sition is concerned with the two special cases when ρ12 assumes one of the
extreme values 1 or −1, which means perfect positive or negative correlation
between the securities in the portfolio.

Proposition 5.4

If ρ12 = 1, then σV = 0 when σ1 �= σ2 and

w1 = − σ2

σ1 − σ2
, w2 =

σ1

σ1 − σ2
. (5.9)

(Short sales are necessary, since either w1 or w2 is negative.)
If ρ12 = −1, then σV = 0 for

w1 =
σ2

σ1 + σ2
, w2 =

σ1

σ1 + σ2
. (5.10)

(No short sales are necessary, since both w1 and w2 are positive.)

Proof

Let ρ12 = 1. Then (5.8) takes the form

σ2
V = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ2 = (w1σ1 + w2σ2)

2

and σ2
V = 0 if and only if w1σ1 + w2σ2 = 0. This is equivalent to σ1 �= σ2 and

(5.9) because w1 + w2 = 1.
Now let ρ12 = −1. Then (5.8) becomes

σ2
V = w2

1σ
2
1 + w2

2σ
2
2 − 2w1w2σ1σ2 = (w1σ1 − w2σ2)

2

and σ2
V = 0 if and only if w1σ1 − w2σ2 = 0. The last equality is equivalent to

(5.10) because w1 + w2 = 1.

Each portfolio can be represented by a point with coordinates σV and µV

on the σ, µ plane. Figure 5.1 shows two typical lines representing portfolios
with ρ12 = −1 (left) and ρ12 = 1 (right). The bold segments correspond to
portfolios without short selling.



102 Mathematics for Finance

Figure 5.1 Typical portfolio lines with ρ12 = −1 and 1

Suppose that ρ12 = −1. It follows from the proof of Proposition 5.4 that
σV = |w1σ1 − w2σ2|. In addition, µV = w1µ1 + w2µ2 by (5.7) and w1 + w2 = 1
by (5.1). We can choose s = w2 as a parameter. Then 1 − s = w1 and

σV = |(1 − s)σ1 − sσ2| ,
µV = (1 − s)µ1 + sµ2.

These parametric equations describe the line in Figure 5.1 with a broken seg-
ment between (σ1, µ1) and (σ2, µ2). As s increases, the point (σV , µV ) moves
along the line in the direction from (σ1, µ1) to (σ2, µ2).

If ρ12 = 1, then σV = |w1σ1 + w2σ2|. We choose s = w2 as a parameter
once again, and obtain the parametric equations

σV = |(1 − s)σ1 + sσ2| ,
µV = (1 − s)µ1 + sµ2

of the line in Figure 5.1 with a straight segment between (σ1, µ1) and (σ2, µ2).
If no short selling is allowed, then 0 ≤ s ≤ 1 in both cases, which corresponds

to the bold line segments.

Exercise 5.9

Suppose that there are just two scenarios ω1 and ω2 and consider two
risky securities with returns K1 and K2. Show that K1 = aK2 + b for
some numbers a �= 0 and b, and deduce that ρ12 = 1 or −1.

Our next task is to find a portfolio with minimum risk for any given ρ12

such that −1 < ρ12 < 1. Again, we take s = w2 as a parameter. Then (5.7)
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and (5.8) take the form

µV = (1 − s)µ1 + sµ2, (5.11)

σ2
V = (1 − s)2σ2

1 + s2σ2
2 + 2s(1 − s)ρ12σ1σ2. (5.12)

Obviously, µV as a function of s is a straight line and σ2
V is a quadratic function

of s with a positive coefficient at s2 (namely σ2
1 + σ2

2 − 2ρ12σ1σ2 > σ2
1 + σ2

2 −
2σ1σ2 = (σ1 − σ2)2 ≥ 0). The problem of minimising the variance σ2

V (or,
equivalently, the standard deviation σV ) of a portfolio is solved in the next
theorem. First we find the minimum without any restrictions on short sales.
If short sales are not allowed, we shall have to take into account the bounds
0 ≤ s ≤ 1 on the parameter.

Theorem 5.5

For −1 < ρ12 < 1 the portfolio with minimum variance is attained at

s0 =
σ2

1 − ρ12σ1σ2

σ2
1 + σ2

2 − 2ρ12σ1σ2
. (5.13)

If short sales are not allowed, then the smallest variance is attained at

smin =




0 if s0 < 0,

s0 if 0 ≤ s0 ≤ 1,

1 if 1 < s0.

Proof

We compute the derivative of σ2
V with respect to s and equate it to 0:

−2 (1 − s) σ2
1 + 2sσ2

2 + 2(1 − s)ρ12σ1σ2 − 2sρ12σ1σ2 = 0.

Solving for s gives the above s0. The second derivative is positive,

2σ2
1 + 2σ2

2 − 4ρ12σ1σ2 > 2σ2
1 + 2σ2

2 − 4σ1σ2 = 2 (σ1 − σ2)
2 ≥ 0,

which shows that there is a minimum at s0. It is a global minimum because
σ2

V is a quadratic function of s.
If short sales are not allowed, then we need to find the minimum for 0 ≤

s ≤ 1. If 0 ≤ s0 ≤ 1, then the minimum is at s0. If s0 < 0, then the minimum
is at 0, and if s0 > 1, then it is at 1, since σ2

V is a quadratic function of s with
a positive coefficient at s2. This is illustrated in Figure 5.2. The bold parts of
the curve correspond to portfolios with no short selling.
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Figure 5.2 The minimum of σ2
V as a function of s

The line on the σ, µ plane defined by the parametric equations (5.11) and
(5.12) represents all possible portfolios with given σ1, σ2 > 0 and −1 ≤ ρ12 ≤ 1.
The parameter s can be any real number whenever there are no restrictions on
short selling. If short selling is not allowed, then 0 ≤ s ≤ 1 and we only obtain a
segment of the line. As s increases from 0 to 1, the corresponding point (σV , µV )
travels along the line in the direction from (σ1, µ1) to (σ2, µ2). Figure 5.3 shows
two typical examples of such lines, with ρ12 close to but greater than −1 (left)
and with ρ12 close to but smaller than 1 (right). Portfolios without short selling
are indicated by the bold line segments.

Figure 5.3 Typical portfolio lines with −1 < ρ12 < 1

Figure 5.4 illustrates the following corollary.

Corollary 5.6

Suppose that σ1 ≤ σ2. The following three cases are possible:

1) If −1 ≤ ρ12 < σ1
σ2

, then there is a portfolio without short selling such that
σV < σ1 (lines 4 and 5 in Figure 5.4);

2) If ρ12 = σ1
σ2

, then σV ≥ σ1 for each portfolio (line 3 in Figure 5.4);
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3) If σ1
σ2

< ρ12 ≤ 1, then there is a portfolio with short selling such that
σV < σ1, but for each portfolio without short selling σV ≥ σ1 (lines 1 and 2
in Figure 5.4).

Figure 5.4 Portfolio lines for various values of ρ12

Proof

1) If −1 ≤ ρ12 < σ1
σ2

, then σ1
σ1+σ2

> s0 > 0. But σ1
σ1+σ2

< 1, so 0 < s0 < 1,
which means that the portfolio with minimum variance, which corresponds to
the parameter s0, involves no short selling and satisfies σV < σ1.

2) If ρ12 = σ1
σ2

, then s0 = 0. As a result, σV ≥ σ1 for every portfolio because
σ2

1 is the minimum variance.
3) Finally, if σ1

σ2
< ρ12 ≤ 1, then s0 < 0. In this case the portfolio with

minimum variance that corresponds to s0 involves short selling of security 1
and satisfies σV < σ1. For s ≥ s0 the variance σV is an increasing function of s,
which means that σV > σ1 for every portfolio without short selling.

The above corollary is important because it shows when it is possible to
construct a portfolio with risk lower than that of any of its components. In
case 1) this is possible without short selling. In case 3) this is also possible, but
only if short selling is allowed. In case 2) it is impossible to construct such a
portfolio.

Example 5.9

Suppose that

σ2
1 = 0.0041, σ2

2 = 0.0121, ρ12 = 0.9796.

Clearly, σ1 < σ2 and σ1
σ2

< ρ12 < 1, so this is case 3) in Corollary 5.6. Our task
will be to find the portfolio with minimum risk with and without short selling.
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Using Theorem 5.5, we compute

s0
∼= −1.1663, smin = 0.

It follows that in the portfolio with minimum risk the weights of securities
should be w1

∼= 2.1663 and w2
∼= −1.1663 if short selling is allowed. Without

short selling w1 = 1 and w2 = 0.

Exercise 5.10

Compute the weights in the portfolio with minimum risk for the data in
Example 5.6. Does this portfolio involve short selling?

We conclude this section with a brief discussion of portfolios in which one of
the securities is risk-free. The variance of the risky security (a stock) is positive,
whereas that of the risk-free component (a bond) is zero.

Proposition 5.7

The standard deviation σV of a portfolio consisting of a risky security with
expected return µ1 and standard deviation σ1 > 0, and a risk-free security
with return rF and standard deviation zero depends on the weight w1 of the
risky security as follows:

σV = |w1|σ1.

Proof

Let σ1 > 0 and σ2 = 0. Then (5.7) reduces to σ2
V = w2

1σ
2
1 , and the formula for

σV follows by taking the square root.

Figure 5.5 Portfolio line for one risky and one risk-free security
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The line on the σ, µ plane representing portfolios constructed from one risky
and one risk-free security is shown in Figure 5.5. As usual, the bold line segment
corresponds to portfolios without short selling.

5.3 Several Securities

5.3.1 Risk and Expected Return on a Portfolio

A portfolio constructed from n different securities can be described in terms of
their weights

wi =
xiSi(0)
V (0)

, i = 1, . . . , n,

where xi is the number of shares of type i in the portfolio, Si(0) is the initial
price of security i, and V (0) is the amount initially invested in the portfolio. It
will prove convenient to arrange the weights into a one-row matrix

w =
[

w1 w2 · · · wn

]
.

Just like for two securities, the weights add up to one, which can be written in
matrix form as

1 = uwT , (5.14)

where
u =

[
1 1 · · · 1

]
is a one-row matrix with all n entries equal to 1, wT is a one-column matrix,
the transpose of w, and the usual matrix multiplication rules apply. The at-
tainable set consists of all portfolios with weights w satisfying (5.14), called
the attainable portfolios.

Suppose that the returns on the securities are K1, . . . , Kn. The expected
returns µi = E(Ki) for i = 1, . . . , n will also be arranged into a one-row matrix

m =
[

µ1 µ2 · · · µn

]
.

The covariances between returns will be denoted by cij = Cov(Ki,Kj). They
are the entries of the n × n covariance matrix

C =




c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn


 .
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It is well known that the covariance matrix is symmetric and positive definite.
The diagonal elements are simply the variances of returns, cii = Var(Ki). In
what follows we shall assume, in addition, that C has an inverse C−1.

Proposition 5.8

The expected return µV = E(KV ) and variance σ2
V = Var(KV ) of a portfolio

with weights w are given by

µV = mwT , (5.15)

σ2
V = wCwT . (5.16)

Proof

The formula for µV follows by the linearity of expectation,

µV = E(KV ) = E

(
n∑

i=1

wiKi

)
=

n∑
i=1

wiµi = mwT .

For σ2
V we use the linearity of covariance with respect to each of its arguments,

σ2
V = Var(KV ) = Var

(
n∑

i=1

wiKi

)

= Cov


 n∑

i=1

wiKi,

n∑
j=1

wjKj


 =

n∑
i,j=1

wiwjcij

= wCwT .

Exercise 5.11

Compute the expected return µV and standard deviation σV of a port-
folio consisting of three securities with weights w1 = 40%, w2 = −20%,
w3 = 80%, given that the securities have expected returns µ1 = 8%,
µ2 = 10%, µ3 = 6%, standard deviations σ1 = 1.5, σ2 = 0.5, σ3 = 1.2
and correlations ρ12 = 0.3, ρ23 = 0.0, ρ31 = −0.2.

We shall solve the following two problems:

1. To find a portfolio with the smallest variance in the attainable set. It will
be called the minimum variance portfolio.



5. Portfolio Management 109

2. To find a portfolio with the smallest variance among all portfolios in the
attainable set whose expected return is equal to a given number µV . The
family of such portfolios, parametrised by µV , is called the minimum vari-
ance line.

Since the variance is a continuous function of the weights, bounded below by 0,
the minimum clearly exists in both cases.

Proposition 5.9 (Minimum Variance Portfolio)

The portfolio with the smallest variance in the attainable set has weights

w =
uC−1

uC−1uT
,

provided that the denominator is non-zero.

Proof

We need to find the minimum of (5.16) subject to the constraint (5.14). To this
end we can use the method of Lagrange multipliers. Let us put

F (w, λ) = wCwT − λuwT ,

where λ is a Lagrange multiplier. Equating to zero the partial derivatives of F

with respect to the weights wi we obtain 2wC − λu = 0, that is,

w =
λ

2
uC−1,

which is a necessary condition for a minimum. Substituting this into con-
straint (5.14) we obtain

1 =
λ

2
uC−1uT ,

where we use the fact that C−1 is a symmetric matrix because C is. Solving
this for λ and substituting the result into the expression for w will give the
asserted formula.

Proposition 5.10 (Minimum Variance Line)

The portfolio with the smallest variance among attainable portfolios with ex-
pected return µV has weights

w =

∣∣∣∣ 1 uC−1mT

µV mC−1mT

∣∣∣∣uC−1 +
∣∣∣∣ uC−1uT 1

mC−1uT µV

∣∣∣∣mC−1

∣∣∣∣ uC−1uT uC−1mT

mC−1uT mC−1mT

∣∣∣∣
,
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provided that the determinant in the denominator is non-zero. The weights
depend linearly on µV .

Proof

Here we need to find the minimum of (5.16) subject to two constraints (5.14)
and (5.15). We take

G(w, λ, µ) = wCwT − λuwT − µmwT ,

where λ and µ are Lagrange multipliers. The partial derivatives of G with
respect to the weights wi equated to zero give a necessary condition for a
minimum, 2wC − λu − µm = 0, which implies that

w =
λ

2
uC−1 +

µ

2
mC−1.

Substituting this into the constraints (5.14) and (5.15), we obtain a system of
linear equations

1 =
λ

2
uC−1uT +

µ

2
uC−1mT ,

µV =
λ

2
mC−1uT +

µ

2
mC−1mT ,

to be solved for λ and µ. The asserted formula follows by substituting the
solution into the expression for w.

Example 5.10

(3 securities) Consider three securities with expected returns, standard devia-
tions of returns and correlations between returns

µ1 = 0.10, σ1 = 0.28, ρ12 = ρ21 = −0.10,

µ2 = 0.15, σ2 = 0.24, ρ23 = ρ32 = 0.20,

µ3 = 0.20, σ3 = 0.25, ρ31 = ρ13 = 0.25.

We arrange the µi’s into a one-row matrix m and 1’s into a one-row matrix u,

m =
[

0.10 0.15 0.20
]
, u =

[
1 1 1

]
.

Next we compute the entries cij = ρijσiσj of the covariance matrix C, and
find the inverse matrix to C,

C ∼=

 0.0784 −0.0067 0.0175

−0.0067 0.0576 0.0120
0.0175 0.0120 0.0625


 , C−1 ∼=


 13.954 2.544 −4.396

2.544 18.548 −4.274
−4.396 −4.274 18.051
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From Proposition 5.9 we can compute the weights in the minimum variance
portfolio. Since

uC−1 ∼= [ 12.102 16.818 9.382
]
,

uC−1uT ∼= 38.302,

we obtain

w =
uC−1

uC−1uT
∼= [ 0.316 0.439 0.245

]
.

The expected return and standard deviation of this portfolio are

µV = mwT ∼= 0.146, σV =
√

wCwT ∼= 0.162.

The minimum variance line can be computed using Proposition 5.10. To this
end we compute

uC−1 ∼= [ 12.102 16.818 9.382
]
,

mC−1 ∼= [ 0.898 2.182 2.530
]
,

uC−1uT ∼= 38.302, mC−1mT ∼= 0.923,

uC−1mT = mC−1uT ∼= 5.609.

Substituting these into the formula for w in Proposition 5.10, we obtain the
weights in the portfolio with minimum variance among all portfolios with ex-
pected return µV :

w ∼= [ 1.578 − 8.614µV 0.845 − 2.769µV −1.422 + 11.384µV

]
.

The standard deviation of this portfolio is

σV =
√

wCwT ∼=
√

0.237 − 2.885µV + 9.850µ2
V .

Exercise 5.12

Among all attainable portfolios constructed using three securities with
expected returns µ1 = 0.20, µ2 = 0.13, µ3 = 0.17, standard deviations of
returns σ1 = 0.25, σ2 = 0.28, σ3 = 0.20, and correlations between returns
ρ12 = 0.30, ρ23 = 0.00, ρ31 = 0.15, find the minimum variance portfolio.
What are the weights in this portfolio? Also compute the expected return
and standard deviation of this portfolio.

Exercise 5.13

Among all attainable portfolios with expected return µV = 20% con-
structed using the three securities in Exercise 5.12 find the portfolio with
the smallest variance. Compute the weights and the standard deviation
of this portfolio.
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Example 5.11

(3 securities visualised) There are two convenient ways to visualise all portfolios
that can be constructed from the three securities in Example 5.10. One is
presented in Figure 5.6. Here two of the three weights, namely w2 and w3,

Figure 5.6 Attainable portfolios on the w2, w3 plane

are used as parameters. The remaining weight is given by w1 = 1 − w2 −
w3. (Of course any other two weights can also be used as parameters.) Each
point on the w2, w3 plane represents a different portfolio. The vertices of the
triangle represent the portfolios consisting of only one of the three securities. For
example, the vertex with coordinates (1, 0) corresponds to weights w1 = 0, w2 =
1 and w3 = 0, that is, represents a portfolio with all money invested in security
number 2. The lines through the vertices correspond to portfolios consisting of
two securities only. For example, the line through (1, 0) and (0, 1) corresponds to
portfolios containing securities 2 and 3 only. Points inside the triangle, including
the boundaries, correspond to portfolios without short selling. For example,
(2
5 , 1

2 ) represents a portfolio with 10% of the initial funds invested in security 1,
40% in security 2, and 50% in security 3. Points outside the triangle correspond
to portfolios with one or two of the three securities shorted. The minimum
variance line is a straight line because of the linear dependence of the weights
on the expected return. It is represented by the bold line in Figure 5.6.

Figure 5.7 shows another way to visualise attainable portfolios by plot-
ting the expected return of a portfolio against the standard deviation. This is
sometimes called the risk–expected return graph. The three points indicated
in this picture correspond to portfolios consisting of only one of the three
securities. For instance, the portfolio with all funds invested in security 2 is
represented by the point (0.24, 0.15). The lines passing through a pair of these
three points correspond to portfolios consisting of just two securities. These are
the two-security lines studied in detail in Section 5.2. For example, all portfo-
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lios containing securities 2 and 3 only lie on the line through (0.24, 0.15) and
(0.25, 0.20). The three points and the lines passing through them correspond
to the vertices of the triangle and the straight lines passing through them in
Figure 5.6. The shaded area (both dark and light), including the boundary,
represents portfolios that can be constructed from the three securities, that is,
all attainable portfolios. The boundary, shown as a bold line, is the minimum
variance line. The shape of it is known as the Markowitz bullet . The darker
part of the shaded area corresponds to the interior of the triangle in Figure 5.6,
that is, it represents portfolios without short selling.

Figure 5.7 Attainable portfolios on the σ, µ plane

It is instructive to imagine how the whole w2, w3 plane in Figure 5.6 is
mapped onto the shaded area representing all attainable portfolios in Fig-
ure 5.7. Namely, the w2, w3 plane is folded along the minimum variance line, be-
ing simultaneously warped and stretched to attain the shape of the Markowitz
bullet. This means, in particular, that pairs of points on opposite sides of the
minimum variance line on the w2, w3 plane are mapped into single points on
the σ, µ plane. In other words, each point inside the shaded area in Figure 5.7
corresponds to two different portfolios. However, each point on the minimum
variance line corresponds to a single portfolio.

Example 5.12

(3 securities without short selling) For the same three securities as in Exam-
ples 5.10 and 5.11, Figure 5.8 shows what happens if no short selling is allowed.
All portfolios without short selling are represented by the interior and bound-
ary of the triangle on the w1, w2 plane and by the shaded area with boundary
on the σ, µ plane. The minimum variance line without short selling is shown
as a bold line in both plots. For comparison, the minimum variance line with
short selling is shown as a broken line.
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Figure 5.8 Portfolios without short selling

Exercise 5.14

For portfolios constructed with and without short selling from the three
securities in Exercise 5.12 compute the minimum variance line parame-
trised by the expected return and sketch it a) on the w2, w3 plane and
b) on the σ, µ plane. Also sketch the set of all attainable portfolios with
and without short selling.

5.3.2 Efficient Frontier

Given the choice between two securities a rational investor will, if possible,
choose that with higher expected return and lower standard deviation, that is,
lower risk. This motivates the following definition.

Definition 5.1

We say that a security with expected return µ1 and standard deviation σ1

dominates another security with expected return µ2 and standard deviation σ2

whenever
µ1 ≥ µ2 and σ1 ≤ σ2.

This definition readily extends to portfolios, which can of course be considered
as securities in their own right.

Remark 5.4

Given two securities such that one dominates the other, the dominated security
may appear quite redundant on first sight. Nevertheless, it can also be of some
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use. Employing the techniques of Section 5.2, it may be possible to construct
portfolios consisting of the two securities with smaller risk than either of the
securities, as in Figure 5.9, in which the security with σ2, µ2 is dominated by
that with σ1, µ1.

Figure 5.9 Reduction of risk using a dominated security

Definition 5.2

A portfolio is called efficient if there is no other portfolio, except itself, that
dominates it. The set of efficient portfolios among all attainable portfolios is
called the efficient frontier .

Every rational investor will choose an efficient portfolio, always preferring
a dominating portfolio to a dominated one. However, different investors may
select different portfolios on the efficient frontier, depending on their individual
preferences. Given two efficient portfolios with µ1 ≤ µ2 and σ1 ≤ σ2, a cautious
person may prefer that with lower risk σ1 and lower expected return µ1, while
others may choose a portfolio with higher risk σ2, regarding the higher expected
return µ2 as compensation for increased risk.

In particular, an efficient portfolio has the highest expected return among
all attainable portfolios with the same standard deviation (the same risk),
and has the lowest standard deviation (the lowest risk) among all attainable
portfolios with the same expected return. As a result, the efficient frontier must
be a subset of the minimum variance line. To understand the structure of the
efficient frontier we shall first study the minimum variance line in more detail
and then select a suitable subset.

Proposition 5.11

Take any two different portfolios on the minimum variance line, with weights
w′ and w′′. Then the minimum variance line consists of portfolios with weights
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cw′ + (1 − c)w′′ for any c ∈ R and only of such portfolios.

Proof

By Proposition 5.10 the minimum variance line consists of portfolios whose
weights are given by a certain linear function of the expected return µV on the
portfolio, w = aµV +b. If w′ and w′′ are the weights of two different portfolios
on the minimum variance line, then w′ = aµV ′ +b and w′′ = aµV ′′ +b for some
µV ′ �= µV ′′ . Because numbers of the form cµV ′ + (1− c)µV ′′ for c ∈ R exhaust
the whole real line, it follows that portfolios with weights cw′ + (1 − c)w′′ for
c ∈ R exhaust the whole minimum variance line.

This proposition is important. It means that the minimum variance line has
the same shape as the set of portfolios constructed from two securities, studied
in great detail in Section 5.2. It also means that the shape of the attainable
set on the σ, µ plane (the Markowitz bullet), which we have seen so far for
portfolios constructed from two or three securities, will in fact be the same for
any number of securities.

Once the shape of the minimum variance line is understood, distinguishing
the efficient frontier is easy, also in the case of n securities. This is illustrated
in Figure 5.10. The efficient frontier consists of all portfolios on the minimum
variance line whose expected return is greater than or equal to the expected
return on the minimum variance portfolio.

Figure 5.10 Efficient frontier constructed from several securities

The next proposition provides a property of the efficient frontier which will
prove useful in the Capital Asset Pricing Model.

Proposition 5.12

The weights w of any portfolio belonging to the efficient frontier (except for
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the minimum variance portfolio) satisfy the condition

γwC = m − µu (5.17)

for some real numbers γ > 0 and µ.

Proof

Let w be the weights of a portfolio, other than the minimum variance portfolio,
belonging to the efficient frontier. The portfolio has expected return µV =
mwT and standard deviation σV =

√
wCwT . On the σ, µ plane we draw the

tangent line to the efficient frontier through the point representing the portfolio.
This line will intersect the vertical axis at some point with coordinate µ, the

gradient of the line being
mwT − µ√

wCwT
. This gradient is maximal among all lines

passing through the point on the vertical axis with coordinate µ and intersecting
the set of attainable portfolios. The maximum is to be taken over all weights w

subject to the constraint uwT = 1. We put

F (w, λ) =
mwT − µ√

wCwT
− λuwT ,

where λ is a Lagrange multiplier. A necessary condition for a constrained max-
imum is that the partial derivatives of F with respect to the weights should be
zero. This gives

m − λσV u =
µV − µ

σ2
V

wC.

Multiplying by wT on the right and using the constraint, we find that λ = µ
σV

.
For γ = µV −µ

σ2
V

this gives the asserted condition. Because the tangent line has
positive slope, we have µV > µ, that is, γ > 0.

Remark 5.5

An interpretation of γ and µ follows clearly from the proof: γσV is the gradient
of the tangent line to the efficient frontier at the point representing the given
portfolio, µ being the intercept of this tangent line on the σ, µ plane.

Exercise 5.15

In a market consisting of the three securities in Exercise 5.12, consider
the portfolio on the efficient frontier with expected return µV = 21%.
Compute the values of γ and µ such that the weights w in this portfolio
satisfy γwC = m − µu.



118 Mathematics for Finance

5.4 Capital Asset Pricing Model

In the days when computers where slow it was difficult to use portfolio theory.
For a market with n = 1, 000 traded securities the covariance matrix C will have
n2 = 1, 000, 000 entries. To find the efficient frontier we have to compute the
inverse matrix C−1, which is computationally intensive. Accurate estimation
of C may pose considerable problems in practice. The Capital Asset Pricing
Model (CAPM) provides a solution that is much more efficient computation-
ally, does not involve an estimate of C, but offers a deep, even if somewhat
oversimplified, insight into some fundamental economic issues.

Within the CAPM it is assumed that every investor uses the same values of
expected returns, standard deviation and correlations for all securities, making
investment decisions based only on these values. In particular, every investor
will compute the same efficient frontier on which to select his or her portfo-
lio. However, investors may differ in their attitude to risk, selecting different
portfolios on the efficient frontier.

5.4.1 Capital Market Line

Form now on we shall assume that a risk-free security is available in addition
to n risky securities. The return on the risk-free security will be denoted by rF .
The standard deviation is of course zero for the risk-free security.

Consider a portfolio consisting of the risk-free security and a specified risky
security (possibly a portfolio of risky securities) with expected return µ1 and
standard deviation σ1 > 0. By Proposition 5.7 all such portfolios form a broken
line on the σ, µ plane consisting of two rectilinear half-lines, see Figure 5.5. By
taking portfolios containing the risk-free security and a security with σ1, µ1

anywhere in the attainable set represented by the Markowitz bullet on the
σ, µ plane, we can construct any portfolio between the two half-lines shown
in Figure 5.11. The efficient frontier of this new set of portfolios, which may
contain the risk-free security, is the upper half-line tangent to the Markowitz
bullet and passing through the point with coordinates 0, rF . According to the
assumptions of the CAPM, every rational investor will select his or her portfolio
on this half-line, called the capital market line. This argument works as long
as the risk-free return rF is not too high, so the upper half-line is tangent to
the bullet. (If rF is too high, then the upper half-line will no longer be tangent
to the bullet.)

The tangency point with coordinates σM , µM plays a special role. Every
portfolio on the capital market line can be constructed from the risk-free se-
curity and the portfolio with standard deviation σM and expected return µM .
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Figure 5.11 Efficient frontier for portfolios with a risk-free security

Since every investor will select a portfolio on the capital market line, everyone
will be holding a portfolio with the same relative proportions of risky securities.
But this means that the portfolio with standard deviation σM and expected
return µM has to contain all risky securities with weights equal to their rela-
tive share in the whole market. Because of this property it is called the market
portfolio. In practice the market portfolio is approximated by a suitable stock
exchange index.

The capital market line joining the risk-free security and the market port-
folio satisfies the equation

µ = rF +
µM − rF

σM
σ. (5.18)

For a portfolio on the capital market line with risk σ the term µM−rF

σM
σ is called

the risk premium. This additional return above the risk-free level provides
compensation for exposure to risk.

Example 5.13

We shall apply Proposition 5.12 to compute the market portfolio for a toy
market consisting of the three securities in Example 5.10 and a risk-free security
with return rF = 5%. The weights w in the market portfolio, which belongs to
the efficient frontier, satisfy condition (5.17), which implies that

γw = (m − µu)C−1.

From the proof of Proposition 5.12 we know that µ = rF because the capital
market line, tangent to the efficient frontier at the point representing the market
portfolio, intersects the µ axis at rF . Substituting the numerical values from
Example 5.10, we find that

γw ∼= [ 0.293 1.341 2.061
]
.
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Since w must satisfy (5.14), it follows that γ ∼= 3.694 and the weights in the
market portfolio are

w ∼= [ 0.079 0.363 0.558
]
.

Exercise 5.16

Suppose that the risk-free return is rF = 5%. Compute the weights in the
market portfolio constructed from the three securities in Exercise 5.11.
Also compute the expected return and standard deviation of the market
portfolio.

5.4.2 Beta Factor

It is important to understand how the return KV on a given portfolio or a
single security will react to trends affecting the whole market. To this end we
can plot the values of KV for each market scenario against those of the return
KM on the market portfolio and compute the line of best fit , also known as the
regression line or the characteristic line. In Figure 5.12 the values of KM are
marked along the x axis and the values of KV along the y axis. The equation
of the line of best fit will be

y = βV x + αV .

Figure 5.12 Line of best fit

For any given β and α the values of the random variable α + βKM can be
regarded as predictions for the return on the given portfolio. The difference
ε = KV − (α + βKM ) between the actual return KV and the predicted return
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α + βKM is called the residual random variable. The condition defining the
line of best fit is that

E(ε2) = E(K2
V ) − 2βE(KV KM ) + β2E(K2

M ) + α2 − 2αE(KV ) + 2αβE(KM )

as a function of β and α should attain its minimum at β = βV and α = αV .
In other words, the line of best fit should lead to predictions that are as close
as possible to the true values of KV . A necessary condition for a minimum is
that the partial derivatives with respect to β and α should be zero at β = βV

and α = αV . This leads to the system of linear equations

αV E(KM ) + βV E(K2
M ) = E(KV KM ),

αV + βV E(KM ) = E(KV ),

which can be solved to find the gradient βV and intercept αV of the line of best
fit,

βV =
Cov(KV ,KM )

σ2
M

, αV = µV − βV µM .

Here we employ the usual notation µV = E(KV ), µM = E(KM ) and σ2
M =

Var(KM ).

Exercise 5.17

Suppose that the returns KV on a given portfolio and KM on the market
portfolio take the following values in different market scenarios:

Scenario Probability Return KV Return KM

ω1 0.1 −5% 10%
ω2 0.3 0% 14%
ω3 0.4 2% 12%
ω3 0.2 4% 16%

Compute the gradient βV and intercept αV of the line of best fit.

Definition 5.3

We call

βV =
Cov(KV ,KM )

σ2
M

the beta factor of the given portfolio or individual security.
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The beta factor is an indicator of expected changes in the return on a
particular portfolio or individual security in response to the behaviour of the
market as a whole. Since µV = βV µM + αV , the return on a security with
a positive beta factor tends to increase as the return on the market portfolio
increases, while the return on a security with a negative beta factor tends to
increase if the return on the market portfolio goes down.

In what follows we discuss another interpretation of the beta factor. The
risk σ2

V = Var(KV ) of a security or portfolio can be written as

σ2
V = Var(εV ) + β2

V σ2
M .

This formula is easy to verify upon substituting the expression εV = KV −
(αV +βV KM ) for the residual random variable. The first term Var(εV ) is called
the residual variance or diversifiable risk . It vanishes for the market portfolio,
Var(εM ) = 0. This part of risk can ‘diversified away’ by investing in the market
portfolio. The second term β2

V σ2
M is called the systematic or undiversifiable

risk . The market portfolio involves only this kind of risk. The beta factor βV

can be regarded as a measure of systematic risk associated with a security or
portfolio.

This interpretation of the beta factor is of crucial importance. In the CAPM
systematic risk, measured by βV , will be linked to the expected return µV

and hence to the pricing of individual securities and portfolios: The higher
the systematic risk, the higher the return required by investors as a premium
for exposure to this kind of risk. However, diversifiable risk will attract no
additional premium, having no effect on µV . This is because diversifiable risk
can be eliminated by spreading an investment in a portfolio of many securities
and, in particular, by investing in the market portfolio. The next section is
devoted to establishing the link between βV and µV .

Exercise 5.18

Show that the beta factor βV of a portfolio consisting of n securities with
weights w1, . . . , wn is given by βV = w1β1 + · · ·+wnβn, where β1, . . . , βn

are the beta factors of the securities.

5.4.3 Security Market Line

Consider an arbitrary portfolio with weights wV . The weights in the market
portfolio will be denoted by wM . The market portfolio belongs to the efficient
frontier of the attainable set of portfolios consisting of risky securities. Thus,
by Proposition 5.12

γwMC = m − µu
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for some numbers γ > 0 and µ. The beta factor of the portfolio with weights
wV can, therefore, be written as

βV =
Cov(KV ,KM )

σ2
M

=
wMCwT

V

wMCwT
M

=
γ(m − µu)wT

V

γ(m − µu)wT
M

=
µV − µ

µM − µ
.

To find µ consider the risk-free security, with return rF and beta factor βF = 0.
Substituting βF and rF for βV and µV in the above equation, we find that
µ = rF . We have proved the following remarkable property.

Theorem 5.13

The expected return µV on a portfolio (or an individual security) is a linear
function of the beta coefficient βV of the portfolio,

µV = rF + (µM − rF )βV . (5.19)

The expected return plotted against the beta coefficient of any portfolio or
individual security will form a straight line on the β, µ plane, called the security
market line. This is shown in Figure 5.13, in which the security market line is
plotted next to the capital market line for comparison. A number of different
portfolios and individual securities are indicated by dots in both graphs.

Figure 5.13 Capital market line and security market line

Similarly as in formula (5.18) for the capital market line, the term (µM −
rF )βV in (5.19) is the risk premium, interpreted as compensation for exposure
to systematic risk. However, (5.18) applies only to portfolios on the capital
market line, whereas (5.19) is much more general: It applies to all portfolios
and individual securities.

Exercise 5.19

Show that the characteristic lines of all securities intersect at a common
point in the CAPM. What are the coordinates of this point?
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The CAPM describes a state of equilibrium in the market. Everyone is
holding a portfolio of risky securities with the same weights as the market
portfolio. Any trades that may be executed by investors will only affect their
split of funds between the risk-free security and the market portfolio. As a
result, the demand and supply of all securities will be balanced. This will remain
so as long as the estimates of expected returns and beta factors satisfy (5.19).

However, as soon as some new information about the market becomes avail-
able to investors, it may affect their estimates of expected returns and beta
factors. The new estimated values may no longer satisfy (5.19). Suppose, for
example, that

µV > rF + (µM − rF )βV

for a particular security. In this case investors will want to increase their relative
position in this security, which offers a higher expected return than required as
compensation for systematic risk. Demand will exceed supply, the price of the
security will begin to rise and the expected return will decline. On the other
hand, if the reverse inequality

µV < rF + (µM − rF )βV

holds, investors will want to sell the security. In this case supply will exceed
demand, the price will fall and the expected return will increase. This will
continue until the prices and with them the expected returns of all securities
settle at a new level, restoring equilibrium.

The above inequalities are important in practice. They send a clear signal
to investors whether any particular security is underpriced or, respectively,
overpriced, that is, whether it should be bought or sold.



6
Forward and Futures Contracts

6.1 Forward Contracts

A forward contract is an agreement to buy or sell an asset on a fixed date
in the future, called the delivery time, for a price specified in advance, called
the forward price. The party to the contract who agrees to sell the asset is
said to be taking a short forward position. The other party, obliged to buy the
asset at delivery, is said to have a long forward position. The principal reason
for entering into a forward contract is to become independent of the unknown
future price of a risky asset. There are a variety of examples: a farmer wishing
to fix the sale price of his crops in advance, an importer arranging to buy
foreign currency at a fixed rate in the future, a fund manager who wants to sell
stock for a price known in advance. A forward contract is a direct agreement
between two parties. It is typically settled by physical delivery of the asset on
the agreed date. As an alternative, settlement may sometimes be in cash.

Let us denote the time when the forward contract is exchanged by 0, the
delivery time by T, and the forward price by F (0, T ). The time t market price
of the underlying asset will be denoted by S(t). No payment is made by either
party at time 0, when the forward contract is exchanged. At delivery the party
with a long forward position will benefit if F (0, T ) < S(T ). They can buy the
asset for F (0, T ) and sell it for the market price S(T ), making an instant profit
of S(T ) − F (0, T ). Meanwhile, the party holding a short forward position will
suffer a loss of S(T ) − F (0, T ) because they will have to sell below the market
price. If F (0, T ) > S(T ), then the situation will be reversed. The payoffs at
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delivery are S(T )−F (0, T ) for a long forward position and F (0, T )− S(T ) for
a short position; see Figure 6.1.

Figure 6.1 Payoff for long and short forward positions at delivery

If the contract is initiated at time t < T rather than 0, then we shall write
F (t, T ) for the forward price, the payoff at delivery being S(T ) − F (t, T ) for a
long forward position and F (t, T ) − S(T ) for a short position.

6.1.1 Forward Price

The No-Arbitrage Principle makes it possible to obtain formulae for the forward
prices of assets of various kinds. We begin with the simplest case.

Stock Paying No Dividends. Consider a security that can be stored at no
cost and brings no profit (except perhaps for capital gains arising from random
price fluctuations). A typical example is a stock paying no dividends. We shall
denote by r the risk-free rate under continuous compounding and assume that
it is constant throughout the period in question.

An alternative to taking a long forward position in stock with delivery at
time T and forward price F (0, T ) is to borrow S(0) dollars to buy the stock
at time 0 and keep it until time T . The amount S(0)erT to be paid to settle
the loan with interest at time T is a natural candidate for the forward price
F (0, T ). The following theorem makes this intuitive argument formal.

Theorem 6.1

For a stock paying no dividends the forward price is

F (0, T ) = S(0)erT , (6.1)

where r is a constant risk-free interest rate under continuous compounding. If
the contract is initiated at time t ≤ T , then

F (t, T ) = S(t)er(T−t). (6.2)
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Proof

We shall prove formula (6.1). Suppose that F (0, T ) > S(0)erT . In this case, at
time 0

• borrow the amount S(0) until time T ;
• buy one share for S(0);
• take a short forward position, that is, agree to sell one share for F (0, T ) at

time T .

Then, at time T

• sell the stock for F (0, T );
• pay S(0)erT to clear the loan with interest.

This will bring a risk-free profit of

F (0, T ) − S(0)erT > 0,

contrary to the No-Arbitrage Principle. Next, suppose that F (0, T ) < S(0)erT .
In this case we construct the opposite strategy to the one above. At time 0

• sell short one share for S(0);
• invest the proceeds at the risk-free rate;
• enter into a long forward contract with forward price F (0, T ).

Then, at time T

• cash the risk-free investment with interest, collecting S(0)erT dollars;
• buy the stock for F (0, T ) using the forward contract;
• close out the short position in stock by returning it to the owner.

You will end up with a positive amount

S(0)erT − F (0, T ) > 0,

again a contradiction with the No-Arbitrage Principle.
The proof of (6.2) is similar. Simply replace 0 by t, observing that the time

elapsed between exchanging the forward contract and delivery is now T −t.

In a market with restrictions on short sales of stock the inequality F (0, T ) <

S(0)erT does not necessarily lead to arbitrage opportunities.

Exercise 6.1

Suppose that S(0) = 17 dollars, F (0, 1) = 18 dollars, r = 8%, and short-
selling requires a 30% security deposit attracting interest at d = 4%. Is
there an arbitrage opportunity? Find the highest rate d for which there
is no arbitrage opportunity.
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Exercise 6.2

Suppose that the price of stock on 1 April 2000 turns out to be 10%
lower than it was on 1 January 2000. Assuming that the risk-free rate
is constant at r = 6%, what is the percentage drop of the forward price
on 1 April 2000 as compared to that on 1 January 2000 for a forward
contract with delivery on 1 October 2000?

Remark 6.1

In the case considered here we always have F (t, T ) = S(t)er(T−r) > S(t). The
difference F (t, T ) − S(t), which is called the basis, converges to 0 as t ↗ T .

Remark 6.2

Under periodic compounding the forward price is given by

F (0, T ) = S(0)(1 +
r

m
)mT .

In terms of zero-coupon bond prices, this formula becomes

F (0, T ) = S(0)B(0, T )−1.

The last formula is in fact more general, requiring no assumption about con-
stant interest rates.

Including Dividends. We shall generalise the formula for the forward price
to cover assets that generate income during the lifetime of the forward contract.
The income may be in the form of dividends or a convenience yield. We shall
also cover the case when the asset involves some costs (called the cost of carry),
such as storage or insurance, by treating the costs as negative income.

Suppose that the stock is to pay a dividend div at an intermediate time t

between initiating the forward contract and delivery. At time t the stock price
will drop by the amount of the dividend paid. The formula for the forward
price, which involves the present stock price, can be modified by subtracting
the present value of the dividend.

Theorem 6.2

The forward price of a stock paying dividend div at time t, where 0 < t < T , is

F (0, T ) = [S(0) − e−rtdiv]erT . (6.3)
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Proof

Suppose that
F (0, T ) > [S(0) − e−rtdiv]erT .

We shall construct an arbitrage strategy. At time 0

• enter into a short forward contract with forward price F (0, T ) and delivery
time T ;

• borrow S(0) dollars and buy one share.

At time t

• cash the dividend div and invest it at the risk-free rate for the remaining
time T − t.

At time T

• sell the share for F (0, T );
• pay S(0)erT to clear the loan with interest and collect er(T−t)div.

The final balance will be positive:

F (0, T ) − S(0)erT + er(T−t)div > 0,

a contradiction with the No-Arbitrage Principle. On the other hand, suppose
that

F (0, T ) < [S(0) − e−rtdiv]erT .

In this case, at time 0

• enter into a long forward contract with forward price F (0, T ) and delivery
at time T ;

• sell short one share and invest the proceeds S(0) at the risk-free rate.

At time t

• borrow div dollars and pay a dividend to the stock owner.

At time T

• buy one share for F (0, T ) and close out the short position in stock;
• cash the risk-free investment with interest, collecting the amount S(0)erT ,

and pay er(T−t)div to clear the loan with interest.

The final balance will again be positive,

−F (0, T ) + S(0)erT − er(T−t)div > 0,

completing the proof.
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The formula can easily be generalised to the case when dividends are paid
more than once:

F (0, T ) = [S(0) − div0]erT , (6.4)

where div0 is the present value of all dividends due during the lifetime of the
forward contract.

Exercise 6.3

Consider a stock whose price on 1 January is $120 and which will pay a
dividend of $1 on 1 July 2000 and $2 on 1 October 2000. The interest
rate is 12%. Is there an arbitrage opportunity if on 1 January 2000 the
forward price for delivery of the stock on 1 November 2000 is $131? If
so, compute the arbitrage profit.

Exercise 6.4

Suppose that the risk-free rate is 8%. However, as a small investor,
you can invest money at 7% only and borrow at 10%. Does either of
the strategies in the proof of Proposition 6.2 give an arbitrage profit if
F (0, 1) = 89 and S(0) = 83 dollars, and a $2 dividend is paid in the
middle of the year, that is, at time 1/2?

Dividend Yield. Dividends are often paid continuously at a specified rate,
rather than at discrete time instants. For example, in a case of a highly diversi-
fied portfolio of stocks it is natural to assume that dividends are paid continu-
ously rather than to take into account frequent payments scattered throughout
the year. Another example is foreign currency, attracting interest at the corre-
sponding rate.

We shall first derive a formula for the forward price in the case of foreign
currency. Let the price of one British pound in New York be P (t) dollars, and
let the risk-free interest rates for investments in British pounds and US dollars
be rGBP and rUSD, respectively. Let us compare the following strategies:

A: Invest P (0) dollars at the rate rUSD for time T .

B: Buy 1 pound for P (0) dollars, invest it for time T at the rate rGBP, and take
a short position in erGBPT pound sterling forward contracts with delivery
time T and forward price F (0, T ).

Both strategies require the same initial outlay, so the final values should be
also the same:

P (0)erUSDT = erGBPT F (0, T ).

It follows that
F (0, T ) = P (0)e(rUSD−rGBP)T . (6.5)
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Next, suppose that a stock pays dividends continuously at a rate rdiv > 0,
called the (continuous) dividend yield . If the dividends are reinvested in the
stock, then an investment in one share held at time 0 will increase to become
erdivT shares at time T. (The situation is similar to continuous compounding.)
Consequently, in order to have one share at time T we should begin with e−rdivT

shares at time 0. This observation is used in the arbitrage proof below.

Theorem 6.3

The forward price for stock paying dividends continuously at a rate rdiv is

F (0, T ) = S(0)e(r−rdiv)T . (6.6)

Proof

Suppose that
F (0, T ) > S(0)e(r−rdiv)T .

In this case, at time 0

• enter into a short forward contract;
• borrow the amount S(0)e−rdivT to buy e−rdivT shares.

Between time 0 and T collect the dividends paid continuously, reinvesting them
in the stock. At time T you will have 1 share, as explained above. At that time

• sell the share for F (0, T ), closing out the short forward position;
• pay S(0)e(r−rdiv)T to clear the loan with interest.

The final balance F (0, T ) − S(0)e(r−rdiv)T > 0 will be your arbitrage profit.
Now suppose that

F (0, T ) < S(0)e(r−rdiv)T .

If this is the case, then at time 0

• take a long forward position;
• sell short a fraction e−rdivT of a share investing the proceeds S(0)e−rdivT

risk free.

Between time 0 and T you will need to pay dividends to the stock owner, raising
cash by shorting the stock. Your short position in stock will thus increase to 1
share at time T . At that time

• buy one share for F (0, T ) and return it to the owner, closing out the long
forward position and the short position in stock;

• receive S(0)e(r−rdiv)T from the risk-free investment.

Again you will end up with a positive amount S(0)e(r−rdiv)T − F (0, T ) > 0,
contrary to the No-Arbitrage Principle.
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In general, if the contract is initiated at time t < T , then

F (t, T ) = S(t)e(r−rdiv)(T−t). (6.7)

Exercise 6.5

A US importer of German cars wants to arrange a forward contract to
buy euros in half a year. The interest rates for investments in US dollars
and euros are rUSD = 4% and rEUR = 3%, respectively, the current
exchange rate being 0.9834 euros to a dollar. What is the forward price
of euros expressed in dollars (that is, the forward exchange rate)?

6.1.2 Value of a Forward Contract

Every forward contract has value zero when initiated. As time goes by, the price
of the underlying asset may change. Along with it, the value of the forward
contract will vary and will no longer be zero, in general. In particular, the
value of a long forward contract will be S(T )−F (0, T ) at delivery, which may
turn out to be positive, zero or negative. We shall derive formulae to capture
the changes in the value of a forward contract.

Suppose that the forward price F (t, T ) for a forward contract initiated at
time t, where 0 < t < T , is higher than F (0, T ). This is good news for an
investor with a long forward position initiated at time 0. At time T such an
investor will gain F (t, T ) − F (0, T ) as compared to an investor entering into a
new long forward contract at time t with the same delivery date T . To find the
value of the original forward position at time t all we have to do is to discount
this gain back to time t. This discounted amount would be received (or paid,
if negative) by the investor with a long position should the forward contract
initiated at time 0 be closed out at time t, that is, prior to delivery T . This
intuitive argument needs to be supported by a rigorous arbitrage proof.

Theorem 6.4

For any t such that 0 ≤ t ≤ T the time t value of a long forward contract with
forward price F (0, T ) is given by

V (t) = [F (t, T ) − F (0, T )]e−r(T−t). (6.8)
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Proof

Suppose that
V (t) < [F (t, T ) − F (0, T )]e−r(T−t).

If so, then at time t

• borrow the amount V (t) to enter into a long forward contract with forward
price F (0, T ) and delivery time T ;

• initiate a short forward position with forward price F (t, T ), at no cost.

Next, at time T

• close out the forward contracts collecting (or paying, if negative) the
amounts S(T ) − F (0, T ) for the long position and −S(T ) + F (t, T ) for
the short position;

• pay back the loan with interest amounting to V (t)et(T−t) in total.

The final balance F (t, T ) − F (0, T ) − V (t)et(T−t) > 0 will be your arbitrage
profit.

We leave the case when

V (t) > [F (t, T ) − F (0, T )]e−r(T−t)

as an exercise.

Exercise 6.6

Show that V (t) > [F (t, T ) − F (0, T )]e−r(T−t) leads to an arbitrage op-
portunity.

Observe that V (0) = 0, which is the initial value of the forward contract,
and V (T ) = S(T ) − F (0, T ) (since F (T, T ) = S(T )), which is the terminal
payoff.

For a stock paying no dividends formula (6.8) gives

V (t) = [S(t)er(T−t) − S(0)erT ]e−r(T−t) = S(t) − S(0)ert. (6.9)

The message is: If the stock price grows at the same rate as a risk-free invest-
ment, then the value of the forward contract will be zero. Growth above the
risk-free rate results in a gain for the holder of a long forward position.

Remark 6.3

Consider a contract with delivery price X rather than F (0, T ). The value of
this contract at time t will be given by (6.8) with F (0, T ) replaced by X,

VX(t) = [F (t, T ) − X]e−r(T−t).
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Such a contract may have non-zero value initially. In the case of a stock paying
no dividends

VX(0) = [F (0, T ) − X]e−rT = S(0) − Xe−rT . (6.10)

For a stock paying one dividend between times 0 and T the initial value of the
contract is

VX(0) = S(0) − div0 − Xe−rT ,

div0 being the value of the dividend discounted to time 0. For a stock paying
dividends continuously at a rate rdiv, the initial value of the contract is

VX(0) = S(0)e−rdivT − Xe−rT .

Exercise 6.7

Suppose that the price of a stock is $45 at the beginning of the year, the
risk-free rate is 6%, and a $2 dividend is to be paid after half a year.
For a long forward position with delivery in one year, find its value after
9 months if the stock price at that time turns out to be a) $49, b) $51.

6.2 Futures

One of the two parties to a forward contract will be losing money. There is
always a risk of default by the party suffering a loss. Futures contracts are
designed to eliminate such risk.

We assume for a while that time is discrete with steps of length τ , typically
a day.

Just like a forward contract, a futures contract involves an underlying asset
and a specified time of delivery, a stock with prices S(n) for n = 0, 1, . . . and
time T , say. In addition to the usual stock prices, the market dictates the so-
called futures prices f(n, T ) for each step n = 0, 1, . . . such that nτ ≤ T. These
prices are unknown at time 0, except for f(0, T ), and we shall treat them as
random variables.

As in the case of a forward contract, it costs nothing to initiate a futures
position. The difference lies in the cash flow during the lifetime of the contract.
A long forward contract involves just a single payment S(T ) − F (0, T ) at de-
livery. A futures contract involves a random cash flow, known as marking to
market . Namely, at each time step n = 1, 2, . . . such that nτ ≤ T the holder of
a long futures position will receive the amount

f(n, T ) − f(n − 1, T )
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if positive, or will have to pay it if negative. The opposite payments apply for
a short futures position. The following two conditions are imposed:

1. The futures price at delivery is f(T, T ) = S(T ).

2. At each time step n = 0, 1, . . . such that nτ ≤ T the value of a futures
position is zero. (At each step n ≥ 1 this value is computed after marking
to market.)

The second condition means that, in particular, it costs nothing to close, open
or alter a futures position at any time step between 0 and T .

Remark 6.4

To ensure that the obligations involved in a futures position are fulfilled, certain
practical regulations are enforced. Each investor entering into a futures contract
has to pay a deposit, called the initial margin, which is kept by the clearing
house as collateral. In the case of a long futures position the amount f(n, T )−
f(n− 1, T ) is added to the deposit if positive or subtracted if negative at each
time step n, typically once a day. (The opposite amount is added or subtracted
for a short futures position.) Any excess that builds up above the initial margin
can be withdrawn by the investor. On the other hand, if the deposit drops below
a certain level, called the maintenance margin, the clearing house will issue a
margin call , requesting the investor to make a payment and restore the deposit
to the level of the initial margin. A futures position can be closed at any time,
in which case the deposit will be returned to the investor. In particular, the
futures position will be closed immediately by the clearing house if the investor
fails to respond to a margin call. As a result, the risk of default is eliminated.

Example 6.1

Suppose that the initial margin is set at 10% and the maintenance margin at
5% of the futures price. The table below shows a scenario with futures prices
f(n, T ). The columns labelled ‘margin 1’ and ‘margin 2’ show the deposit at the
beginning and at the end of each day, respectively. The ‘payment’ column con-
tains the amounts paid to top up the deposit (negative numbers) or withdrawn
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(positive numbers).

n f(n, T ) cash flow margin 1 payment margin 2
0 140 opening: 0 −14 14
1 138 − 2 12 0 12
2 130 − 8 4 − 9 13
3 140 +10 23 + 9 14
4 150 +10 24 + 9 15

closing: 15 +15 0
total: 10

On day 0 a futures position is opened and a 10% deposit paid. On day 1 the
futures price drops by $2, which is subtracted from the deposit. On day 2 the
futures price drops further by $8, triggering a margin call because the deposit
falls below 5%. The investor has to pay $9 to restore the deposit to the 10%
level. On day 3 the forward price increases and $9 is withdrawn, leaving a 10%
margin. On day 4 the forward price goes up again, allowing the investor to
withdraw another $9. At the end of the day the investor decides to close the
position, collecting the balance of the deposit. The total of all payments is $10,
the increase in the futures price between day 0 and 4.

Remark 6.5

An important feature of the futures market is liquidity. This is possible due to
standardisation and the presence of a clearing house. Only futures contracts
with particular delivery dates are traded. Moreover, futures contracts on com-
modities such as gold or timber specify standardised delivery arrangements as
well as standardised physical properties of the assets. The clearing house acts
as an intermediary, matching the total of a large number of short and long
futures positions of various sizes. The clearing house also maintains the margin
deposit for each investor to eliminate the risk of default. This is in contrast to
forward contracts negotiated directly between two parties.

6.2.1 Pricing

We shall show that in some circumstances the forward and the futures prices
are the same. Let r be the risk-free rate under continuous compounding.

Theorem 6.5

If the interest rate is constant, then f(0, T ) = F (0, T ).
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Proof

Suppose for simplicity that marking to market is performed at just two inter-
mediate time instants 0 < t1 < t2 < T . The argument below can readily be
extended to cover more frequent marking to market.

Take a long forward position with forward price F (0, T ) and invest the
amount of e−rT F (0, T ) risk free. At time T close the risk-free investment, col-
lecting the amount F (0, T ), purchase one share for F (0, T ) using the forward
contract, and sell the share for the market price S(T ). Your final wealth will
be S(T ).

Our goal is to replicate this payoff by a suitable strategy using futures
contracts. At time 0

• we open a fraction e−r(T−t1) of a long futures position (at no cost);
• we invest the amount e−rT f(0, T ) risk free (this investment will grow to

v0 = f(0, T ) at time T ).

At time t1

• we receive (or pay) the amount e−r(T−t1)[f(t1, T ) − f(0, T )] as a result of
marking to market;

• we invest (or borrow, depending on the sign) e−r(T−t1)[f(t1, T ) − f(0, T )]
(this investment will grow to v1 = f(t1, T ) − f(0, T ) at time T );

• we increase our long futures position to e−r(T−t2) of a contract (at no cost).

At time t2

• we cash (or pay) e−r(T−t2)[f(t2, T ) − f(t1, T )] as a result of marking to
market;

• we invest (or borrow, depending on the sign) e−r(T−t2)[f(t2, T ) − f(t1, T )]
(this investment will grow to v2 = f(t2, T ) − f(t1, T ) at time T );

• we increase the long futures position to 1 (at no cost).

At time T

• we close the risk-free investment, collecting the amount v0 + v1 + v2 =
f(t2, T );

• we close the futures position, receiving (or paying) the amount S(T ) −
f(t2, T ).

The final wealth will be S(T ), as before. Therefore, to avoid arbitrage, the
initial investments initiating both strategies have to be the same, that is,

e−rT F (0, T ) = e−rT f(0, T ),

which proves the claim.

This construction cannot be performed if the interest rate changes unpre-
dictably. However if interest rate changes are known in advance, the argument
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can be suitably modified and the equality between the futures and forward
prices remains valid.

In an economy with constant interest rates r we obtain a simple structure
of futures prices,

f(t, T ) = S(t)er(T−t) (6.11)

if the stock pays no dividends. The futures prices are random, but this is caused
entirely by the randomness of the prices of the underlying asset. If the futures
prices depart from the values given by the above formula, it is a reflection of
the market’s view of future interest rate changes.

Exercise 6.8

Suppose the interest rate r is constant. Given S(0), find the price S(1)
of the stock after one day such that the marking to market of futures
with delivery in 3 months is zero on that day.

This exercise shows an important benchmark for the profitability of a fu-
tures position: An investor who wants to take advantage of a predicted increase
in the price of stock above the risk-free rate should enter into a long futures
position. A short futures position will bring a profit should the stock price go
down or increase below the risk-free rate.

6.2.2 Hedging with Futures

The Basis. One relatively simple way to hedge an exposure to stock price
variations is to enter a forward contract. However, a contract of this kind may
not be readily available, not to mention the risk of default. Another possibility is
to hedge using the futures market, which is well-developed, liquid and protected
from the risk of default.

Example 6.2

Let S(0) = 100 dollars and let the risk-free rate be constant at r = 8%. Assume
that marking to market takes place once a month, the time step being τ = 1/12.
Suppose that we wish to sell the stock after 3 months. To hedge the exposure
to stock price variations we enter into one short futures contract on the stock
with delivery in 3 months. The payments resulting from marking to market are
invested (or borrowed), attracting interest at the risk-free rate. The results for
two different stock price scenarios are displayed below. The column labelled



6. Forward and Futures Contracts 139

‘m2m’ represents the payments due to marking to market and the last column
shows the interest accrued up to the delivery date.

Scenario 1
n S(n) f(n, 3/12) m2m interest
0 100 102.02
1 102 103.37 −1.35 −0.02
2 101 101.67 +1.69 +0.01
3 105 105.00 −3.32 0.00

total: −2.98 −0.01

In this scenario we sell the stock for $105.00, but marking to market brings
losses, reducing the sum to 105.00 − 2.98 − 0.01 = 102.01 dollars. Note that if
the marking to market payments were not invested at the risk-free rate, then
the realized sum would be 105.00−2.98 = 102.02 dollars, that is, exactly equal
to the futures price f(0, 3/12).

Scenario 2
n S(n) f(n, 3/12) m2m interest
0 100 102.02
1 98 99.31 +2.70 +0.04
2 97 97.65 +1.67 +0.01
3 92 92.00 +5.65 0.00

total: +10.02 +0.05

In this case we sell the stock for $92.00 and benefit from marking to market
along with the interest earned, bringing the final sum to 92.00+10.02+0.05 =
102. 07 dollars. Without the interest the final sum would be 92.00 + 10.02 =
102.02 dollars, once again exactly the futures price f(0, 3/12).

In reality the calculations in Example 6.2 are slightly more complicated
because of the presence of the initial margin, which we have neglected for
simplicity. Some limitations come from the standardisation of futures contracts.
As a result, a difficulty may arise in matching the terms of the contract to our
needs. For example, the exercise dates for futures are typically certain fixed
days in four specified months in a year, for example the third Friday in March,
June, September and December. If we want to close out our investment at the
end of April, we will need to hedge with futures contracts with delivery date
beyond the end of April, for example, in June.
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Example 6.3

Suppose we wish to sell stock after 2 months and we hedge using futures with
delivery in 3 months (we work in the same scenarios as in Example 6.2):

Scenario 1
n S(n) f(n, 3/12) m2m interest
0 100 102.02
1 102 103.37 −1.35 −0.01
2 101 101.67 1.69 0.00

total: 0.34 −0.01

We sell the stock for $101.00, which together with marking to market and
interest will give $101.33.

Scenario 2
n S(n) f(n, 3/12) m2m interest
0 100 102.02
1 98 99.31 2.70 0.02
2 97 97.65 1.67 0.00

total: 4.37 0.02

In this case we sell the stock for $97.00, and together with marking to market
and interest obtain $101.39.

We almost hit the target, which is the futures price f(0, 2) ∼= 101.34 dollars,
that is, the value of $100 compounded at the risk-free rate.

Remark 6.6

The difference between the spot and futures prices is called the basis (as for
forward contracts):

b(t, T ) = S(t) − f(t, T ).

(Sometimes the basis is defined as f(t, T ) − S(t).) The basis converges to zero
as t → T , since f(T, T ) = S(T ). In a market with constant interest rates it is
given explicitly by

b(t, T ) = S(t)(1 − er(T−t)),

being negative for t < T . If the asset pays dividends at a rate rdiv > r, then
the basis is positive:

b(t, T ) = S(t)(1 − e(r−rdiv)(T−t)).
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Going back to the problem of designing a hedge, suppose that we wish to sell
an asset at time t < T. To protect ourselves against a decrease in the asset price,
at time 0 we can short a futures contract with futures price f(0, T ). At time t

we shall receive S(t) from selling the asset plus the cash flow f(0, T ) − f(t, T )
due to marking to market (for simplicity, we neglect any intermediate cash flow,
assuming that t is the first instance when marking to market takes place), that
is, we obtain

f(0, T ) + S(t) − f(t, T ) = f(0, T ) + b(t, T ).

The price f(0, T ) is known at time 0, so the risk involved in the hedging position
will be related to the unknown level of the basis. This uncertainty is mainly
concerned with unknown future interest rates.

If the goal of a hedger is to minimise risk, it may be best to use a certain
optimal hedge ratio, that is to enter into N futures contracts, with N not
necessarily equal to the number of shares of the underlying asset held. To see
this compute the risk as measured by the variance of the basis bN (t, T ) =
S(t) − Nf(t, T ):

Var(bN (t, T )) = σ2
S(t) + N2σ2

f(t,T ) − 2NσS(t)σf(t,T )ρS(t)f(t,T ),

where ρS(t)f(t,T ) is the correlation coefficient between the spot and futures
prices, and σS(t), σf(t,T ) are the standard deviations. The variance is a quadratic
function in N and has a minimum at

N = ρS(t)f(t,T )

σS(t)

σf(t,T )
,

which is the optimal hedge ratio.

Exercise 6.9

Find the optimal hedge ratio if the interest rates are constant.

Futures on Stock Index. A stock exchange index is a weighted average of a
selection of stock prices with weights proportional to the market capitalisation
of stocks. An index of this kind will be approximately proportional to the value
of the market portfolio (see Chapter 5) if the chosen set of stocks is large
enough. For example, the Standard and Poor Index S&P500 is computed using
500 stocks, representing about 80% of trade at the New York Stock Exchange.
For the purposes of futures markets the index can be treated as a security. This
is because the index can be identified with a portfolio, even though in practice
transaction costs would impede trading in this portfolio. The futures prices
f(n, T ), expressed in index points, are assumed to satisfy the same conditions
as before. Marking to market is given by the difference f(n, T ) − f(n − 1, T )
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multiplied by a fixed amount ($500 for futures on S&P500). If the number of
stocks included in the index is large, it is possible and convenient to assume
that the index is an asset with dividends paid continuously.

Exercise 6.10

Suppose that the value of a stock exchange index is 13, 500, the futures
price for delivery in 9 months is 14, 100 index points, and the interest
rate is 8%. Find the dividend yield.

Our goal in this section is to study applications of index futures for hedging
based on the Capital Asset Pricing Model introduced in Chapter 5. As we know,
see (5.19), the expected return on a portfolio over a time step of length τ is
given by

µV = rF + (µM − rF )βV ,

where βV is the beta coefficient of the portfolio, µM is the expected return on
the market portfolio and rF is the risk-free return over one time step. By V (n)
we shall denote the value of the portfolio at the nth time step. We assume for
simplicity that the index is equal to the value of the market portfolio, so that
the futures prices are given by

f(n, T ) = M(n)(1 + rF )T−n,

M(n) being the value of the market portfolio at the nth time step. (Here we
use discrete time and ordinary returns together with periodic compounding in
the spirit of Portfolio Theory.)

We can form a new portfolio with value Ṽ (n) by supplementing the original
portfolio with N short futures contracts on the index with delivery time T .
The initial value Ṽ (0) of the new portfolio is the same as the value V (0) of
the original portfolio, since it costs nothing to initiate a futures contract. The
value

Ṽ (n) = V (n) − N(f(n, T ) − f(n − 1, T ))

of the new portfolio at the nth step includes the marking to market cash flow.
The return on the new portfolio over the first step is

KṼ =
Ṽ (1) − Ṽ (0)

Ṽ (0)
=

V (1) − N(f(1, T ) − f(0, T )) − V (0)
V (0)

.

We shall show that the beta coefficient βṼ of the new portfolio can be modified
arbitrarily by a suitable choice of the futures position N .
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Proposition 6.6

If

N = (βV − a)
(1 + rF )V (0)

f(0, T )
,

then βṼ = a for any given number a.

Proof

We shall compute the beta coefficient from the definition:

βṼ = Cov(KṼ ,KM )/σ2
M

= Cov(KV ,KM )/σ2
M − 1

V (0)
Cov(N(f(1, T ) − f(0, T )),KM )/σ2

M ,

where KM is the return on the market portfolio and KV the return on the
portfolio without futures. Since Cov(f(0, T ),KM ) = 0 and covariance is linear
with respect to each argument,

Cov(N(f(1, T ) − f(0, T )),KM ) = NCov(f(1, T ),KM ).

Inserting the futures price f(1, T ) = M(1)(1 + rF )T−1, we have

Cov(f(1, T ),KM ) = (1 + rF )T−1Cov(M(1),KM ).

Again by the linearity of covariance in each argument

Cov(M(1),KM ) = M(0)Cov(
M(1) − M(0)

M(0)
,KM ) = M(0)σ2

M .

Subsequent substitutions give

βṼ = βV − (1 + rF )T−1NM(0)
V (0)

= βV − N
f(0, T )

V (0)(1 + rF )
,

which implies the asserted property.

Corollary 6.7

If a = 0, then µṼ = rF .

Example 6.4

Suppose that the index drops from M(0) = 890 down to M(1) = 850, that is,
by 4.49% within one time step. Suppose further that the risk-free rate is 1%.
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This means that the futures prices on the index (with delivery after 3 steps)
are

f(0, 3) = M(0)(1 + rF )3 = 890 × 1.013 ∼= 916.97,

f(1, 3) = M(1)(1 + rF )3 = 850 × 1.012 ∼= 867.09.

Consider a portfolio with βV = 1.5 and initial value V (0) = 100 dollars. This
portfolio will have negative expected return

µV = rF + (µM − rF )βV

∼= 1% + (−4.49% − 1%)1.5 ∼= −7.24%.

To construct a new portfolio with βṼ = 0 we can supplement the original
portfolio with

N = βV
(1 + rF )V (0)

f(0, 3)
∼= 1.5 × 1.01 × 100

916.97
∼= 0.1652

short forward contracts on the index with delivery after 3 steps.
Suppose that the actual return on the original portfolio during the first

time step happens to be equal to the expected return. This gives V (1) ∼= 92.76
dollars. Marking to market gives a payment of

−N (f(1, 3) − f(0, 3)) ∼= −0.1652 × (867.09 − 916.97) ∼= 8.24

dollars due to the holder of N ∼= 0.1652 short forward contracts. This makes
the new portfolio worth

Ṽ (1) = V (1) − N (f(1, 3) − f(0, 3)) ∼= 92.76 + 8.24 = 101.00

dollars at time 1, matching the risk-free growth exactly.

Exercise 6.11

Perform the same calculations in the case when the index increases from
890 to 920.

Remark 6.7

The ability to adjust the beta of a portfolio is valuable to investors who may
wish either to reduce or to magnify the systematic risk. For example, suppose
that an investor is able to design a portfolio with superior average performance
to that of the market. By entering into a futures position such that the beta
of the resulting portfolio is zero, the investor will be hedged against adverse
movements of the market. This is crucial in the event of recession, so that the
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superior performance of the portfolio as compared to the market can be turned
into a profit despite a decline in the market. On the other hand, should the
market show some growth, the expected return on the hedged portfolio will be
reduced by comparison because the futures position will result in a loss.

It needs to be emphasized that this type of hedging with futures works only
on average. In particular, setting the beta coefficient to zero will not make the
investment risk-free.

Let us conclude this chapter with a surprising application of index futures.

Example 6.5

In emerging markets short sales are rarely available. This was the case in Poland
in the late 1990’s. However, index futures were traded. Due to the fact that
one of the indices (WIG20) was composed of 20 stocks only, it was possible to
manufacture a short sale of any stock among those 20 by entering into a short
futures position on the index, combined with purchasing a suitable portfolio of
the remaining 19 stocks. With a larger number of stocks comprising the index
the transaction costs would have been too high to make such a construction
practicable.
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7
Options: General Properties

In Chapters 1 and 4 we have seen simple examples of call and put options
in a one-step discrete-time setting. Here we shall establish some fundamental
properties of options, looking at them from a wider perspective and using con-
tinuous time. Nevertheless, many conclusions will also be valid in discrete time.
Chapter 8 will be devoted to pricing and hedging options.

7.1 Definitions

A European call option is a contract giving the holder the right to buy an asset,
called the underlying , for a price X fixed in advance, known as the exercise price
or strike price, at a specified future time T , called the exercise or expiry time.
A European put option gives the right to sell the underlying asset for the strike
price X at the exercise time T .

An American call or put option gives the right to buy or, respectively, to
sell the underlying asset for the strike price X at any time between now and
a specified future time T , called the expiry time. In other words, an American
option can be exercised at any time up to and including expiry.

The term ‘underlying asset’ has quite general scope. Apart from typical
assets such as stocks, commodities or foreign currency, there are options on
stock indices, interest rates, or even on the snow level at a ski resort. Some
underlying assets may be impossible to buy or sell. The option is then cleared
in cash in a fashion which resembles settling a bet. For example, the holder of

147
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a European call option on the Standard and Poor Index (see page 141) with
strike price 800 will gain if the index turns out to be 815 on the exercise date.
The writer of the option will have to pay the holder an amount equal to the
difference 815− 800 = 15 multiplied by a fixed sum of money, say by $100. No
payment will be due if the index turns out to be lower than 800 on the exercise
date.

An option is determined by its payoff, which for a European call is{
S(T ) − X if S(T ) > X,

0 otherwise.

This payoff is a random variable, contingent on the price S(T ) of the underlying
on the exercise date T . (This explains why options are often referred to as
contingent claims .) It is convenient to use the notation

x+ =
{

x if x > 0,

0 otherwise.

for the positive part of a real number x. Then the payoff of a European call
option can be written as (S(T ) − X)+. For a put option the payoff is (X −
S(T ))+.

Since the payoffs are non-negative, a premium must be paid to buy an
option. If no premium had to be paid, an investor purchasing an option could
under no circumstances lose money and would in fact make a profit whenever
the payoff turned out to be positive. This would be contrary to the No-Arbitrage
Principle. The premium is the market price of the option.

Establishing bounds and some general properties for option prices is the
primary goal of the present chapter. The next chapter will be devoted to de-
tailed techniques of computing these prices. We assume that options are freely
traded, that is, can readily be bought and sold at the market price. The prices
of calls and puts will be denoted by CE, PE for European options and CA, PA

for American options, respectively. The same constant interest rate r will apply
for lending and borrowing money without risk, and continuous compounding
will be used.

Example 7.1

On 22 March 1997 European calls on Rolls-Royce stock with strike price
220 pence to be exercised on 22 May 1997 traded at 19.5 pence at the London
International Financial Futures Exchange (LIFFE). Suppose that the purchase
of such an option was financed by a loan at 5.23% compounded continuously, so
that 19.5e0.0523× 2

12 ∼= 19.67 pence would have to be paid back on the exercise
date. The investment would bring a profit if the stock price turned out to be
higher than 220 + 19.67 = 239.67 pence on the exercise date.
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Exercise 7.1

Find the stock price on the exercise date for a European put option
with strike price $36 and exercise date in three months to produce a
profit of $3 if the option is bought for $4.50, financed by a loan at 12%
compounded continuously.

The gain of an option buyer (writer) is the payoff modified by the premium
CE or PE paid (received) for the option. At time T the gain of the buyer of a
European call is (S(T )−X)+−CEerT , where the time value of the premium is
taken into account. For the buyer of a European put the gain is (X −S(T ))+−
PEerT . These gains are illustrated in Figure 7.1. For the writer of an option
the gains are CEerT − (S(T )−X)+ for a call and PEerT − (X − S(T ))+ for a
put option. Note that the potential loss for a buyer of a call or put is always
limited to the premium paid. For a writer of an option the loss can be much
higher, even unbounded in the case of a call option.

Figure 7.1 Payoffs (solid lines) and gains (broken lines) for a buyer of Euro-
pean calls and puts

Exercise 7.2

Find the expected gain (or loss) for a holder of a European call option
with strike price $90 to be exercised in 6 months if the stock price on
the exercise date may turn out to be $87, $92 or $97 with probability 1

3

each, given that the option is bought for $8, financed by a loan at 9%
compounded continuously.
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7.2 Put-Call Parity

In this section we shall make an important link between the prices of European
call and put options.

Consider a portfolio constructed by and writing and selling one put and
buying one call option, both with the same strike price X and exercise date T .
Adding the payoffs of the long position in calls and the short position in puts,
we obtain the payoff of a long forward contract with forward price X and
delivery time T. Indeed, if S(T ) ≥ X, then the call will pay S(T )−X and the
put will be worthless. If S(T ) < X, then the call will be worth nothing and the
writer of the put will need to pay X − S(T ). In either case, the value of the
portfolio will be S(T )−X at expiry, the same as for the long forward position,
see Figure 7.2. As a result, the current value of such a portfolio of options
should be that of the forward contract, which is S(0)−Xe−rT , see Remark 6.3.
This motivates the theorem below. Even though the theorem follows from the
above intuitive argument, we shall give a different proof with a view to possible
generalisations.

Figure 7.2 Long forward payoff constructed from calls and puts

Theorem 7.1 (Put-Call Parity)

For a stock that pays no dividends the following relation holds between the
prices of European call and put options, both with exercise price X and exercise
time T :

CE − PE = S(0) − Xe−rT . (7.1)

Proof

Suppose that
CE − PE > S(0) − Xe−rT . (7.2)

In this case an arbitrage strategy can be constructed as follows: At time 0

• buy one share for S(0);
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• buy one put option for PE;
• write and sell one call option for CE;
• invest the sum CE−PE−S(0) (or borrow, if negative) on the money market

at the interest rate r.

The balance of these transactions is 0. Then, at time T

• close out the money market position, collecting (or paying, if negative) the
sum (CE − PE − S(0))erT ;

• sell the share for X either by exercising the put if S(T ) ≤ X or settling the
short position in calls if S(T ) > X.

The balance will be (CE − PE − S(0))erT + X, which is positive by (7.2),
contradicting the No-Arbitrage Principle.

Now suppose that

CE − PE < S(0) − Xe−rT . (7.3)

Then the following reverse strategy will result in arbitrage: At time 0

• sell short one share for S(0);
• write and sell a put option for PE;
• buy one call option for CE;
• invest the sum S(0)−CE+PE (or borrow, if negative) on the money market

at the interest rate r.

The balance of these transactions is 0. At time T

• close out the money market position, collecting (or paying, if negative) the
sum (S(0) − CE + PE)erT ;

• buy one share for X either by exercising the call if S(T ) > X or settling the
short position in puts if S(T ) ≤ X, and close the short position in stock.

The balance will be (S(0) − CE + PE)erT − X, positive by (7.3), once again
contradicting the No-Arbitrage Principle.

Exercise 7.3

Suppose that a stock paying no dividends is trading at $15.60 a share.
European calls on the stock with strike price $15 and exercise date in
three months are trading at $2.83. The interest rate is r = 6.72%, com-
pounded continuously. What is the price of a European put with the
same strike price and exercise date?

Exercise 7.4

European call and put options with strike price $24 and exercise date
in six months are trading at $5.09 and $7.78. The price of the under-
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lying stock is $20.37 and the interest rate is 7.48%. Find an arbitrage
opportunity.

Remark 7.1

We can make a simple but powerful observation based on Theorem 7.1: The
prices of European calls and puts depend in the same way on any variables
absent in the put-call parity relation (7.1). In other words, the difference of
these prices does not depend on such variables. As an example, consider the
expected return on stock If the price of a call should grow along with the
expected return, which on first sight seems consistent with intuition because
higher stock prices mean higher payoffs on calls, then the price of a put would
also grow. The latter, however, contradicts common sense because higher stock
prices mean lower payoffs on puts. Because of this, one could argue that put
and call prices should be independent of the expected return on stock. We shall
see that this is indeed the case once the Black–Scholes formula is derived for
call and put options in Chapter 8.

Following the argument presented at the beginning of this section, we can
reformulate put-call parity as follows:

CE − PE = VX(0), (7.4)

where VX(0) is the value of a long forward contract, see (6.10). Note that if X

is equal to the theoretical forward price S(0)erT of the asset, then the value of
the forward contract is zero, VX(0) = 0, and so CE = PE. Formula (7.4) allows
us to generalise put-call parity by drawing on the relationships established in
Remark 6.3. Namely, if the stock pays a dividend between times 0 and T , then
VX(0) = S(0)− div0 −Xe−rT , where div0 is the present value of the dividend.
It follows that

CE − PE = S(0) − div0 − Xe−rT . (7.5)

If dividends are paid continuously at a rate rdiv, then VX(0) = S(0)e−rdivT −
Xe−rT , so

CE − PE = S(0)e−rdivT − Xe−rT . (7.6)

Exercise 7.5

Outline an arbitrage proof of (7.5).

Exercise 7.6

Outline an arbitrage proof of (7.6).
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Exercise 7.7

For the data in Exercise 6.5, find the strike price for European calls and
puts to be exercised in six months such that CE = PE.

For American options put-call parity gives only an estimate, rather than a
strict equality involving put and call prices.

Theorem 7.2 (Put-Call Parity Estimates)

The prices of American put and call options with the same strike price X and
expiry time T on a stock that pays no dividends satisfy

S(0) − Xe−rT ≥ CA − PA ≥ S(0) − X.

Proof

Suppose that the first inequality fails to hold, that is,

CA − PA − S(0) + Xe−rT > 0.

Then we can write and sell a call, and buy a put and a share, financing the
transactions on the money market. If the holder of the American call chooses
to exercise it at time t ≤ T , then we shall receive X for the share and settle
the money market position, ending up with the put and a positive amount

X + (CA − PA − S(0))ert = (Xe−rt + CA − PA − S(0))ert

≥ (Xe−rT + CA − PA − S(0))ert > 0.

If the call option is not exercised at all, we can sell the share for X by exercising
the put at time T and close the money market position, also ending up with a
positive amount

X + (CA − PA − S(0))erT > 0.

Now suppose that

CA − PA − S(0) + X < 0.

In this case we can write and sell a put, buy a call and sell short one share,
investing the balance on the money market. If the American put is exercised
at time t ≤ T , then we can withdraw X from the money market to buy a share
and close the short sale. We shall be left with the call option and a positive
amount

(−CA + PA + S(0))ert − X > Xert − X ≥ 0.
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If the put is not exercised at all, then we can buy a share for X by exercising
the call at time T and close the short position in stock. On closing the money
market position, we shall also end up with a positive amount

(−CA + PA + S(0))erT − X > XerT − X > 0.

The theorem, therefore, holds by the No-Arbitrage Principle.

Exercise 7.8

Modify the proof of Theorem 7.2 to show that

S(0) − Xe−rT ≥ CA − PA ≥ S(0) − div0 − X

for a stock paying a dividend between time 0 and the expiry time T ,
where div0 is the value of the dividend discounted to time 0.

Exercise 7.9

Modify the proof of Theorem 7.2 to show that

S(0) − Xe−rT ≥ CA − PA ≥ S(0)e−rdivT − X

for a stock paying dividends continuously at a rate rdiv.

7.3 Bounds on Option Prices

First of all, we note the obvious inequalities

CE ≤ CA, PE ≤ PA, (7.7)

for European and American options with the same strike price X and expiry
time T . They hold because an American option gives at least the same rights
as the corresponding European option.

Figure 7.3 shows a scenario of stock prices in which the payoff of a European
call is zero at the exercise time T , whereas that of an American call will be
positive if the option is exercised at an earlier time t < T when the stock price
S(t) is higher than X. Nevertheless, it does not necessarily follow that the
inequalities in (7.7) can be replaced by strict ones; see Section 7.3.2, where it
is shown that CE = CA for call options on an asset that pays no dividends.

Exercise 7.10

Prove (7.7) by an arbitrage argument.
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Figure 7.3 Scenario in which an American call can bring a positive payoff,
but a European call cannot

It is also obvious that the price of a call or put option has to be non-negative
because an option of this kind offers the possibility of a future gain with no
liability. Therefore,

CE ≥ 0, PE ≥ 0.

Similar inequalities are of course valid for the more valuable American options.
In fact the prices of options are nearly always strictly positive, except for some
very special circumstances, for example, CE = 0 for a call option with strike
price X = 120 dollars one day prior to exercise when the underlying stock
is trading at $100 and daily price movements are limited by stock exchange
regulations to ±10%.

In what follows we are going to discuss some further simple bounds for the
prices of European and American options. The advantage of such bounds is
that they are universal. They are independent of any particular model of stock
prices and follow from the No-Arbitrage Principle alone.

7.3.1 European Options

We shall establish some upper and lower bounds on the prices of European call
and put options.

On the one hand, observe that

CE < S(0).

If the reverse inequality were satisfied, that is, if CE ≥ S(0), then we
could write and sell the option and buy the stock, investing the balance
on the money market. On the exercise date T we could then sell the stock
for min(S(T ), X), settling the call option. Our arbitrage profit would be
(CE − S(0))erT + min(S(T ), X) > 0. This proves that CE < S(0). On the
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other hand, we have the lower bound

S(0) − Xe−rT ≤ CE,

which follows immediately by put-call parity, since PE ≥ 0. Moreover, put-call
parity implies that

PE < Xe−rT ,

since CE < S(0), and
−S(0) + Xe−rT ≤ PE,

since CE ≥ 0.
These results are summarised in the following proposition and illustrated

in Figure 7.4. The shaded areas correspond to option prices that satisfy the
bounds.

Figure 7.4 Bounds on European call and put prices

Proposition 7.3

The prices of European call and put options on a stock paying no dividends
satisfy the inequalities

max{0, S(0) − Xe−rT } ≤ CE < S(0),

max{0,−S(0) + Xe−rT } ≤ PE < Xe−rT .

For dividend-paying stock the bounds are

max{0, S(0) − div0 − Xe−rT } ≤ CE < S(0) − div0,

max{0,−S(0) + div0 + Xe−rT } ≤ PE < Xe−rT .

Exercise 7.11

Prove the above bounds on option prices for dividend-paying stock.
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Exercise 7.12

For dividend-paying stock sketch the regions of call and put prices de-
termined by the bounds.

7.3.2 European and American Calls on Non-Dividend
Paying Stock

Consider European and American call options with the same strike price X and
expiry time T . We know that CA ≥ CE, since the American option gives more
rights than its European counterpart. If the underlying stock pays no dividends,
then CE ≥ S(0)−Xe−rT by Proposition 7.3. It follows that CA > S(0)−X if
r > 0. Because the price of the American option is greater than the payoff, the
option will sooner be sold than exercised at time 0.

The choice of 0 as the starting time is of course arbitrary. Replacing 0 by
any given t < T , we can show by the same argument that the American option
will not be exercised at time t. This means that the American option will in
fact never be exercised prior to expiry. This being so, it should be equivalent
to the European option. In particular, their prices should be equal, leading to
the following theorem.

Theorem 7.4

The prices of European and American call options on a stock that pays no
dividends are equal, CA = CE, whenever the strike price X and expiry time T

are the same for both options.

Proof

We already know that CA ≥ CE, see (7.7) and Exercise 7.10. If CA > CE, then
write and sell an American call and buy a European call, investing the balance
CA −CE at the interest rate r. If the American call is exercised at time t ≤ T ,
then borrow a share and sell it for X to settle your obligation as writer of the
call option, investing X at rate r. Then, at time T you can use the European
call to buy a share for X and close your short position in stock. Your arbitrage
profit will be (CA −CE)erT +Xer(T−t) −X > 0. If the American option is not
exercised at all, you will end up with the European option and an arbitrage
profit of (CA − CE)erT > 0. This proves that CA = CE.

Theorem 7.4 may seem counter-intuitive at first sight. While it is possible
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to gain S(t) − X by exercising an American call option if S(t) > X at time
t < T , this is not so with a European option, which cannot be exercised at time
t < T . It might, therefore, appear that the American call option should be more
valuable than the European one. Nevertheless, there is no contradiction. Even
though a European call option cannot be exercised at time t < T, it can be
sold for at least S(t) − X.

The situation is different for dividend-paying stock. Example 8.2 in the next
chapter shows a case in which an American call option is worth more than its
European counterpart and should be exercised prior to expiry, at least in some
scenarios.

On the other hand, it often happens that an American put should be ex-
ercised prematurely even if the underlying stock pays no dividends, as in the
following example.

Example 7.2

Suppose that the stock price is $10, the strike price of an American put expiring
in one year is $80, and the interest rate is 16%. Exercising the option now, we
can gain $70, which can be invested at 16% to become $81.20 after one year.
The value of a put option cannot possibly exceed the strike price, see (7.8), so
we are definitely better off by exercising the option early.

7.3.3 American Options

First we consider options on non-dividend paying stock. In this case the price of
an American call is equal to that of a European call, CA = CE, see Theorem 7.4,
so it must satisfy the same bounds as in Proposition 7.3. For an American put
we have

−S(0) + X ≤ PA

because PA cannot be less than the payoff of the option at time 0. This gives a
sharper lower bound than that for a European put. However, the upper bound
has to be relaxed as compared to a European put. Namely,

PA < X. (7.8)

Indeed, if PA ≥ X, then the following arbitrage strategy could be constructed:
Write and sell an American put for PA and invest this amount at the interest
rate r. If the put is exercised at time t ≤ T , then a share of the underlying
stock will have to be bought for X and can then be sold for S(t). The final cash
balance will be positive, PAert −X +S(t) > 0. If the option is not exercised at
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all, the final balance will also be positive, PAerT > 0, at expiry. These results
can be summarised as follows.

Proposition 7.5

The prices of American call and put options on a stock paying no dividends
satisfy the inequalities

max{0, S(0) − Xe−rT } ≤ CA < S(0),

max{0,−S(0) + X} ≤ PA < X.

Next we consider options on dividend-paying stock. The lower bounds for
European options imply that S(0) − div0 − Xe−rT ≤ CE ≤ CA and −S(0) +
div0 + Xe−rT ≤ PE ≤ PA. But because the price of an American option
cannot be less than its payoff at any time, we also have S(0) − X ≤ CA and
X − S(0) ≤ PA. Moreover, the upper bounds CA < S(0) and PA < X can
be established in a similar manner as for non-dividend paying stock. All these
inequalities can be summarised as follows: For dividend-paying stock

max{0, S(0) − div0 − Xe−rT , S(0) − X} ≤ CA < S(0),

max{0,−S(0) + div0 + Xe−rT ,−S(0) + X} ≤ PA < X.

Exercise 7.13

Prove by an arbitrage argument that CA < S(0) for an American call
on dividend-paying stock.

7.4 Variables Determining Option Prices

The option price depends on a number of variables. These can be variables
characterising the option, such as the strike price X or expiry time T , variables
describing the underlying asset, for example, the current price S(0) or dividend
rate rdiv, variables connected with the market as a whole such as the risk-free
rate r, and of course the running time t.

We shall analyse option prices as functions of one of the variables, keeping
the remaining variables constant. This is a significant simplification because
usually a change in one variable is accompanied by changes in some or all
of the other variables. Nevertheless, even the simplified situation will provide
interesting insights.
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7.4.1 European Options

Dependence on the Strike Price. We shall consider options on the same
underlying asset and with the same exercise time T , but with different val-
ues of the strike price X. The call and put prices will be denoted by CE(X)
and, respectively, PE(X) to emphasise their dependence on X. All remaining
variables such as the exercise time T , running time t and the underlying asset
price S(0) will be kept fixed for the time being.

Proposition 7.6

If X ′ < X ′′, then

CE(X ′) > CE(X ′′),

PE(X ′) < PE(X ′′).

This means that CE(X) is a strictly decreasing and PE(X) a strictly increasing
function of X.

These inequalities are obvious. The right to buy at a lower price is more
valuable than the right to buy at a higher price. Similarly, it is better to sell
an asset at a higher price than at a lower one.

Exercise 7.14

Give a rigorous arbitrage argument to prove the inequalities in Proposi-
tion 7.6.

Proposition 7.7

If X ′ < X ′′, then

CE(X ′) − CE(X ′′) < e−rT (X ′′ − X ′) ,

PE(X ′′) − PE(X ′) < e−rT (X ′′ − X ′) .

Proof

By put-call parity (7.1)

CE(X ′) − PE(X ′) = S(0) − X ′e−rT ,

CE(X ′′) − PE(X ′′) = S(0) − X ′′e−rT .
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Subtracting, we get
(
CE(X ′) − CE(X ′′)

)
+
(
PE(X ′′) − PE(X ′)

)
= (X ′′ − X ′)e−rT .

Since, by Proposition 7.6, both terms on the left-hand side are positive, each
is strictly smaller than the right-hand side.

Remark 7.2

In the language of mathematics the inequalities mean that the call and put
prices as functions of the strike price satisfy the Lipschitz condition with con-
stant e−rT < 1,

|CE(X ′′) − CE(X ′)| ≤ e−rT |X ′′ − X ′|,
|PE(X ′′) − PE(X ′)| ≤ e−rT |X ′′ − X ′|.

In particular, the slope of the graph of the option price as a function of the
strike price is less than 45◦. This is illustrated in Figure 7.5 for a call option.

Figure 7.5 Lipschitz property of call prices CE(X)

Proposition 7.8

Let X ′ < X ′′ and let α ∈ (0, 1). Then

CE(αX ′ + (1 − α)X ′′) ≤ αCE(X ′) + (1 − α)CE(X ′′),

PE(αX ′ + (1 − α)X ′′) ≤ αPE(X ′) + (1 − α)PE(X ′′).

In other words, CE(X) and PE(X) are convex functions of X.

Proof

For brevity, we put X = αX ′ + (1 − α)X ′′. Suppose that

CE(X) > αCE(X ′) + (1 − α)CE(X ′′).
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We can write and sell an option with strike price X, and purchase α options with
strike price X ′ and 1 − α options with strike price X ′′, investing the balance
CE(X) − (αCE(X ′) + (1 − α)CE(X ′′)

)
> 0 without risk. If the option with

strike price X is exercised at expiry, then we shall have to pay (S(T ) − X)+.
We can raise the amount α (S(T ) − X ′)++(1 − α) (S(T ) − X ′′)+ by exercising
α calls with strike X ′ and 1−α calls with strike X ′′. In this way we will realise
an arbitrage profit because of the following inequality, which is easy to verify
(the details are left to the reader, see Exercise 7.15):

(S(T ) − X)+ ≤ α (S(T ) − X ′)+ + (1 − α) (S(T ) − X ′′)+ . (7.9)

Convexity for put options follows from that for calls by put-call parity (7.1).
Alternatively, an arbitrage argument can be given along similar lines as for call
options.

Exercise 7.15

Verify inequality (7.9).

Remark 7.3

According to Proposition 7.8, CE(X) and PE(X) are convex functions of X.
Geometrically, this means that if two points on the graph of the function are
joined with a straight line, then the graph of the function between the two
points will lie below the line. This is illustrated in Figure 7.6 for call prices.

Figure 7.6 Convexity of call prices CE(X)

Dependence on the Underlying Asset Price. The current price S(0) of the
underlying asset is given by the market and cannot be altered. However, we can
consider an option on a portfolio consisting of x shares, worth S = xS(0). The
payoff of a European call with strike price X on such a portfolio to be exercised
at time T will be (xS(T ) − X)+. For a put the payoff will be (X − xS(T ))+. We
shall study the dependence of option prices on S. Assuming that all remaining
variables are fixed, we shall denote the call and put prices by CE(S) and PE(S).
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Remark 7.4

Even though options on a portfolio of stocks are of little practical significance,
the functions CE(S) and PE(S) are important because they also reflect the de-
pendence of option prices on very sudden changes of the price of the underlying
such that the remaining variables remain almost unaltered.

Proposition 7.9

If S′ < S′′, then

CE(S′) < CE(S′′),

PE(S′) > PE(S′′),

that is, CE(S) is a strictly increasing function and PE(S) a strictly decreasing
function of S.

Proof

Suppose that CE(S′) ≥ CE(S′′) for some S′ < S′′, where S′ = x′S(0) and S′′ =
x′′S(0). We can write and sell a call on a portfolio with x′ shares and buy a call
on a portfolio with x′′ shares, the two options sharing the same strike price X

and exercise time T , and we can invest the balance CE(S′) − CE(S′′) without
risk. Since x′ < x′′, the payoffs satisfy (x′S(T ) − X)+ ≤ (x′′S(T ) − X)+ with
strict inequality whenever X < x′′S(T ). If the option sold is exercised at time T ,
we can, therefore, exercise the other option to cover our liability and will be
left with an arbitrage profit.

The inequality for puts follows by a similar arbitrage argument.

Exercise 7.16

Prove the inequality in Proposition 7.9 for put options.

Proposition 7.10

Suppose that S′ < S′′. Then

CE(S′′) − CE(S′) < S′′ − S′,

PE(S′) − PE(S′′) < S′′ − S′.
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Proof

We employ put-call parity (7.1):

CE(S′′) − PE(S′′) = S′′ − Xe−rT ,

CE(S′) − PE(S′) = S′ − Xe−rT .

Subtracting, we get

(CE(S′′) − CE(S′)) + (PE(S′) − PE(S′′)) = S′′ − S′.

Both terms on the left-hand side are non-negative by the previous theorem, so
each is strictly less than the right-hand side.

Remark 7.5

A consequence of Proposition 7.10 is that the slope of the straight line joining
two points on the graph of the call or put price as a function of S is less than 45◦.
This is illustrated in Figure 7.7 for call options. In other words, the call and

Figure 7.7 Lipschitz property of call prices CE(S)

put prices CE(S) and PE(S) satisfy the Lipschitz condition with constant 1,
∣∣CE(S′′) − CE(S′)

∣∣ ≤ |S′′ − S′| ,∣∣PE(S′′) − PE(S′)
∣∣ ≤ |S′′ − S′| .

Proposition 7.11

Let S′ < S′′ and let α ∈ (0, 1). Then

CE(αS′ + (1 − α)S′′) ≤ αCE(S′) + (1 − α)CE(S′′),

PE(αS′ + (1 − α)S′′) ≤ αPE(S′) + (1 − α)PE(S′′).

This means that the call and put prices are convex functions of S.
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Proof

We put S = αS′ + (1 − α)S′′ for brevity. Let S′ = x′S(0), S′′ = x′′S(0) and
S = xS(0), so x = αx′ + (1 − α) x′′. Suppose that

CE(S) > αCE(S′) + (1 − α)CE(S′′).

We write and sell a call on a portfolio with x shares, and purchase α calls on a
portfolio with x′ shares and 1−α calls on a portfolio with x′′ shares, investing
the balance CE(S)−αCE(S′)− (1−α)CE(S′′) without risk. If the option sold
is exercised at time T , then we shall have to pay (xS(T ) − X)+. To cover this
liability we can exercise the other options. Since

(xS(T ) − X)+ ≤ α (x′S(T ) − X)+ + (1 − α) (x′′S(T ) − X)+ ,

this is an arbitrage strategy.
The inequality for put options can be proved by a similar arbitrage argument

or using put-call parity.

7.4.2 American Options

In general, American options have similar properties to their European counter-
parts. One difficulty is the absence of put-call parity; we only have the weaker
estimates in Theorem 7.2. In addition, we have to take into account the possi-
bility of early exercise.

Dependence on the Strike Price. We shall denote the call and put prices
by CA(X) and PA(X) to emphasise the dependence on X, keeping any other
variables fixed.

The following proposition is obvious for the same reasons as for European
options: Higher strike price makes the right to buy less valuable and the right
to sell more valuable.

Proposition 7.12

If X ′ < X ′′, then

CA(X ′) > CA(X ′′),

PA(X ′) < PA(X ′′).

Exercise 7.17

Give a rigorous arbitrage proof of Proposition 7.12.



166 Mathematics for Finance

Proposition 7.13

Suppose that X ′ < X ′′. Then

CA(X ′) − CA(X ′′) < X ′′ − X ′,

PA(X ′′) − PA(X ′) < X ′′ − X ′.

Proof

Suppose that X ′ < X ′′, but CA(X ′) − CA(X ′′) ≥ X ′′ − X ′. We write and
sell a call with strike price X ′, buy a call with strike price X ′′ and invest the
balance CA(X ′) − CA(X ′′) without risk. If the written option is exercised at
time t ≤ T , then we shall have to pay (S(t) − X ′)+. Exercising the other option
immediately, we shall receive (S(t) − X ′′)+. Observe that

(S(t) − X ′′)+ − (S(t) − X ′)+ ≥ − (X ′′ − X ′)

with strict inequality whenever S(t) < X ′′. Together with the risk-free invest-
ment, amounting to at least X ′′ − X ′, we shall therefore end up with a non-
negative sum of money, and in fact realise an arbitrage profit if S(t) < X ′′.

The proof is similar for put options.

Theorem 7.14

Suppose that X ′ < X ′′ and let α ∈ (0, 1). Then

CA(αX ′ + (1 − α)X ′′) ≤ αCA(X ′) + (1 − α)CA(X ′′),

PA(αX ′ + (1 − α)X ′′) ≤ αPE(X ′) + (1 − α)PA(X ′′).

Proof

For brevity, we put X = αX ′ + (1 − α)X ′′. Suppose that

CA(X) > αCA(X ′) + (1 − α)CA(X ′′).

We write an option with strike price X and buy α options with strike price X ′

and (1 − α) options with strike price X ′′, investing without risk the positive
balance of these transactions. If the written option is exercised at time t ≤ T ,
then we exercise both options held. In this way we shall achieve arbitrage
because

(S(t) − X)+ ≤ α (S(t) − X ′)+ + (1 − α) (S(t) − X ′′)+ .

The proof for put options is similar.
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Dependence on the Underlying Asset Price. Once again, we shall con-
sider options on a portfolio of x shares. The prices of American calls and puts
on such a portfolio will be denoted by CA(S) and PA(S), where S = xS(0) is
the value of the portfolio, all remaining variables being fixed. The payoffs at
time t are (xS(t) − X)+ for calls and (X − xS(t))+ for puts.

Proposition 7.15

If S′ < S′′, then

CA(S′) < CA(S′′),

PA(S′) > PA(S′′).

Proof

Suppose that CA(S′) ≥ CA(S′′) for some S′ < S′′, where S′ = x′S(0) and
S′′ = x′′S(0). We can write and sell a call on a portfolio with x′ shares and buy
a call on a portfolio with price x′′ shares, both options having the same strike
price X and expiry time T . The balance CA(S′)−CA(S′′) of these transactions
can be invested without risk. If the written option is exercised at time t ≤ T ,
then we can meet the liability by exercising the other option immediately.
Because x′ < x′′, the payoffs satisfy (x′S(t) − X)+ ≤ (x′′S(t) − X)+ with
strict inequality whenever X < x′′S(t). As a result, this strategy will provide
an arbitrage opportunity.

The proof is similar for put options.

Proposition 7.16

Suppose that S′ < S′′. Then

CA(S′′) − CA(S′) < S′′ − S′,

PA(S′) − PA(S′′) < S′′ − S′.

Proof

By the inequalities in Theorem 7.2

CA(S′) − PA(S′) ≥ S′ − X,

CA(S′′) − PA(S′′) ≤ S′′ − Xe−rT .
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On subtracting, we obtain(
CA(S′′) − CA(S′)

)
+
(
PA(S′) − PA(S′′)

) ≤ S′′ − S′ + X(1 − e−rT )

≤ S′′ − S′.

Each of the two terms on the left-hand side is positive, so it must be strictly
less than S′′ − S′, which completes the proof.

Proposition 7.17

Let S′ < S′′ and let α ∈ (0, 1). Then

CA(αS′ + (1 − α)S′′) ≤ αCA(S′) + (1 − α)CA(S′′),

PA(αS′ + (1 − α)S′′) ≤ αPA(S′) + (1 − α)PA(S′′).

Proof

Let S = αS′ + (1 − α)S′′ and let S′ = x′S(0), S′′ = x′′S(0) and S = xS(0).
Suppose that

CA(S) > αCA(S′) + (1 − α)CA(S′′).

We can write and sell a call on a portfolio with x shares, and purchase α calls
on a portfolio with x′ shares and 1 − α calls on a portfolio with x′′ shares, all
three options sharing the same strike price X and expiry time T . The positive
balance CA(S)−αCA(S′)−(1−α)CA(S′′) of these transactions can be invested
without risk. If the written option is exercised at time t ≤ T , then we shall
have to pay (xS(t) − X)+, where x = αx′ + (1 − α) x′′. We can exercise the
other two options to cover the liability. This is an arbitrage strategy because

(xS(t) − X)+ ≤ α (x′S(t) − X)+ + (1 − α) (x′′S(t) − X)+ .

The proof for put options is similar.

Dependence on the Expiry Time. For American options we can also for-
mulate a general result on the dependence of their prices on the expiry time T .
To emphasise this dependence, we shall now write CA(T ) and PA(T ) for the
prices of American calls and puts, assuming that all other variables are fixed.

Proposition 7.18

If T ′ < T ′′, then

CA(T ′) ≤ CA(T ′′),

PA(T ′) ≤ PA(T ′′).
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Proof

Suppose that CA(T ′) > CA(T ′′). We write and sell one option expiring at
time T ′ and buy one with the same strike price but expiring at time T ′′, invest-
ing the balance without risk. If the written option is exercised at time t ≤ T ′,
we can exercise the other option immediately to cover our liability. The posi-
tive balance CA(T ′) − CA(T ′′) > 0 invested without risk will be our arbitrage
profit.

The argument is the same for puts.

7.5 Time Value of Options

The following convenient terminology is often used. We say that at time t a
call option with strike price X is

• in the money if S(t) > X,
• at the money if S(t) = X,
• out of the money if S(t) < X.

Similarly, for a put option we say that it is

• in the money if S(t) < X,
• at the money if S(t) = X,
• out of the money if S(t) > X.

Also convenient, though less precise, are the terms deep in the money and deep
out of the money, which mean that the difference between the two sides in the
respective inequalities is considerable.

An American option in the money will bring a positive payoff if exercised
immediately, whereas an option out of the money will not. We use the same
terms for European options, though their meaning is different: Even if the
option is currently in the money, it may no longer be so on the exercise date,
when the payoff may well turn out to be zero. A European option in the money
is no more than a promising asset.

Definition 7.1

At time t ≤ T the intrinsic value of a call option with strike price X is equal
to (S(t) − X)+. The intrinsic value of a put option with the same strike price
is (X − S(t))+.

We can see that the intrinsic value is zero for options out of the money or at
the money. Options in the money have positive intrinsic value. The price of an
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option at expiry T coincides with the intrinsic value. The price of an American
option prior to expiry may be greater than the intrinsic value because of the
possibility of future gains. The price of a European option prior to the exercise
time may be greater or smaller than the intrinsic value.

Definition 7.2

The time value of an option is the difference between the price of the option
and its intrinsic value, that is,

CE(t) − (S(t) − X)+ for a European call,

PE(t) − (X − S(t))+ for a European put,

CA(t) − (S(t) − X)+ for an American call,

PA(t) − (X − S(t))+ for an American put.

Example 7.3

Let us examine some typical data. Suppose that the current price of stock is
$125.23 per share. Consider the following:

Intrinsic Value Time Value Option Price
Srike Price Call Put Call Put Call Put

110 15.23 0.00 3.17 2.84 18.40 2.84
120 5.23 0.00 7.04 6.46 12.27 6.46
130 0.00 5.23 6.78 4.41 6.78 9.64

An American call option with strike price $110 is in the money and has $15.23
intrinsic value. The option price must be at least equal to the intrinsic value,
since the option may be exercised immediately. Typically, the price will be
higher than the intrinsic value because of the possibility of future gains. On
the other hand, a put option with strike price $110 will be out of the money
and its intrinsic value will be zero. The positive price of the put is entirely due
to the possibility of future gains. Similar relationships for other strike prices
can be seen in the table.

The time value of a European call as a function of S is shown in Figure 7.8.
It can never be negative, and for large values of S it exceeds the difference
X −Xe−rT . This is because of the inequality CE(S) ≥ S −Xe−rT , see Propo-
sition 7.3.

The market value of a European put may be lower than its intrinsic value,
that is, the time value may be negative, see Figure 7.9. This may be so only if
the put option is in the money, S < X, and it should be deep in the money.



7. Options: General Properties 171

Figure 7.8 Time value CE(S) − (S − X)+ of a European call option

For a European option we have to wait until the exercise time T to realise the
payoff. The risk that the stock price will rise above X in the meantime may be
considerable, which reduces the value of the option.

Figure 7.9 Time value PE(S) − (X − S)+ of a European put option

The time value of an American call option is the same as that of a European
call (if there are no dividends) and Figure 7.8 applies. For an American put a
typical graph of the time value is shown in Figure 7.10.

Figure 7.10 Time value CA(S) − (S − X)+ of an American put option

Figures 7.8, 7.9 and 7.10 also illustrate the following assertion.

Proposition 7.19

For any European or American call or put option with strike price X, the time
value attains its maximum at S = X.

Proof

We shall present an argument for European calls. For S ≤ X the intrinsic
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value of the option is zero. Since CE(S) is an increasing function of S by
Proposition 7.9, this means that the time value is an increasing function of S

for S ≤ X. On the other hand, CE(S′′)−CE(S′) ≤ S′′−S′ for any S′ < S′′ by
Proposition 7.10. It follows that CE(S′′) − (S′′ − X)+ ≤ CE(S′) − (S′ − X)+

if X ≤ S′ < S′′, which means that the time value is a decreasing function of S

for S ≥ X. As a result, the time value has a maximum at S = X.
The proof for other options is similar.

Exercise 7.18

Prove Proposition 7.19 for put options.



8
Option Pricing

By a European derivative security or contingent claim with stock S as the
underlying asset we mean a random variable of the form D(T ) = f(S(T )),
where f is a given function, called the payoff . This is a direct generalisation of
a call option with f(S) = (S − X)+, a put option with f(S) = (X − S)+, or a
forward contract with f(S) = S − X (for the long position).

We have already learnt the basic method of pricing options in the one-step
model (see Section 1.6) based on replicating the option payoff. Not surprisingly,
this idea extends to a general binomial tree model constructed out of such one-
step two-state building blocks. Developing this extension will be our primary
task in this chapter.

Theorem 8.1

Suppose that for any contingent claim D(T ) there exists a replication strategy,
that is, an admissible strategy x(t), y(t) with final value V (T ) = D(T ). Then
the price D(0) of the contingent claim at time 0 must be equal to that of the
replicating strategy, V (0) = D(0).

Proof

The proof is just a modification of that of Proposition 1.3. If D(0) > V (0),
then we write the derivative security and take a long position in the strategy.
Our obligation will be covered by the strategy, the difference D(0)−V (0) being

173
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our arbitrage profit. If D(0) < V (0), then we take the opposite positions, with
V (0) − D(0) the resulting arbitrage profit.

Replication also solves the problem of hedging the position of the option
writer. If the cash received for the option is invested in the replicating strategy,
then all the risk involved in writing the option will be eliminated.

In this chapter we shall gradually develop such pricing methods for options,
starting with a comprehensive analysis of the one-step binomial model, which
will then be extended to a multi-step model. Finally, the Black–Scholes formula
in continuous time will be introduced.

8.1 European Options in the Binomial Tree
Model

8.1.1 One Step

This simple case was discussed in Chapter 1. Here we shall reiterate the ideas
in a more general setting: We shall be pricing general derivative securities and
not just call or put options. This will enable us to extend the approach to the
multi-step model.

We assume that the random stock price S(1) at time 1 may take two values
denoted by {

Su = S(0)(1 + u),
Sd = S(0)(1 + d),

with probabilities p and 1 − p, respectively. To replicate a general derivative
security with payoff f we need to solve the system of equations

{
x(1)Su + y(1)(1 + r) = f(Su),
x(1)Sd + y(1)(1 + r) = f(Sd),

for x(1) and y(1). This gives

x(1) =
f(Su) − f(Sd)

Su − Sd
,

which is the replicating position in stock, called the delta of the option. We
also find the money market position

y(1) = − (1 + d)f(Su) − (1 + u)f(Sd)
(u − d)(1 + r)

.
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The initial value of the replicating portfolio is x(1)S(0)+y(1). By Theorem 8.1

D(0) = x(1)S(0) + y(1)

=
f(Su) − f(Sd)

u − d
− (1 + d)f(Su) − (1 + u)f(Sd)

(u − d)(1 + r)
. (8.1)

Exercise 8.1

Show that the price of a call option grows with u, the other variables
being kept constant. Analyse the impact of a change of d on the option
price.

Exercise 8.2

Find a formula for the price CE(0) of a call option if r = 0 and S(0) =
X = 1 dollar. Compute the price for u = 0.05 and d = −0.05, and also
for u = 0.01 and d = −0.19. Draw a conclusion about the relationship
between the variance of the return on stock and that on the option.

Recall the notion of the risk-neutral probability, given by

p∗ =
r − d

u − d
, (8.2)

which turns the discounted stock price process (1+r)−nS(n) into a martingale,
see Chapter 3.

Theorem 8.2

The expectation of the discounted payoff computed with respect to the risk-
neutral probability is equal to the present value of the contingent claim,

D(0) = E∗
(
(1 + r)−1f(S(1))

)
. (8.3)
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Proof

This is an immediate consequence of (8.1):

D(0) =
f(Su) − f(Sd)

u − d
+

(1 + u)f(Sd) − (1 + d)f(Su)
(u − d) (1 + r)

=
1

1 + r

(
(r − d)f(Su)

(u − d)
+

(u − r)f(Sd)
u − d

)

=
1

1 + r

(
p∗f(Su) + (1 − p∗)f(Sd)

)
= E∗

(
(1 + r)−1f(S(1))

)
,

as claimed.

Exercise 8.3

Find the initial value of the portfolio replicating a call option if propor-
tional transaction costs are incurred whenever the underlying stock is
sold. (No transaction costs apply when the stock is bought.) Compare
this value with the case free of such costs. Assume that S(0) = X = 100
dollars, u = 0.1, d = −0.1 and r = 0.05, admitting transaction costs at
c = 2% (the seller receiving 98% of the stock value).

Exercise 8.4

Let S(0) = 75 dollars and let u = 0.2 and d = −0.1. Suppose that you
can borrow money at 12%, but the rate for deposits is lower at 8%. Find
the values of the replicating portfolios for a put and a call. Is the answer
consistent with the put and call prices following from Theorem 8.2?

8.1.2 Two Steps

We begin with two time steps. The stock price S(2) has three possible values

Suu = S(0)(1 + u)2, Sud = S(0)(1 + u)(1 + d), Sdd = S(0)(1 + d)2,

and S(1) has two values

Su = S(0)(1 + u), Sd = S(0)(1 + d),

at the nodes of the tree in Figure 8.1 marked by the corresponding sequences
of letters u and d.
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Figure 8.1 Branchings in the two-step binomial tree

For each of the three subtrees in Figure 8.1 we can use the one-step repli-
cation procedure as described above. At time 2 the derivative security is rep-
resented by its payoff,

D(2) = f(S(2)),

which has three possible values. The derivative security price D(1) has two
values

1
1 + r

[
p∗f(Suu) + (1 − p∗) f(Sud)

]
,

1
1 + r

[
p∗f(Sdu) + (1 − p∗) f(Sdd)

]
,

found by the one-step procedure applied to the two subtrees at nodes u and d.
This gives

D(1) =
1

1 + r

[
p∗f(S(1)(1 + u)) + (1 − p∗) f(S(1)(1 + d))

]
= g(S(1)),

where
g(x) =

1
1 + r

[
p∗f(x(1 + u)) + (1 − p∗)f(x(1 + d))

]
.

As a result, D(1) can be regarded as a derivative security expiring at time 1
with payoff g. (Though it cannot be exercised at time 1, the derivative security
can be sold for D(1) = g(S(1)).) This means that the one-step procedure can
be applied once again to the single subtree at the root of the tree. We have,
therefore,

D(0) =
1

1 + r

[
p∗g(S(0)(1 + u)) + (1 − p∗) g(S(0)(1 + d))

]
.

It follows that

D(0) =
1

1 + r

[
p∗g(Su) + (1 − p∗) g(Sd)

]

=
1

(1 + r)2
[
p2
∗f(Suu) + 2p∗ (1 − p∗) f(Sud) + (1 − p∗)

2
f(Sdd)

]
.

The last expression in square brackets is the risk-neutral expectation of f(S(2)).
This proves the following result.



178 Mathematics for Finance

Theorem 8.3

The expectation of the discounted payoff computed with respect to the risk-
neutral probability is equal to the present value of the derivative security,

D(0) = E∗
(
(1 + r)−2f(S(2))

)
.

Exercise 8.5

Let S(0) = 120 dollars, u = 0.2, d = −0.1 and r = 0.1. Consider a call
option with strike price X = 120 dollars and exercise time T = 2. Find
the option price and the replicating strategy.

Exercise 8.6

Using the data in the previous exercise, find the price of a call and the
replicating strategy if a 15 dollar dividend is paid at time 1.

8.1.3 General N -Step Model

The extension of the results above to a multi-step model is straightforward.
Beginning with the payoff at the final step, we proceed backwards, solving the
one-step problem repeatedly. Here is the procedure for the three-step model:

D(3) = f(S(3)),

D(2) =
1

1 + r
[p∗f(S(2)(1 + u)) + (1 − p∗)f(S(2)(1 + d))]

= g(S(2)),

D(1) =
1

1 + r
[p∗g(S(1)(1 + u)) + (1 − p∗)g(S(1)(1 + d))]

= h(S(1)),

D(0) =
1

1 + r
[p∗h(S(0)(1 + u)) + (1 − p∗)h(S(0)(1 + d))] ,

where

g(x) =
1

1 + r
[p∗f(x(1 + u)) + (1 − p∗)f(x(1 + d))] ,

h(x) =
1

1 + r
[p∗g(x(1 + u)) + (1 − p∗)g(x(1 + d))] .



8. Option Pricing 179

It follows that

D(0) =
1

1 + r

[
p∗h(Su) + (1 − p∗)h(Sd))

]

=
1

(1 + r)2
[
p2
∗g(Suu) + 2p∗(1 − p∗)g(Sud) + (1 − p∗)2g(Sdd))

]

=
1

(1 + r)3
[
p3
∗f(Suuu) + 3p2

∗(1 − p∗)f(Suud)

+3p∗(1 − p∗)2f(Sudd) + (1 − p∗)3f(Sddd))
]
.

The emerging pattern is this: Each term in the square bracket is characterised
by the number k of upward stock price movements. This number determines
the power of p∗ and the choice of the payoff value. The power of 1 − p∗ is the
number of downward price movements, equal to 3 − k in the last expression,
and N − k in general, where N is the number of steps. The coefficients in front
of each term give the number of scenarios (paths through the tree) that lead
to the corresponding payoff, equal to

(
N
k

)
= N !

k!(N−k)! , the number of k-element
combinations out of N elements. For example, there are three paths through
the 3-step tree leading to the node udd.

As a result, in the N -step model

D(0) =
1

(1 + r)N

N∑
k=0

(
N

k

)
pk
∗(1 − p∗)N−kf

(
S(0)(1 + u)k(1 + d)N−k

)
. (8.4)

The expectation of f(S(N)) under the risk-neutral probability can readily be
recognised in this formula. The result can be summarised as follows.

Theorem 8.4

The value of a European derivative security with payoff f(S(N)) in the N -
step binomial model is the expectation of the discounted payoff under the
risk-neutral probability:

D(0) = E∗
(
(1 + r)−Nf(S(N))

)
.

Remark 8.1

There is no need to know the actual probability p to compute D(0). This re-
markable property of the option price is important in practice, as the value
of p may be difficult to estimate from market data. Instead, the formula for
D(0) features p∗, the risk-neutral probability, which may have nothing in com-
mon with p, but is easy to compute from (8.2).
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8.1.4 Cox–Ross–Rubinstein Formula

The payoff for a call option with strike price X satisfies f(x) = 0 for x ≤ X,
which reduces the number of terms in (8.4). The summation starts with the
least m such that

S(0)(1 + u)m(1 + d)N−m > X.

Hence

CE(0) = (1 + r)−N
N∑

k=m

(
N

k

)
pk
∗(1 − p∗)N−k

(
S(0)(1 + u)k(1 + d)N−k − X

)
.

This can be written as

CE(0) = x(1)S(0) + y(1),

relating the option price to the initial replicating portfolio x(1), y(1), where

x(1) = (1 + r)−N
N∑

k=m

(
N

k

)
pk
∗(1 − p∗)N−k(1 + u)k(1 + d)N−k,

y(1) = −X(1 + r)−N
N∑

k=m

(
N

k

)
pk
∗(1 − p∗)N−k.

The expression for x(1) can be rewritten as

x(1) =
N∑

k=m

(
N

k

)(
p∗

1 + u

1 + r

)k (
(1 − p∗)

1 + d

1 + r

)N−k

=
N∑

k=m

(
N

k

)
q

k

(1− q)N−k,

where
q = p∗

1 + u

1 + r
.

(Note that p∗ 1+u
1+r and (1 − p∗) 1+d

1+r add up to one.) Similar formulae can be
derived for put options, either directly or using put-call parity.

These important results are summarised in the following theorem, in which
Φ(m,N, p) denotes the cumulative binomial distribution with N trials and
probability p of success in each trial,

Φ(m,N, p) =
m∑

k=0

(
N

k

)
pk (1 − p)N−k

.
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Theorem 8.5 (Cox–Ross–Rubinstein Formula)

In the binomial model the price of a European call and put option with strike
price X to be exercised after N time steps is given by

CE(0) = S(0) [1 − Φ(m − 1, N, q)] − (1 + r)−NX [1 − Φ(m − 1, N, p∗)] ,

PE(0) = −S(0)Φ(m − 1, N, q) + (1 + r)−NXΦ(m − 1, N, p∗).

The initial replicating portfolio x(1), y(1) is given by

x(1) y(1)
for a call 1 − Φ(m − 1, N, q) −(1 + r)−NX [1 − Φ(m − 1, N, p∗)]
for a put −Φ(m − 1, N, q) (1 + r)−NXΦ(m − 1, N, p∗)

Exercise 8.7

Let S(0) = 50 dollars, r = 5%, u = 0.3 and d = −0.1. Find the price of
a European call and put with strike price X = 60 dollars to be exercised
after N = 3 time steps.

Exercise 8.8

Let S(0) = 50 dollars, r = 0.5%, u = 0.01 and d = −0.01. Find m, x(1),
and the price CE(0) of a European call option with strike X = 60 dollars
to be exercised after N = 50 time steps.

Exercise 8.9

Consider the scenario in which stock goes up at each step. At which step
will the delta of a European call become 1?

8.2 American Options in the Binomial Tree
Model

Even the formulation of a precise mathematical definition of an American type
contingent claim presents some difficulties. Nevertheless, the informal descrip-
tion is simple: The option can be exercised at any time step n such that
0 ≤ n ≤ N , with payoff f(S(n)). Of course, it can be exercised only once.
The price of an American option at time n will be denoted by DA(n).
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To begin with, we shall analyse an American option expiring after 2 time
steps. Unless the option has already been exercised, at expiry it will be worth

DA(2) = f(S(2)),

where we have three values depending on the values of S(2). At time 1 the op-
tion holder will have the choice to exercise immediately, with payoff f(S(1)), or
to wait until time 2, when the value of the American option will become f(S(2)).
The value of waiting can be computed by treating f(S(2)) as a one-step Euro-
pean contingent claim to be priced at time 1, which gives the value

1
1 + r

[p∗f(S(1)(1 + u)) + (1 − p∗)f(S(1)(1 + d))]

at time 1. In effect, the option holder has the choice between the latter value or
the immediate payoff f(S(1)). The American option at time 1 will, therefore,
be worth the higher of the two,

DA(1) = max
{

f(S(1)),
1

1 + r
[p∗f(S(1)(1 + u)) + (1 − p∗)f(S(1)(1 + d))]

}

= f1(S(1))

(a random variable with two values), where

f1(x) = max
{

f(x),
1

1 + r
[p∗f(x(1 + u)) + (1 − p∗)f(x(1 + d))]

}
.

A similar argument gives the American option value at time 0,

DA(0) = max
{

f(S(0)),
1

1 + r
[p∗f1(S(0)(1 + u)) + (1 − p∗)f1(S(0)(1 + d))]

}
.

Example 8.1

To illustrate the above procedure we consider an American put option with
strike price X = 80 dollars expiring at time 2 on a stock with initial price
S(0) = 80 dollars in a binomial model with u = 0.1, d = −0.05 and r = 0.05.
(We consider a put, as we know that there is no difference between American
and European call options, see Theorem 7.4.) The stock values are

n 0 1 2
96.80

88.00 <

S(n) 80.00 < 83.60
76.00 <

72.20
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The price of the American put will be denoted by PA(n) for n = 0, 1, 2. At
expiry the payoff will be positive only in the scenario with two downward stock
price movements,

n 0 1 2
0.00

? <

PA(n) ? < 0.00
? <

7.80

At time 1 the option writer can choose between exercising the option immedi-
ately or waiting until time 2. In the up state at time 1 the immediate payoff
and the value of waiting are both zero. In the down state the immediate payoff
is 4 dollars, while the value of waiting is 1.05−1 × 1

3 × 7.8 ∼= 2.48 dollars. The
option holder will choose the higher value (exercising the option in the down
state at time 1). This gives the time 1 values of the American put,

n 0 1 2
0.00

0.00 <

PA(n) ? < 0.00
4.00 <

7.80

At time 0 the choice is, once again, between the payoff, which is zero, or the
value of waiting, which is 1.05−1 × 1

3 × 4 ∼= 1.27 dollars. Taking the higher of
the two completes the tree of option prices,

n 0 1 2
0.00

0.00 <

PA(n) 1.27 < 0.00
4.00 <

7.80

For comparison, the price of a European put is PE(0) = 1.05−1× 1
3×2.48 ∼= 0.79

dollars, clearly less than the American put price PA(0) ∼= 1.27 dollars.

This can be generalised, leading to the following definition.

Definition 8.1

An American derivative security or contingent claim with payoff function f

expiring at time N is a sequence of random variables defined by backward
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induction:

DA(N) = f(S(N)),

DA(N − 1) = max
{

f(S(N − 1)),
1

1 + r
[p∗f(S(N − 1)(1 + u))

+ (1 − p∗)f(S(N − 1)(1 + d))]
}

=: fN−1(S(N − 1)),

DA(N − 2) = max
{

f(S(N − 2)),
1

1 + r
[p∗fN−1(S(N − 2)(1 + u))

+ (1 − p∗)fN−1(S(N − 2)(1 + d))]
}

=: fN−2(S(N − 2)),

...

DA(1) = max
{

f(S(2)),
1

1 + r
[p∗f2(S(1)(1 + u))

+ (1 − p∗)f2(S(1)(1 + d))]
}

=: f1(S(1)),

DA(0) = max
{

f(S(0)),
1

1 + r
[p∗f1(S(0)(1 + u))

+ (1 − p∗)f1(S(0)(1 + d))]
}

.

Exercise 8.10

Compute the value of an American put expiring at time 3 with strike
price X = 62 dollars on a stock with initial price S(0) = 60 dollars in a
binomial model with u = 0.1, d = −0.05 and r = 0.03.

Exercise 8.11

Compare the prices of an American call and a European call with strike
price X = 120 dollars expiring at time 2 on a stock with initial price
S(0) = 120 dollars in a binomial model with u = 0.2, d = −0.1 and
r = 0.1.

Example 8.2

The last exercise can be modified to show that the equality of European and
American call prices may not hold if a dividend is paid. Suppose that a dividend
of 14 dollars is paid at time 2. Otherwise, we shall use the same data as in
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Exercise 8.11. The ex-dividend stock prices are

n 0 1 2
158.80

144.00 <

S(n) 120.00 < 115.60
ex-div 108.00 <

83.20

The corresponding European and American call values will be

n 0 1 2
38.80
38.80

23.52
24.00

<

CE(n)
CA(n)

14.25
14.55

<
0.00
0.00

0.00
0.00

<

0.00
0.00

The American call should be exercised early in the up state at time 1 with
payoff 24 dollars (bold figures), which is more than the value of holding the
option to expiry. As a result, the price of the American call is higher than that
of the European call.

Exercise 8.12

Compute the prices of European and American puts with exercise and
strike price X = 14 dollars expiring at time 2 on a stock with S(0) = 12
dollars in a binomial model with u = 0.1, d = −0.05 and r = 0.02,
assuming that a dividend of 2 dollars is paid at time 1.

8.3 Black–Scholes Formula

We shall present an outline of the main results for European call and put
options in continuous time, culminating in the famous Black–Scholes formula.
Our treatment of continuous time is a compromise lacking full mathematical
rigour, which would require a systematic study of Stochastic Calculus, a topic
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treated in detail in more advanced texts. In place of this, we shall exploit an
analogy with the discrete time case.

As a starting point we take the continuous time model of stock prices de-
veloped in Chapter 3 as a limit of suitably scaled binomial models with time
steps going to zero. In the resulting continuous time model the stock price is
given by

S(t) = S(0)emt+σW (t), (8.5)

where W (t) is the standard Wiener process (Brownian motion), see Sec-
tion 3.3.2. This means, in particular, that S(t) has the log normal distribution.

Consider a European option on the stock expiring at time T with payoff
f(S(T )). As in the discrete-time case, see Theorem 8.4, the time 0 price D(0)
of the option ought to be equal to the expectation of the discounted payoff
e−rT f(S(T )),

D(0) = E∗
(
e−rT f(S(T ))

)
, (8.6)

under a risk-neutral probability P∗ that turns the discounted stock price process
e−rtS(t) into a martingale. Here we shall accept this formula without proof,
by analogy with the discrete time result. (The proof is based on an arbitrage
argument combined with a bit of Stochastic Calculus, the latter beyond the
scope of this book.)

What is the risk-neutral probability P∗, then? A necessary condition is that
the expectation of the discounted stock prices e−rtS(t) should be constant
(independent of t), just like in the discrete time case, see (3.5).

Let us compute this expectation using the real market probability P . Since
W (t) is normally distributed with mean 0 and variance t, it has density

1√
2πt

e−
x2
2t under probability P . As a result,

E
(
e−rtS(t)

)
= S(0)E

(
eσW (t)+(m−r)t

)

= S(0)
∫ ∞

−∞
eσx+(m−r)t 1√

2πt
e−

x2
2t dx

= S(0)e(m−r+ 1
2 σ2)t

∫ ∞

−∞

1√
2πt

e−
(x−σt)2

2t dx

= S(0)e(m−r+ 1
2 σ2)t

∫ ∞

−∞

1√
2πt

e−
y2

2t dy

= S(0)e(m−r+ 1
2 σ2)t.

If m + 1
2σ2 �= r, then the expectation E(e−rtS(t)) = S(0)e(m−r+ 1

2 σ2)t clearly
depends on t, so S(t) cannot be a martingale under P .

However, the calculations above suggest a modification P∗ of P that would
make the corresponding expectation E∗(e−rtS(t)) independent of t by elimi-
nating the exponential factor e(m−r+ 1

2 σ2)t. Namely, if P can be replaced by
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a probability P∗ such that V (t) = W (t) +
(
m − r + 1

2σ2
)
t/σ (rather than

W (t) itself) becomes a Wiener process under P∗, then the exponential factor
e(m−r+ 1

2 σ2)t will be eliminated from the final expression. (The existence of such
a probability P∗ follows from an advanced result in Stochastic Calculus, the so-
called Girsanov theorem.) Indeed, since V (t) has density 1√

2πt
e−

x2
2t under P∗,

that is, it is normally distributed with mean 0 and variance t, it follows that

E∗
(
e−rtS(t)

)
= S(0)E∗

(
eσW (t)+(m−r)t

)

= S(0)E∗
(
eσV (t)− 1

2 σ2t
)

= S(0)
∫ ∞

−∞
eσx− 1

2 σ2t 1√
2πt

e−
x2
2t dx

= S(0)
∫ ∞

−∞

1√
2πt

e−
(x−σt)2

2t dx

= S(0)
∫ ∞

−∞

1√
2πt

e−
y2

2t dy = S(0).

The fact that E∗(e−rtS(t)) = S(0) does not depend on time t is a necessary
condition for the discounted price process e−rtS(t) to be a martingale under P∗.
To show that e−rtS(t) is indeed a martingale under P∗ we need in fact to verify
the stronger condition

E∗
(
e−rtS(t)|S(u)

)
= e−ruS(u) (8.7)

for any t ≥ u ≥ 0, involving the conditional expectation of e−rtS(t) given S(u).
So far we have dealt with conditional expectation where the condition was
given in terms of a discrete random variable, see Section 3.2.2. Here, however,
the condition is expressed in terms of S(u), a random variable with continuous
distribution. In this case the precise mathematical meaning of (8.7) is that for
every a > 0

E∗
(
e−rtS(t)1S(u)<a

)
= E∗

(
e−ruS(u)1S(u)<a

)
, (8.8)

where 1S(u)<a is the indicator random variable, equal to 1 if S(u) < a and to 0
if S(u) ≥ a.

Exercise 8.13

Verify equality (8.8).

Exercise 8.14

Find the density of W (t) under the risk-neutral probability P∗.
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Above we have identified the risk-neutral probability P∗. Now we shall con-
sider a European call option on the stock with strike price X to be exercised
at time T . The general formula (8.6) for the price of an option becomes

CE(0) = E∗
(
e−rT (S(T ) − X)+

)
.

Let us compute this expectation. Because V (T ) = W (t)+
(
m − r + 1

2σ2
)

t
σ for

t ≥ 0 is a Wiener process under P∗, the random variable V (T ) = W (T ) +(
m − r + 1

2σ2
)

T
σ is normally distributed with mean 0 and variance T , that is,

it has density 1√
2πT

e−
x2
2T . As a result,

CE(0) = E∗
(
e−rT (S(T ) − X)+

)

= E∗

((
S(0)eσV (t)− 1

2 σ2T − Xe−rT
)+
)

=
∫ ∞

−d2
√

T

(
S(0)eσx− 1

2 σ2T − Xe−rT
) 1√

2πT
e−

x2
2T dx

= S(0)
∫ ∞

−d1

1√
2π

e−
y2

2 dy − Xe−rT

∫ ∞

−d2

1√
2π

e−
y2

2 dy

= S(0)N(d1) − Xe−rT N(d2),

where

d1 =
ln S(0)

X +
(
r + 1

2σ2
)
T

σ
√

T
, d2 =

ln S(0)
X +

(
r − 1

2σ2
)
T

σ
√

T
, (8.9)

and where
N(x) =

∫ x

−∞

1√
2π

e−
y2

2 dy =
∫ ∞

−x

1√
2π

e−
y2

2 dy (8.10)

is the normal distribution function.
What we have just derived is the celebrated Black–Scholes formula for Eu-

ropean call options. The choice of time 0 to compute the price of the option
is arbitrary. In general, the option price can be computed at any time t < T ,
in which case the time remaining before the option is exercised will be T − t.
Substituting t for 0 and T − t for T in the above formulae, we thus obtain the
following result.

Theorem 8.6 (Black–Scholes Formula)

The time t price of a European call with strike price X and exercise time T ,
where t < T , is given by

CE(t) = S(t)N(d1) − Xe−r(T−t)N(d2)
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with

d1 =
ln S(0)

X +
(
r + 1

2σ2
)
(T − t)

σ
√

T − t
, d2 =

ln S(0)
X +

(
r − 1

2σ2
)
(T − t)

σ
√

T − t
. (8.11)

Exercise 8.15

Derive the Black–Scholes formula

PE(t) = Xe−r(T−t)N(−d2) − S(t)N(−d1),

with d1 and d2 given by (8.11), for the price of a European put with
strike X and exercise time T .

Remark 8.2

Observe that the Black–Scholes formula contains no m. It is a property anal-
ogous to that in Remark 8.1, and of similar practical significance: There is no
need to know m to work out the price of a European call or put option in
continuous time.

It is interesting to compare the Black–Scholes formula for the price of a
European call with the Cox–Ross–Rubinstein formula. There is close analogy
between the terms. Apart from the obvious correspondence between the con-
tinuous and discrete time discount factors e−rT and (1 + r)−N , the binomial
and normal distribution terms appearing in these formulae are also related
to one another. The precise relationship comes from a version of the Central
Limit Theorem: It can be shown that the option price given by the Cox–Ross–
Rubinstein formula tends to that in the Black–Scholes formula in the continuous
time limit described in Chapter 3.

Figure 8.2 Option price CE in continuous and discrete time models as a
function of time T remaining before the option is exercised
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Rather than looking at the details of this limit, we just refer to Figure 8.2
for illustration. It shows the price CE of a European call with strike X = 100
on a stock with S(0) = 100, σ = 0.3 and m = 0.2. (Though m is irrelevant for
the Black–Scholes formula, it still features in the discrete time approximation.)
The continuous compounding interest rate is taken to be r = 0.2. The option
price is computed in two ways, as a function of the time T remaining before
the option is exercised:

a) (solid line) from the Black–Scholes formula for T between 0 and 1;

b) (dots) using the Cox–Ross–Rubinstein formula with T increasing from 0
to 1 in N = 10 steps of duration τ = 0.1 each; the discrete growth rates for
each step are computed using formulae (3.7).

Even with as few as 10 steps there is remarkably good agreement between the
discrete and continuous time formulae.
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Financial Engineering

This chapter shows some applications of derivative securities to managing the
risk exposure in various situations. The presentation will be by means of exam-
ples and mini case studies. Even though these are concerned with very particu-
lar circumstances, the methods are applicable to a wide range of tasks handled
by financial managers.

First, we shall present methods for eliminating or reducing the risk involved
in writing options. This is a problem faced by financial institutions who issue
and sell derivative securities, but may not wish to bear the accompanying risk.
Such institutions are typically satisfied by the commission charged for their
services, without taking an active position in the market.

Next, we shall analyse methods of reducing undesirable risk stemming from
certain business activities. Our case studies will be concerned with foreign ex-
change risk. It is possible to deal in a similar way with the risk resulting from un-
expected future changes of various market variables such as commodity prices,
interest rates or stock prices. We shall introduce a measure of risk called Value
at Risk (VaR), which has recently become very popular. Derivative securities
will be used to design portfolios with a view to reducing this kind of risk.

Finally, we shall consider an application of options to manufacturing a lev-
ered investment, for which increased risk will be accompanied by high expected
return.

191
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9.1 Hedging Option Positions

The writer of a European call option is exposed to risk, as the option may end
up in the money. The risk profile for a call writer is CEerT −(S(T )−X)+, where
CEerT is the value at the exercise time T of the premium CE received for the
option and invested without risk. Theoretically, the loss to the writer may be
unlimited. For a put option the risk profile has the form PEerT − (X −S(T ))+,
with limited loss, though still possibly very large compared to the premium PE

received. We shall see how to eliminate or at least reduce this risk over a
short time horizon by taking a suitable position in the underlying asset and, if
necessary, also in other derivative securities written on the same asset.

In practice it is impossible to hedge in a perfect way by designing a single
portfolio to be held for the whole period up to the exercise time T . The hedging
portfolio will need to be modified whenever the variables affecting the option
change with time. In a realistic case of non-zero transaction costs these mod-
ifications cannot be performed too frequently and some compromise strategy
may be required. Nevertheless, here we shall only discuss hedging over a single
short time interval, neglecting transaction costs.

9.1.1 Delta Hedging

The value of a European call or put option as given by the Black–Scholes
formula clearly depends on the price of the underlying asset. This can be seen
in a slightly broader context.

Consider a portfolio whose value depends on the current stock price S =
S(0) and is hence denoted by V (S). Its dependence on S can be measured
by the derivative d

dS V (S), called the delta of the portfolio. For small price
variations from S to S + ∆S the value of the portfolio will change by

∆V (S) ∼= d
dS

V (S) × ∆S.

The principle of delta hedging is based on embedding derivative securities in a
portfolio, the value of which does not alter too much when S varies. This can
be achieved by ensuring that the delta of the portfolio is equal to zero. Such a
portfolio is called delta neutral .

We take a portfolio composed of stock, bonds and the hedged derivative
security, its value given by

V (S) = xS + y + zD(S),

where the derivative security price is denoted by D(S) and a bond with current
value 1 is used. Specifically, suppose that a single derivative security has been
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written, that is, z = −1. Then

d
dS

V (S) = x − d
dS

D(S).

The last term d
dS D(S), which is the delta of the derivative security, can readily

be computed if the model of stock prices is specified, so that an explicit formula
for D(S) is available.

Proposition 9.1

Denote the European call option price in the Black–Scholes model by CE(S).
The delta of the option is given by

d
dS

CE(S) = N(d1),

where N(x) is the normal distribution function given by (8.10) and d1 is defined
by (8.9).

Proof

The price S = S(0) appears in three places in the Black–Scholes formula, see
Theorem 8.6, so the differentiation requires a bit of work, with plenty of nice
cancellations in due course, and is left to the reader. Bear in mind that the
derivative d

dS CE(S) is computed at time t = 0.

Exercise 9.1

Find a similar expression for the delta d
dS PE(S) of a European put option

in the Black–Scholes model.

For the remainder of this section we shall consider a European call option
within the Black–Scholes model. By Proposition 9.1 the portfolio (x, y, z) =
(N(d1), y,−1), where the position in stock N(d1) is computed for the initial
stock price S = S(0), has delta equal to zero for any money market position y.
Consequently, its value

V (S) = N(d1)S + y − CE(S)

does not vary much under small changes of the stock price about the initial
value. It is convenient to choose y so that the initial value of the portfolio is
equal to zero. By the Black–Scholes formula for CE(S) this gives

y = −Xe−TrN(d2),
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with d2 is given by (8.9).
Let us analyse the following example, which will subsequently be expanded

and modified. Suppose that the risk-free rate is 8% and consider a 90-day call
option with strike price X = 60 dollars written on a stock with current price
S = 60 dollars. Assume that the stock volatility is σ = 30%. The Black–Scholes
formula gives the option price CE = 4.14452 dollars, the delta of the option
being equal to 0.581957.

Suppose that we write and sell 1, 000 call options, cashing a premium of
$4, 144.52. To construct the hedge we buy 581.96 shares for $34, 917.39, borrow-
ing $30, 772.88. Our portfolio will be (x, y, z) with x = 581.96, y = −30, 772.88,
z = −1, 000 and with total value zero. (While it might be more natural math-
ematically to consider a single option with z = −1, in practice options are
traded in batches.)

We shall analyse the value of the portfolio after one day by considering some
possible scenarios. The time to expiry will then be 89 days. Suppose that the
stock volatility and the risk-free rate do not vary, and consider the following
three scenarios of stock price movements:

1. The stock price remains unaltered, S( 1
365 ) = 60 dollars. A single option is

now worth $4.11833, so our liability due to the short position in options is
reduced. Our debt on the money market is increased by the interest due.
The position in stock is worth the same as initially. The balance on day one
is

stock 34, 917.39
money −30, 779.62
options −4, 118.33
TOTAL 19.45

Without hedging (x = 0, y = 4, 118.33, z = −1, 000) our wealth would have
been $27.10, that is, we would have benefited from the reduced value of the
option and the interest due on the premium invested without risk.

2. The stock price goes up to S( 1
365 ) = 61 dollars. A single option is now worth

$4.72150, which is more than initially. The unhedged (naked) position would
have suffered a loss of $576.07. On the other hand, for a holder of a delta
neutral portfolio the loss on the options is almost completely balanced out
by the increase in the stock value:

stock 35, 499.35
money −30, 779.62
options −4, 721.50
TOTAL −1.77
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3. The stock price goes down to S( 1
365 ) = 59 dollars. The value of the written

options decreases, a single option now being worth $3.55908. The value of
the stock held decreases too. The portfolio brings a small loss:

stock 34, 335.44
money −30, 779.62
options −3, 559.08
TOTAL −3.26

In this scenario it would have been much better not to have hedged at all,
since then we would have gained $586.35.

It may come as a surprise that the hedging portfolio brings a profit when the
stock price remains unchanged. As we shall see later in Exercise 9.5, a general
rule is at work here.

Exercise 9.2

Find the stock price on day one for which the hedging portfolio attains
its maximum value.

Exercise 9.3

Suppose that 50, 000 puts with exercise date in 90 days and strike price
X = 1.80 dollars are written on a stock with current price S(0) = 1.82
dollars and volatility σ = 14%. The risk-free rate is r = 5%. Construct a
delta neutral portfolio and compute its value after one day if the stock
price drops to S( 1

365 ) = 1.81 dollars.

Going back to our example, let us collect the values V of the delta neutral
portfolio for various stock prices after one day as compared to the values U of
the unhedged position:

S V U

58.00 −71.35 1, 100.22
58.50 −31.56 849.03
59.00 −3.26 586.35
59.50 13.69 312.32
60.00 19.45 27.10
60.50 14.22 −269.11
61.00 −1.77 −576.07
61.50 −28.24 −893.53
62.00 −64.93 −1, 221.19
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Now, let us see what happens if the stock price changes are considerable:

S V U

50 −2, 233.19 3, 594.03
55 −554.65 2, 362.79
60 19.45 27.10
65 −481.60 −3, 383.73
70 −1, 765.15 −7, 577.06

If we fear that such large changes might happen, the above hedge is not a
satisfactory solution. If we do not hedge, at least we have a gamble with a
positive outcome whenever the stock price goes down. Meanwhile, no matter
whether the stock price goes up or down, the delta neutral portfolio may bring
losses, though considerably smaller than the naked position.

Let us see what can happen if some other variables, in addition to the stock
price, change after one day:

1. Suppose that the interest rate increases to 9% with volatility as before.
Some loss will result from an increase in the option value. The interest on
the cash loan due on day one is not affected because the new rate will only
have an effect on the interest payable on the second day or later. The values
of the hedging portfolio are given in the second column in the table below.

2. Now suppose that σ grows to 32%, with the interest rate staying at the
original level of 8%. The option price will increase considerably, which is
not compensated by the stock position even if the stock price goes up. The
results are given in the third column in the following table:

V
S

r = 9%, σ = 30% r = 8%, σ = 32%
58.00 −133.72 −299.83
58.50 −97.22 −261.87
59.00 −72.19 −234.69
59.50 −58.50 −218.14
60.00 −55.96 −212.08
60.50 −64.38 −216.33
61.00 −83.51 −230.68
61.50 −113.07 −254.90
62.00 −152.78 −288.74
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As we can see, in some circumstances delta hedging may be far from satis-
factory. We need to improve the stability of hedging when the underlying asset
price changes considerably and/or some other variables change simultaneously.
In what follows, after introducing some theoretical tools we shall return again
to the current example.

Exercise 9.4

Find the value of the delta neutral portfolio in Exercise 9.3 if the risk-free
rate of interest decreases to 3% on day one.

9.1.2 Greek Parameters

We shall define so-called Greek parameters describing the sensitivity of a port-
folio with respect to the various variables determining the option price. The
strike price X and expiry date T are fixed once the option is written, so we
have to analyse the four remaining variables S, t, r, σ.

Let us write the value of a general portfolio containing stock and some
contingent claims based on this stock as a function V (S, t, σ, r) of these variables
and denote

deltaV =
∂V

∂S
,

gammaV =
∂2V

∂S2
,

thetaV =
∂V

∂t
,

vegaV =
∂V

∂σ
,

rhoV =
∂V

∂r
.

For small changes ∆S, ∆t, ∆σ, ∆r of the variables we have the following
approximate equality (by the Taylor formula):

∆V ∼= deltaV × ∆S + thetaV × ∆t + vegaV × ∆σ + rhoV × ∆r

+
1
2
gammaV × (∆S)2.

Hence, a way to immunise a portfolio against small changes of a particular vari-
able is to ensure that the corresponding Greek parameter is equal to zero. For
instance, to hedge against volatility movements we should construct a vega neu-
tral portfolio, with vega equal to zero. To retain the benefits of delta hedging,
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we should design a portfolio with both delta and vega equal to zero (delta-
vega neutral). A delta-gamma neutral portfolio will be immune against larger
changes of the stock price. Examples of such hedging portfolios will be exam-
ined below.

The Black–Scholes formula allows us to compute the derivatives explicitly
for a single option. For a European call we have

deltaCE = N(d1),

gammaCE =
1

Sσ
√

2πT
e−

d2
1
2 ,

thetaCE = − Sσ

2
√

2πT
e−

d2
1
2 − rXe−rT N(d2),

vegaCE =
S
√

T√
2π

e−
d2
1
2 ,

rhoCE = TXe−rT N(d2).

(The Greek parameters are computed at time t = 0.)

Remark 9.1

It is easy to see from the above that

thetaCE + rS deltaCE +
1
2
σ2S2gammaCE = rCE.

In general, the price D of any European derivative security can be shown to
satisfy the Black–Scholes equation

∂D

∂t
+ rS

∂D

∂S
+

1
2
σ2S2 ∂2D

∂S2
= rD.

Exercise 9.5

Show that a delta neutral portfolio with initial value zero hedging a
single call option will gain in value with time if the stock price, volatility
and risk-free rate remain unchanged.

Exercise 9.6

Derive formulae for the Greek parameters of a put option.
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9.1.3 Applications

To show some possibilities offered by Greek parameters we consider hedging
the position of a writer of European call options.

Delta-Gamma Hedging. The construction is based on making both delta
and gamma zero. A portfolio of the form (x, y, z) is insufficient for this. Given
the position in options, say z = −1, 000, there remains only one parameter
that can be adjusted, namely the position x in the underlying. This allows us
to make the delta of the portfolio zero. To make the gamma also equal to zero
an additional degree of freedom is needed. To this end we consider another
option on the same underlying stock, for example, a call expiring after 60 days,
T̂ = 60/365, with strike price X̂ = 65, and construct a portfolio (x, y, z, ẑ),
where ẑ is a position in the additional option. The other variables are as in the
previous examples: r = 8%, σ = 30%, S(0) = 60.

Let us sum up all the information about the prices and selected Greek
parameters (we also include vega, which will be used later):

option time to strike option delta gamma vega
expiry price price

original 90/365 60 4.14452 0.581957 0.043688 11.634305
additional 60/365 65 1.37826 0.312373 0.048502 8.610681

We choose x and ẑ so that the delta and gamma of the portfolio are zero,

deltaV = x − 1, 000 deltaCE + ẑ deltaĈE = 0,

gammaV = −1, 000 gammaCE + ẑ gammaĈE = 0,

and the money position y so that the value of the portfolio is zero,

V (S) = xS + y − 1, 000CE(S) + ẑĈE(S) = 0.

This gives the following system of equations:

x − 581.957 + 0.312373 ẑ = 0,

−43.688 + 0.048502 ẑ = 0,

with solution x ∼= 300.58, ẑ ∼= 900.76. It follows that y ∼= −15, 131.77. That
is, we take long positions in stock and the additional option, and a short cash
position. (We already have a short position z = −1, 000 in the original option.)

After one day, if stock goes up, the original option will become more expen-
sive, increasing our liability, which will be set off by increases in the value of
stock and the additional options held. The reverse happens if the stock price
declines. Our money debt increases in either case by the interest due after one
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day. The values of the portfolio are given below (for comparison we also recall
the values of the delta neutral portfolio):

S( 1
365 ) delta-gamma delta

58.00 −2.04 −71.35
58.50 0.30 −31.56
59.00 1.07 −3.26
59.50 0.81 13.69
60.00 0.02 19.45
60.50 −0.79 14.22
61.00 −1.11 −1.77
61.50 −0.49 −28.24
62.00 1.52 −64.93

We can see that we are practically safe within the given range of stock prices.
For larger changes we are also in a better position as compared with delta
hedging:

S( 1
365 ) delta-gamma delta

50 −614.08 −2, 233.19
55 −78.22 −554.65
60 0.02 19.45
65 63, 13 −481.60
70 440.81 −1, 765.15

As predicted, a delta-gamma neutral portfolio offers better protection against
stock price changes than a delta neutral one.

Delta-Vega Hedging. Next we shall hedge against an increase in volatility,
while retaining cover against small changes in the stock price. This will be
achieved by constructing a delta-vega neutral portfolio containing, as before,
an additional option. The conditions imposed are

deltaV = x − 1, 000 deltaCE + ẑ deltaĈE = 0,

vegaV = −1, 000 vegaCE + ẑ vegaĈE = 0.

They lead to the system of equations

x − 581.957 + 0.312373 ẑ = 0,

−1, 1634.305 + 8.610681 ẑ = 0,

with an approximate solution x ∼= 159. 89, ẑ ∼= 1, 351.15. The corresponding
money position is y ∼= −7, 311.12.
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Suppose that the volatility increases to σ = 32% on day one. Let us compare
the results for delta-vega and delta hedging:

S(1/365) delta-vega delta
58.00 −5.90 −299.83
58.50 −12.81 −261.87
59.00 −16.05 −234.69
59.50 −14.99 −218.14
60.00 −9.06 −212.08
60.50 2.27 −216.33
61.00 19.52 −230.68
61.50 43.17 −254.90
62.00 73.62 −288.74

Exercise 9.7

Using the data in our ongoing example (stock price $60, volatility 30%,
interest rate 8%), construct a delta-rho neutral portfolio to hedge a short
position of 1, 000 call options expiring after 90 days with strike price $60,
taking as an additional component a call option expiring after 120 days
with strike price $65. Analyse the sensitivity of the portfolio value to
stock price variations if the interest rate goes up to 9% after one day,
comparing with the previous results. What will happen if the interest
rate jumps to 15%?

The examples above illustrate the variety of possible hedging strategies. The
choice between them depends on individual aims and preferences. We have not
touched upon questions related to transaction costs or long term hedging. Nor
have we discussed the optimality of the choice of an additional derivative instru-
ment. Portfolios based on three Greek parameters would require yet another
derivative security as a component. They could provide comprehensive cover,
though their performance might deteriorate if the variables remain unchanged.
In addition, they might prove expensive if transaction costs were included.

9.2 Hedging Business Risk

We begin by introducing an alternative measure of risk, related to an intuitive
understanding of risk as the size and likelihood of a possible loss.
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9.2.1 Value at Risk

Let us present the basic idea using a simple example. We buy a share of stock for
S(0) = 100 dollars to sell it after one year. The selling price S(1) is random. We
shall suffer a loss if S(1) < 100er, where r is the risk-free rate under continuous
compounding. (The purchase can either be financed by a loan, or, if the initial
sum is already at our disposal, we take into account the foregone opportunity
of a risk-free investment.) What is the probability of a loss being less than a
given amount, for example,

P (100er − S(1) < 20) = ?

Let us reverse the question and fix the probability, 95% say. Now we seek an
amount such that the probability of a loss not exceeding this amount is 95%.
This is referred to as Value at Risk at 95% confidence level and denoted by
VaR. (Other confidence levels can also be used.) So, VaR is an amount such
that

P (100er − S(1) < VaR) = 95%.

It should be noted that the majority of textbooks neglect the time value of
money in this context, stating the definition of VaR only for r = 0.

Example 9.1

Suppose that the distribution of the stock price is log normal, the logarithmic
return k = ln(S(1)/S(0)) having normal distribution with mean m = 12%
and standard deviation σ = 30%. With probability 95% the return will satisfy
k > m + xσ ∼= −37.50%, where N(x) ∼= 5%, so x ∼= −1.645. (Here N(x) is the
normal distribution function (8.10) with mean 0 and variance 1.) Hence with
probability 95% the future price S(1) will satisfy

S(1) > S(0)em+xσ ∼= 68.83 dollars,

and so, given that r = 8%,

VaR = S(0)er − S(0)em+xσ ∼= 39.50 dollars.

Exercise 9.8

Evaluate VaR at 95% confidence level for a one-year investment of $1, 000
into euros if the interest rate for risk-free investments in euros is rEUR =
4% and the exchange rate from euros into US dollars follows the log
normal distribution with m = 1% and σ = 15%. Take into account the
foregone opportunity of investing dollars without risk, given that the
risk-free interest rate for dollars is rUSD = 5%.
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Exercise 9.9

Suppose that $1, 000 is invested in European call options on a stock
with current price S(0) = 60 dollars. The options expire after 6 months
with strike price X = 40 dollars. Assume that σ = 30%, r = 8%, and
the expected logarithmic return on stock is 12%. Compute VaR after
6 months at 95% confidence level. Find the final wealth if the stock
price grows at the expected rate. Find the stock price level that will
be exceeded with 5% probability and compute the corresponding final
payoff.

9.2.2 Case Study

We shall discuss a number of ways in which VaR can be managed with the aid
of derivative securities. The methods will be illustrated by a simple example of
business activity.

Case 9.1

A company manufactures goods in the UK for sale in the USA. The investment
to start production is 5 million pounds. Additional funds can be raised by
borrowing British pounds at 16% to finance a hedging strategy. The rate of
return demanded by investors, bearing in mind the risk involved, is 25%. The
sales are predicted to generate 8 million dollars at the end of the year. The
manufacturing costs are 3 million pounds per year. The interest rate is 8%
for dollars and 11% for pounds. The current rate of exchange is 1.6 dollars to
a pound. The volatility of the logarithmic return on the rate of exchange is
estimated at 15%. The company pays 20% tax on earnings.

First note that to satisfy the expectations of investors the company should
be able to achieve a profit of 1.25 million pounds a year to pay the dividend. A
lower profit would mean a loss. The profit depends on the rate of exchange d

at the end of the year, hence some risk emerges. (We assume that the other
values will be as predicted.)

To begin with, suppose that no action is taken to manage the risk.

1. Unhedged Position. If the exchange rate d turns out to be 1.6 dollars to
a pound at the end of the year, then the net earnings will be 1.6 million
pounds, as shown in the following profit and loss statement (all amounts in
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pounds):
sales 5, 000, 000
cost of sales −3, 000, 000
earnings before tax 2, 000, 000
tax −400, 000
earnings after tax 1, 600, 000
dividend −1, 250, 000
result 350, 000

The surplus income will be 0.35 million pounds.
However, if the exchange rate d becomes 2 dollars to a pound, the com-

pany will end up with a loss of 0.45 million pounds (and the dividend will
in fact have to be reduced):

sales 4, 000, 000
cost of sales −3, 000, 000
earnings before tax 1, 000, 000
tax −200, 000
earnings after tax 800, 000
dividend −1, 250, 000
result −450, 000

Let us compute VaR. We assume that the rate of exchange has log-
normal distribution with mean return equal to the difference between the
interest rates, 8% − 11% = −3%.1 With the volatility of the return on
the exchange rate at 15%, the return on the investment will exceed −3% +
1.65×15% = 21.75% with probability 95%. This corresponds to an exchange
rate d = 1.6 × e21.75% ∼= 1.9887 dollars to a pound, for which the income
statement will be as follows (all amounts rounded to the nearest pound):

sales 4, 022, 728
cost of sales −3, 000, 000
earnings before tax 1, 022, 728
tax −204, 546
earnings after tax 818, 182
dividend −1, 250, 000
result −431, 818

1 This assumption can be justified as follows: If a pound is invested without risk
for one year and then converted to dollars at a rate d known in advance, to avoid
arbitrage we should have d× e11% = 1.6× e8%, so d = 1.6× e−3%. This gives −3%
logarithmic return on the exchange rate. For a random exchange rate it is therefore
natural to assume the mean logarithmic return to be −3%.



9. Financial Engineering 205

As a result, VaR ∼= 431, 818 dollars. The final balance as a function of the
exchange rate d is

b(d) = 80% × (
8, 000, 000

d
− 3, 000, 000) − 1, 250, 000

=
6, 400, 000

d
− 3, 650, 000.

The break even exchange rate, which solves b(d) = 0, is approximately equal
to 1.7534 dollars to a pound. In an optimistic scenario in which the pound
weakens, for example, down to 1.5 dollars, the final balance will be about
£616, 666.

The question is how to manage this risk exposure.

2. Forward Contract. The easiest solution would be to fix the exchange
rate in advance by entering into a long forward contract. The forward rate
is 1.6 × e−3% ∼= 1.5527 dollars to a pound. As a result, the company can
obtain the following statement with guaranteed surplus, but no possibility
of further gains should the exchange rate become more favourable:

sales 5, 152, 315
cost of sales −3, 000, 000
earnings before tax 2, 152, 315
tax −430, 463
net income 1, 721, 852
dividend −1, 250, 000
result 471, 852

3. Full Hedge with Options. Options can be used to ensure that the rate
of exchange is capped at a certain level, whilst the benefits associated with
favourable exchange rate movements are retained. However, this may be
costly because of the premium paid for options.

The company can buy call options on the exchange rate. A European
call to buy one pound with strike price 1.6 dollars to a pound will cost
£0.0669.2 Suppose that the company buys 5 million of such options, paying
a £334, 510 premium, which they have to borrow at 16%. The interest is
tax deductible, making the loan less costly. Nevertheless, the final result is

2 For options on currencies the Black–Scholes formula has to be modified by replacing
the risk-free interest rate r by the difference between the risk-free rates for the
currencies, in our case: −3%.
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disappointing:

sales 5, 000, 000
cost of sales −3, 000, 000
earnings before interest and tax 2, 000, 000
interest −53, 522
earnings before tax 1, 946, 478
tax −389, 296
net income 1, 557, 182
loan repaid −334, 510
dividend −1, 250, 000
result −27, 328

The optimal (in the sense of minimising the loss) strike price is 1.5734
dollars to a pound, resulting in a loss of £24, 283. If the exchange rate
drops to 1.5 dollars to a pound, the options will not be exercised and the
sum obtained from sales will reach £5, 333, 333, with a positive final result
of £239, 339. This strategy leads to a better result than the hedge involving
a forward contract only if the rate of exchange drops below 1.42 dollars to
a pound.

4. Partial Hedge with Options. To reduce the cost of options the company
can hedge partially by buying call options to cover only a fraction of the
dollar amount from sales. Suppose that the company buys 2, 500, 000 units
of the same call option as above, paying a half of the previous premium. A
half of the revenue is then exposed to risk. To find VaR at 95% confidence
level we assume that this sum is exchanged at 1.9887 dollars to a pound, as
in the case of an unhedged position, the other half being exchanged at the
exercise price:

sales 4, 511, 364
cost of sales −3, 000, 000
earnings before interest and tax 1, 511, 364
interest −26, 761
earnings before tax 1, 484, 603
tax −296, 921
net income 1, 187, 682
loan repaid −167, 255
dividend −1, 250, 000
result −229, 573

If the exchange rate drops to 1.5 dollars to a pound, the company will have
a surplus of £428, 003.
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5. Combination of Options and Forward Contracts. Finally, let us inves-
tigate what happens if the company hedges with both kinds of derivatives.
Half of their position will be hedged with options. In the worst case sce-
nario they will buy pounds for half of their dollar revenue at the rate of
1.6 dollars to a pound, the remaining half being exchanged at the forward
rate of 1.5527 dollars to a pound. The outcome is shown below, where we
summarise the resulting VaR for all strategies considered (the result below
is equal to minus VaR):

strategy 1 2 3 4 5
result −431, 818 471, 852 −27, 328 −229, 573 222, 263

These values are computed at 95% confidence level, corresponding to the
exchange rate of 1.9887 dollars to a pound.

Clearly, VaR provides only partial information about possible outcomes of
various strategies. Figure 9.1 shows the graphs of the final result as a function
of the exchange rate d for each of the above strategies. The graphs are labelled
by the strategy number as above. The strategy using a forward contract (strat-

Figure 9.1 Comparison of various strategies

egy 2) appears to be the safest one. An adventurous investor who strongly
believes that the pound will weaken considerably may prefer to remain uncov-
ered (strategy 1). A variety of middle-of-the-road strategies are also available.
The probability distribution of the exchange rate d should also be taken into
account when examining the graphs.
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9.3 Speculating with Derivatives

9.3.1 Tools

Options can be used as building blocks to design sophisticated investment in-
struments. We shall consider an investor with specific views on the future be-
haviour of stock prices and willing to take risks. Our task will be to design a
portfolio of securities with a prescribed payoff profile that would satisfy this
kind of investor.

Suppose that the investor expects the stock price to rise and wants to gamble
on that. One simple way is to buy a call option. An option with strike price X ′

close to the current stock price is considerably cheaper than the stock itself,
creating a risky leverage position, as will be seen in the case study to follow. The
premium may be reduced by selling a call option with strike price X ′′ > X ′. In
this way we can build a so-called bull spread with payoff shown in Figure 9.2.
This strategy will bring a good return if stock price increases are moderate.

Figure 9.2 Bull spread

Using put options with strike prices X ′ < X ′′, selling the former and pur-
chasing the latter, we can construct a bear spread with positive payoff for low
future stock prices, see Figure 9.3. This may be employed by an investor who
expects a moderate decline in the stock price.

Figure 9.3 Bear spread

An investor who believes that the stock price will stay unaltered or change
insignificantly may choose a butterfly. It is constructed from three call options
with strike prices X ′ < X ′′ < X ′′′. Two calls are bought, one with strike X ′

and one with strike X ′′′, and two calls with strike price X ′′ are sold. Figure 9.4
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shows the case when X ′′ is the average of the other two strike prices. Reversed
butterfly is the opposite strategy, bringing profits when the stock price changes.
(We have already come across the butterfly in the proof of Proposition 7.8.)

Figure 9.4 Butterfly

Finally, we observe that any continuous payoff function consisting of straight
line segments can be manufactured from put and call options. Figure 9.5 out-
lines the step-by-step decomposition of a target profile into a portfolio of op-
tions with various strike price values. The number of options for each strike
price is chosen to match the slopes of the target profile. Such a construction is
sufficient for practical purposes because any continuous payoff function can be
approximated by straight line segments.

9.3.2 Case Study

We shall combine the portfolio theory techniques with the tools described
above. We have in mind an investor with specific views on the future prices
of assets, who is prepared to accept some risk in order to increase expected
return.

Case 9.2

An investor with $15, 000 believes that a certain stock price should rise during
the next month, with expected annualised return µS = 31%. The current stock
price is S(0) = 60 dollars. Call options expiring in 20 days with strike price $60
are available at $2.112. The effective risk-free rate is 12%.

To analyse this case we shall use the binomial model, assuming that trading
takes place once a day and that the market probabilities are the same for up
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Figure 9.5 Decomposition of a target payoff into options

and down price jumps. We also assume for simplicity that there are 360 days in
a year. The risk-free return over 20 days is rF

∼= 0.6316%. (Implied by the effec-
tive rate of 12%.) The $15, 000 invested without risk would become $15, 094.74
at the end of the 20-day period. Consider the following risky investments:

1. Stock. An investment in stock should bring an expected return of µS
∼=

1.5115%. (Equivalent to 31% annually.) Buying 250 shares, the investor
would expect to end up with $15, 226.72 after 20 days. The risk can be
estimated from the option price, see below.

2. Call Options. A more risky alternative is to buy call options. The return
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is random and depends on the stock price after 20 days,

KC =
(S(20/365) − 60)+ − C

C
.

To compute the expected return on an option we can find the parameters
of the binomial model consistent with the option price and the expected
return on stock, assuming that the market probability of up and down
price movements is 1/2. First we find the risk-free return over a single day,

r = (1 + 12%)
1

360 − 1 ∼= 0.0315%.

Then we write down a condition on the up and down daily stock returns
such that the expected annual return is 31%,

u + d

2
= (1 + 31%)

1
360 − 1 ∼= 0.075%.

The call price gives another condition for u and d, and we finally arrive at
the following values:3

u ∼= 1.85%, d ∼= −1.70%.

Now we can compute the standard deviation for the period in question
(using the actual market probabilities pk =

(
20
k

)
0.520, k = 0, 1, . . . , 20),

σS
∼= 8.0962%.

Finally, we compute the expected return and risk of the investment in op-
tions,

µC
∼= 14.1268%, σC

∼= 153.006%.

The return is impressive, but so is the risk. Observe that with probability
0.4119 the investor can lose all his or her money.

3. Forward Contracts. The forward price is approximately $60.38. Suppose
that entering into a forward contract requires a 20% deposit of the initial
stock price, that is $12 per share. The investor can afford to enter into 1, 250
forward contracts. The expected return and risk in the binomial model are

µF
∼= 4.3993%, σF

∼= 40.4811%.

Note that if the stock price falls below $48.38, the investor will lose the
deposit and suffer an additional loss, resulting in a return below −100%.

3 Take any value of u, compute the corresponding 21 stock price values after 20 days,
the option payoffs, risk-neutral probability, and finally the option price. Using the
Goal Seek facility in a spreadsheet application (or trial and error), find the value
of u such that the option price is as given.
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4. Options Combined with Risk-Free Investment. The risk can be ad-
justed to an arbitrary level if options are combined with a risk-free asset.
Suppose that the investor is willing to accept similar risk to the stock in-
vestment. Investing 94.77% of the capital without risk and the remainder in
options, the investor can construct a portfolio with the same standard devi-
ation as that for the stock. The expected return on the portfolio is slightly
lower than that on stock,

µP
∼= 1.3457%, σP

∼= 8.0962%.

Remark 9.2

The slope of the line connecting the risk-free asset F with any other portfolio A

on the (σ, µ) plane is given by µA−rF

σA
, called the market price of risk . It can

be used to compare different portfolios: Those with steep slope are preferable.
We can see that the above risky investments have similar values of the market
price of risk, about 0.1 in each case. (These values would in fact be identical if
the Black–Scholes model were used for stock prices.)

The advantage of the investment in a portfolio of options and risk-free
assets can be seen if we consider VaR, given in the table below for two different
confidence levels (chosen to be compatible with the probabilities in the binomial
model). On the other hand, VaR would be disastrously high if the whole amount
were invested only in options: The investor could lose everything at the given
confidence levels.

Investment Stock Call options Forwards
Calls with

risk-free asset
Market price

of risk
0.1087 0.0882 0.0931 0.0882

VaR at 94.23% $1, 931.78 $15, 000.00 $9, 753.63 $798.73
VaR at 99.41% $2, 836.84 $15, 000.00 $14, 278.95 $798.73

Case 9.3

An analyst researching the company has come to the conclusion that the stock
price after 20 days will not fall below $58 or raise above $66. All market pa-
rameters remain as in Case 9.2. From the point of view of the analyst, compare
the expected return and risk for stock, options and a bull spread with strike
prices $58 and $62.
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We shall build a simple model reflecting the analysts’s point of view. Addi-
tional information obtained by the analyst will result in modified probabilities
as compared to the market probability P . (We assume, as before, that the
market probability of up and down movements is 1/2 in each step.) Namely,
the probability Q assigned by the analyst will be the market probability P

conditioned by the event 58 ≤ S(20) ≤ 62. In particular,

Q(S(20) = x) = P (S(20) = x|58 ≤ S(20) ≤ 62)

=

{
P (S(20)=x)

P (58≤S(20)≤62) if 58 ≤ x ≤ 62,
0 if x < 50 or x > 62.

As a result, the analyst will arrive at the following values:

1. Stock. Under the modified probability Q

µS
∼= 2.6788%, σS

∼= 3.9257%.

2. Call Options. Take a call with strike price X = 58 dollars. Hence
CE ∼= 3.2923 dollars (this price is found in the binomial model without any
restriction on the range of stock prices after 20 days). For an investment in
options we find that

µC
∼= 8.8816%, σC

∼= 71.095%.

3. Bull Spread. Construct the spread by purchasing a call with strike $58
and selling a call with strike $60. The premium received for the latter is
$2.10, hence a single spread costs $1.18. The expected return and risk are

µbull
∼= 38.4094%, σbull

∼= 52.3997%.

4. Bull Spread Combined with Risk-Free Asset. Investing 94.58% of
the capital in the risk-free asset and the remainder in a bull spread, we can
construct a portfolio P with the same expected return as stock, but lower
risk,

µP
∼= 2.6788%, σP

∼= 2.8396%.

From the point of view of VaR, we consider the worst case scenario (among
those admitted by the investor) when S(20) ∼= 58.59 dollars, which may happen
with conditional probability 0.2597. In this scenario each of the above invest-
ments will bring a loss, which can be regarded as VaR at 74.03% confidence
level. The values of VaR and the market price of risk are collected below:

Investment Stock Call options Bull spread
Bull spread with
risk-free asset

Market price
of risk

0.5 0.1 0.7 0.7

VaR
at 74.03%

$447 $12, 426 $7, 602 $412
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The bull spread combined with risk-free will clearly be preferable to the other
investments as it has the highest market price of risk and lowest VaR.

Exercise 9.10

Check the above computations and consider a modification such that
the bull spread is constructed by buying a call with strike price $60 and
selling a call with strike price $62. Compute the expected return, risk
and VaR.

Exercise 9.11

Within the framework of the binomial model used above consider an
analyst who has reasons to believe that the stock price will fall, but no
more than 20% after 20 days. For a bear spread with strikes $56 and $58
constructed from put options compute the expected return, risk, and
VaR for the worst possible outcome.



10
Variable Interest Rates

This chapter begins with a model in which the interest rates implied by bonds
do not depend on maturity. If the rates are deterministic, then they must
be constant and the model turns out to be too simple to describe any real-life
situation. In an extension allowing random changes of interest rates the problem
of risk management will be dealt with by introducing a mathematical tool
called the duration of bond investments. Finally, we shall show that maturity-
dependent rates cannot be deterministic either, preparing the motivation and
notation for the next chapter, in which a model of stochastic rates will be
explored.

As in Chapter 2, B(t, T ) will denote the price at time t (the running time)
of a zero-coupon unit bond maturing at time T (the maturity time). The de-
pendence on two time variables gives rise to some difficulties in mathematical
models of bond prices. These prices are exactly what is needed to describe the
time value of money. In Chapter 2 we saw how bond prices imply the interest
rate, under the assumption that the rate is constant. Here, we want to relax
this restriction, allowing variable interest rates.

In this chapter and the next one time will be discrete, though some parts of
the theory can easily be extended to continuous time. We shall fix a time step
τ , writing t = τn for the running time and T = τN for the maturity time. In
the majority of examples we shall take either τ = 1

12 or τ = 1. The notation
B(n,N) will be employed instead of B(t, T ) for the price of a zero-coupon unit
bond. We shall use continuous compounding, bearing in mind that it simplifies
notation and makes it possible to handle time steps of any length consistently.

215
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10.1 Maturity-Independent Yields

The present value of a zero-coupon unit bond determines an interest rate called
the yield and denoted by y(0) to emphasise the fact that it is computed at
time 0:

B(0, N) = e−Nτy(0).

For a different running time instant n such that 0 < n < N the implied yield
may in general be different from y(0). For each such n we thus have a number
y(n) satisfying

B(n,N) = e−(N−n)τy(n).

Generally (and in most real cases), a bond with different maturity N will
imply a different yield. Nevertheless, in this section we consider the simplified
situation when y(n) is independent of N , that is, bonds with different maturities
generate the same yield. Independence of maturity will be relaxed later in
Section 10.2.

Proposition 10.1

If the yield y(n) for some n > 0 were known at time 0, then y(0) = y(n) or else
an arbitrage strategy could be found.

Proof

Suppose that y(0) < y(n). (We need to know not only y(0) but also y(n) at
time 0 to decide whether or not this inequality holds.)

• Borrow a dollar for the period between 0 and n + 1 and deposit it for the
period between 0 and n, both at the rate y(0). (The yield can be regarded
as the interest rate for deposits and loans.)

• At time n withdraw the deposit with interest, enτy(0) in total, and invest
this sum for a single time step at the rate y(n). At time n + 1 this brings
enτy(0)+τy(n). The initial loan requires repayment of e(n+1)τy(0), leaving a
positive balance enτy(0)(eτy(n) − eτy(0)), which is the arbitrage profit.

The reverse inequality y(0) > y(n) can be dealt with in a similar manner.

Exercise 10.1

Let τ = 1
12 . Find arbitrage if the yields are independent of maturity,

and unit bonds maturing at time 6 (half a year) are traded at B(0, 6) =
0.9320 dollars and B(3, 6) = 0.9665 dollars, both prices being known at
time 0.
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As a consequence of Proposition 10.1, if the yield is independent of maturity
and deterministic (that is, y(n) is known in advance for any n ≥ 0), then it must
be constant, y(n) = y for all n. This is the situation in Chapter 2, where all
the bond prices were determined by a single interest rate. The yield y(n) = y,

independent of n, is then equal to the constant risk-free interest rate denoted
previously by r.

Historical bond prices show a different picture: The yields implied by the
bond prices recorded in the past clearly vary with time. In an arbitrage-free
model, to admit yields varying with time but independent of maturity we should
allow them to be random, so it is impossible to predict in advance whether y(n)
will be higher or lower than y(0).

We assume, therefore, that at each time instant the yield y(n) is a positive
random number independent of the maturity of the underlying bond.

Our goal is to analyse the return on a bond investment and the imminent
risk arising from random changes of interest rates. Suppose that we intend to
invest a certain sum of money P for a fixed period of N time steps. If the
yield y remains constant, then, as observed in Chapter 2, our terminal wealth
will be P eNτy. This will be our benchmark for designing strategies hedged
against unpredictable interest rate movements.

10.1.1 Investment in Single Bonds

If we invest in zero-coupon bonds and keep them to maturity, the rate of return
is guaranteed, since the final payment is fixed in advance and is not affected
by any future changes of interest rates. However, if we choose to close out our
investment prior to maturity by selling the bonds, we face the risk that the
interest rates may change in the meantime with an adverse effect on the final
value of the investment.

Example 10.1

Suppose we invest in bonds for a period of six months. Let τ = 1
12 . We buy a

number of unit bonds that will mature after one year, paying B(0, 12) = 0.9300
for each. This price implies a rate y(0) ∼= 7.26%. Since we are going to sell the
bonds at time n = 6, we are concerned with the price B(6, 12) or, equivalently,
with the corresponding rate y(6). Let us discuss some possible scenarios:

1. The rate is stable, y(6) = 7.26%. The bond price is B(6, 12) ∼= 0.9644 and
the logarithmic return on the investment is 3.63%, a half of the interest
rate, in line with the additivity of logarithmic returns.

2. The rate decreases to y(6) = 6.26%, say. (The convention is that 0.01% is
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one basis point , so here the rate drops by 100 basis points.) Then B(6, 12) ∼=
0.9692, which is more than in scenario 1. As a result, we are going to earn
more, achieving a logarithmic return of 4.13%.

3. The rate increases to y(6) = 8.26%. In this case the logarithmic return on
our investment will be 3.13%, which is lower than in scenario 1, the bond
price being B(6, 12) ∼= 0.9596.

We can see a pattern here: One is better off if the rate drops and worse off if
the rate increases. A general formula for the return on this kind of investment
is easy to find.

Suppose that the initial yield y(0) changes randomly to become y(n) �= y(0)
at time n. Hence

B(0, N) = e−y(0)τN , B(n,N) = e−y(n)τ(N−n),

and the return on an investment closed at time n will be

k(0, n) = ln B(n,N)
B(0,N) = ln ey(0)τN−y(n)τ(N−n) = y(0)τN − y(n)τ(N − n).

We can see that the return decreases as the rate y(n) increases. The impact
of a rate change on the return depends on the timing. For example, if τ = 1

12 ,

N = 12 and n = 6, then a rate increase of 120 basis points will reduce the
return by 0.6% as compared to the case when the rate remains unchanged.

Exercise 10.2

Let τ = 1
12 . Invest $100 in six-month zero-coupon bonds trading at

B(0, 6) = 0.9400 dollars. After six months reinvest the proceeds in bonds
of the same kind, now trading at B(6, 12) = 0.9368 dollars. Find the
implied interest rates and compute the number of bonds held at each
time. Compute the logarithmic return on the investment over one year.

Exercise 10.3

Suppose that B(0, 12) = 0.8700 dollars. What is the interest rate after
6 months if an investment for 6 months in zero-coupon bonds gives a
logarithmic return of 14% ?

Exercise 10.4

In this exercise we take a finer time scale with τ = 1
360 . (A year is

assumed to have 360 days here.) Suppose that B(0, 360) = 0.9200 dollars,
the rate remains unchanged for the first six months, goes up by 200 basis
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points on day 180, and remains at this level until the end of the year. If
a bond is bought at the beginning of the year, on which day should it
be sold to produce a logarithmic return of 4.88% or more?

An investment in coupon bonds is more complicated. Even if the bond is
kept to maturity, the coupons are paid in the meantime and can be reinvested.
The return on such an investment depends on the interest rates prevailing at
the times when the coupons are due. First consider the relatively simple case
of an investment terminated as soon as the first coupon is paid.

Example 10.2

Let us invest the sum of $1, 000 in 4-year bonds with face value $100 and $10
annual coupons. A coupon bond of this kind can be regarded as a collection
of four zero-coupon bonds maturing after 1, 2, 3 and 4 years with face value
$10, $10, $10 and $110, respectively. Suppose that such coupon bonds trade at
$91.78, which can be expressed as the sum of the prices of the four zero-coupon
bonds,

91.78 = 10e−y(0) + 10e−2y(0) + 10e−3y(0) + 110e−4y(0).

(The length of a time step is τ = 1.) This equation can be solved to find the
yield, y(0) ∼= 12%. We can afford to buy 10.896 coupon bonds. After one year
we cash the coupons, collecting $108.96, and sell the bonds, which are now
3-year coupon bonds. Consider three scenarios:

1. After one year the interest rate remains unchanged, y(1) = 12%, the coupon
bonds being valued at

10e−0.12 + 10e−2×0.12 + 110e−3×0.12 ∼= 93.48

dollars, and we shall receive 108.96 + 1, 018.52 ∼= 1, 127.48 dollars in total.

2. The rate drops to 10%. As a result, the coupon bonds will be worth

10e−0.1 + 10e−2×0.1 + 110e−3×0.1 ∼= 98.73

dollars each. We shall end up with $1, 184.63.

3. The rate goes up to 14%, the coupon bonds trading at $88.53. The final
value of our investment will be $1, 073.51.

Exercise 10.5

Find the rate y(1) such that the logarithmic return on the investment in
Example 10.2 will be a) 12%, b) 10%, c) 14%.
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If the lifetime of our investment exceeds one year, we will be facing the
problem of reinvesting coupons. In the following example we assume that the
coupons are used to purchase the same bond.

Example 10.3

We begin as in Example 10.2, but our intention is to terminate the investment
after 3 years. After one year we reinvest the coupons obtained in the same, now
a 3-year, coupon bond. Consider the following scenarios after one year:

1. The rate remains the same for the period of our investment, y(0) = y(1) =
y(2) = y(3) = 12%. The bond price is $93.48, so for the $108.96 received
from coupons we can buy 1.17 additional bonds, increasing the number of
bonds held to 12.06. We can monitor the value of our investment by simply
multiplying the number of bonds held by the current bond price. We repeat
this in the following year. After three years we cash the coupons and sell
the bonds, the final value of the investment being $1, 433.33. This number
will be used as a benchmark for other scenarios. Observe that

1, 433.33 ∼= 1, 000e3×12%,

the same as the value after 3 years of $1, 000 invested on zero-coupon bonds.
The building blocks of our investment are summarised in the table below.

Year 0 1 2 3
Rate 12% 12% 12% 12%
PV of coupon 1 $8.87 $10.00
PV of coupon 2 $7.87 $8.87 $10.00
PV of coupon 3 $6.98 $7.87 $8.87 $10.00
PV of coupon 4 $6.19 $6.98 $7.87 $8.87
PV of face value $61.88 $69.77 $78.66 $88.69
Bond price $91.78 $93.48 $95.40 $97.56
Cashed coupons $108.96 $120.60 $133.26
Additional bonds 1.17 1.26
Number of bonds 10.90 12.06 13.33
Value of investment $1, 000.00 $1, 127.50 $1, 271.25 $1, 433.33

2. Suppose that the rate goes down by 2% after one year and then remains
at the new level. The drop of the rate results in an increase of all bond
prices. The number of additional bonds that can be bought for the coupons
is lower than in scenario 1. Nevertheless, the final value of the investment is
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higher because so is the price at which we sell the bonds after three years.

Year 0 1 2 3
Rate 12% 10% 10% 10%
PV of coupon 1 $8.87 $10.00
PV of coupon 2 $7.87 $9.05 $10.00
PV of coupon 3 $6.98 $8.19 $9.05 $10.00
PV of coupon 4 $6.19 $7.41 $8.19 $9.05
PV of face value $61.88 $74.08 $81.87 $90.48
Bond price $91.78 $98.73 $99.11 $99.53
Cashed coupons $108.96 $119.99 $132.10
Additional bonds 1.10 1.21
Number of bonds 10.90 12.00 13.21
Value of investment $1, 000.00 $1, 184.65 $1, 309.25 $1, 446.94

3. If the rate increases to 14% and stays there, the bonds will be cheaper than
in Scenario 1. The final value of the investment will be disappointing.

Year 0 1 2 3
Rate 12% 14% 14% 14%
PV of coupon 1 $8.87 $10.00
PV of coupon 2 $7.87 $8.69 $10.00
PV of coupon 3 $6.98 $7.56 $8.69 $10.00
PV of coupon 4 $6.19 $6.57 $7.56 $8.69
PV of face value $61.88 $65.70 $75.58 $86.94
Bond price $91.78 $88.53 $91.83 $95.63
Cashed coupons $108.96 $121.26 $134.46
Additional bonds 1.23 1.32
Number of bonds 10.90 12.13 13.45
Value of investment $1, 000.00 $1, 073.53 $1, 234.85 $1, 420.41

As a motivation for certain theoretical notions, consider the above invest-
ment, with the same possible scenarios, but involving a specially designed se-
curity, a coupon bond with annual coupons paying $32, all other parameters
remaining unchanged. The results are as follows:

Scenario Value after 3 years
12%, 12%, 12%, 12% $1,433.33
12%, 10%, 10%, 10% $1,433.68
12%, 14%, 14%, 14% $1,433.78

It is remarkable that any change in interest rates improves the result of our
investment. We do not lose if the rates change unfavourably. On the other



222 Mathematics for Finance

hand, we do not gain in other circumstances. This is explained by the fact,
that a certain parameter of the bond, called duration and defined below, is
exactly equal to the lifetime of our investment. In some sense, the bond behaves
approximately like a zero-coupon bond with prescribed maturity.

Exercise 10.6

Check the numbers given in the above tables.

Exercise 10.7

Compute the value after three years of $1, 000 invested in a 4-year bond
with $32 annual coupons and $100 face value if the rates in consecutive
years are as follows:

Scenario 1: 12%, 11%, 12%, 12%;

Scenario 2: 12%, 13%, 12%, 12%.

Design a spreadsheet and experiment with various interest rates.

10.1.2 Duration

We have seen that variable interest leads to uncertainty as to the future value
of an investment in bonds. This may be undesirable, or even unacceptable, for
example for a pension fund manager. We shall introduce a tool which makes
it possible to immunise such an investment, at least in the special situation of
maturity-independent rates considered in this section.

For notational simplicity we denote the current yield y(0) by y. Consider a
coupon bond with coupons C1, C2, . . . , CN payable at times 0 < τn1 < τn2 <

. . . < τnN and face value F , maturing at time τnN . Its current price is given
by

P (y) = C1e−τn1y + C2e−τn2y + · · · + (CN + F )e−τnN y. (10.1)

The duration of the coupon bond is defined to be

D(y) =
τn1C1e−τn1y + τn2C2e−τn2y + · · · + τnN (CN + F )e−τnN y

P (y)
. (10.2)

The numbers C1e−τn1y/P (y), C2e−τn2y/P (y), . . . , (CN + F )e−τnN y/P (y) are
non-negative and add up to one, so they may be regarded as weights or proba-
bilities. It can be said that the duration is a weighted average of future payment
times. The duration of any future cash flow can be defined in a similar manner.
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Duration measures the sensitivity of the bond price to changes in the interest
rate. To see this we compute the derivative of the bond price with respect to y,

d
dy

P (y) = −τn1C1e−τn1y − τn2C2e−τn2y − · · · − τnN (CN + F )e−τnN y,

which gives
d
dy

P (y) = −D(y)P (y).

The last formula is sometimes taken as the definition of duration.

Example 10.4

A 6-year bond with $10 annual coupons, $100 face value and yield of 6% has a
duration of 4.898 years. A 6-year bond with the same coupons and yield, but
with $500 face value, will have a duration of 5.671 years. The duration of any
zero-coupon bond is equal to its lifetime.

Exercise 10.8

A 2-year bond with $100 face value pays a $6 coupon each quarter and
has 11% yield. Compute the duration.

Exercise 10.9

What should be the face value of a 5-year bond with 10% yield, paying
$10 annual coupons to have duration 4? Find the range of durations that
can be obtained by altering the face value, as long as a coupon cannot
exceed the face value. If the face value is fixed, say $100, find the level of
coupons for the duration to be 4. What durations can be manufactured
in this way?

Exercise 10.10

Show that P is a convex function of y.

If we invest in a bond with the intention to close the investment at time t,
then the future value of the money invested in a single bond will be P (y)ety,
provided that the interest rate remains unchanged (being equal to the initial
yield y(0)). To see how sensitive this amount is to interest rate changes compute
the derivative with respect to y,

d
dy

(P (y)ety) =
(

d
dy

P (y)
)

ety + tP (y)ety = (t − D(y))P (y)ety.
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If the duration of the bond is exactly t, then

d
dy

(P (y)ety) = 0.

If the derivative is zero at some point, then the graph of the function is ‘flat’
near this point. This means that small changes of the rate will have little effect
on the future value of the investment.

10.1.3 Portfolios of Bonds

If a bond of desirable duration is not available, it may be possible to create a
synthetic one by investing in a suitable portfolio of bonds of different durations.

Example 10.5

If the initial interest rate is 14%, then a 4-year bond with annual coupons
C = 10 and face value F = 100 has duration 3.44 years. A zero-coupon bond
with F = 100 and N = 1 has duration 1. A portfolio consisting of two bonds,
one of each kind, can be regarded as a single bond with coupons C1 = 110,
C2 = C3 = C4 = 10, F = 100. Its duration can be computed using the general
formula (10.2), which gives 2.21 years.

We shall derive a formula for the duration of a portfolio in terms of the
durations of its components. Denote by PA(y) and PB(y) the values of two
bonds A and B with durations DA(y) and DB(y). Take a portfolio consisting
of a bonds A and b bonds B, its value being aPA(y) + bPB(y). The task of
finding the duration of the portfolio will be divided into two steps:

1. Find the duration of a portfolio consisting of a bonds of type A. We shall
write aA to denote such a portfolio. Its price is obviously aPA(y). Since

d
dy

(aPA(y)) = −DA(y)(aPA(y)),

it follows that
DaA(y) = DA(y).

This is clear if we examine the cash flow of aA. Each coupon and the face value
are multiplied by a, which cancels out in the computation of duration directly
from (10.2).

2. Find the duration of a portfolio consisting of one bond A and one bond B,
which will be denoted by A + B. The price of this portfolio is PA(y) + PB(y).
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Differentiating the last expression, we obtain

d
dy

(PA(y) + PB(y)) =
d
dy

PA(y) +
d
dy

PB(y)

= −DA(y)PA(y) − DB(y)PB(y).

The last term can be written as −DA+B(y)(PA(y) + PB(y)) if we put

DA+B(y) = DA(y)
PA(y)

PA(y) + PB(y)
+ DB(y)

PB(y)
PA(y) + PB(y)

.

This means that DA+B(y) is a linear combination of DA(y) and DB(y), the
coefficients being the percentage weights of each bond in the portfolio.

From the above considerations we obtain the general formula

DaA+bB(y) = DA(y)wA + DB(y)wB ,

where

wA =
aPA(y)

aPA(y) + bPB(y)
, wB =

bPA(y)
aPA(y) + bPB(y)

,

are the percentage weights of individual bonds.
If we allow negative values of a or b (which corresponds to writing a bond

instead of purchasing it, in other words, to borrowing money instead of invest-
ing), then, given two durations DA �= DB , the duration D of the portfolio can
take any value because wB = 1 − wA and

D = DAwA + DB(1 − wA) = DB + wA(DA − DB).

The value of D can even be negative, which corresponds to a negative cash
flow, that is, sums of money to be paid rather than received.

Example 10.6

Let DA = 1 and DB = 3. We wish to invest $1, 000 for 6 months. For the
duration to match the lifetime of the investment we need 0.5 = wA+3wB . Since
wA + wB = 1, it follows that wB = −0.25 and wA = 1.25. With PA = 0.92
dollars and PB = 1.01 dollars, we invest $1, 250 in 1250

0.92
∼= 1, 358.70 bonds A

and we issue 250
1.01

∼= 247.52 bonds B.

Exercise 10.11

Find the number of bonds of type A and B to be bought if DA = 2,
DB = 3.4, PA = 0.98, PB = 1.02 and you need a portfolio worth $5, 000
with duration 6.
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Exercise 10.12

Invest $1, 000 in a portfolio of bonds with duration 2 using 1-year zero-
coupon bonds with $100 face value and 4-year bonds with $15 annual
coupons and $100 face value that trade at $102.

A portfolio with duration matching the investment lifetime is insensitive to
small changes of interest rates. However in practice we shall have to modify the
portfolio if, for example, the investment is for 3 years and one of the bonds is
a zero-coupon bond expiring after one year. In addition, the duration may, as
we shall see below, go off the target. As a result, it will become necessary to
update the portfolio during the lifetime of the investment. This is the subject
of the next subsection.

10.1.4 Dynamic Hedging

Even if a portfolio is selected with duration matching the desired investment
lifetime, this will only be valid at the initial instant, since duration changes
with time as well as with the interest rate.

Example 10.7

Take a 5-year bond with $10 annual coupons and $100 face value. If y = 10%,

then the duration will be about 4.16 years. Before the first coupon is paid the
duration decreases in line with time: After 6 months it will be 3.66, and after
9 months 4.16− 0.75 = 3.31. If the duration matches our investment’s lifetime
and the interest rates do not change, no action will be necessary until a coupon
becomes payable. As soon as the first coupon is paid after one year, the bond
will become a 4-year one with duration 3.48, no longer consistent with the
investment lifetime.

Exercise 10.13

Assuming that the interest rate does not change, show that before the
first coupon is paid the duration after time t will D − t, where D is the
duration computed at time 0.

The next example shows the impact of the interest rate on duration.
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Example 10.8

The bond in Example 10.7 will have duration 4.23 if y = 6%, and 4.08 if
y = 14%.

Exercise 10.14

Show that the duration of a 2-year bond with annual coupons decreases
as the yield increases.

Duration will now be applied to design an investment strategy immune to
interest rate changes. This will be done by monitoring the position at the end
of each year, or more frequently if needed. For clarity of exposition we restrict
ourselves to an example.

Set the lifetime of the investment to be 3 years and the target value to be
$100, 000. Suppose that the interest rate is 12% initially. We invest $69, 767.63,
which would be the present value of $100, 000 if the interest rate remained
constant.

We restrict our attention to two instruments, a 5-year bond A with $10
annual coupons and $100 face value, and a 1-year zero-coupon bond B with
the same face value. We assume that a new bond of type B is always available.
In subsequent years we shall combine it with bond A.

At time 0 the bond prices are $90.27 and $88.69, respectively. We find
DA

∼= 4.12 and the weights wA
∼= 0.6405, wB

∼= 0.3595 which give a portfolio
with duration 3. We split the initial sum according to the weights, spending
$44, 687.93 to buy a ∼= 495.05 bonds A and $25, 079.70 to buy b ∼= 282.77
bonds B. Consider some possible scenarios of future interest rate changes.

1. After one year the rate increases to 14%. The value of our portfolio is the
sum of:

• the first coupons of bonds A: $4, 950.51,
• the face value of cashed bonds B: $28, 277.29,
• the market value of bonds A held, which are now 4-year bonds selling

at $85.65: $42, 403.53.

This gives $75, 631.32 altogether. The duration of bonds A is now 3.44. The
desired duration is 2, so we find wA

∼= 0.4094 and wB
∼= 0.5906 and arrive

at the number of bonds to be held in the portfolio: 361.53 bonds A and
513.76 bonds B. (This means that we have to sell 133.52 bonds A and buy
513.76 new bonds B.)

a) After two years the rate drops to 9%. To compute our wealth we add:

• the coupons of A: $3, 615.30,
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• the face values of B: $51, 376.39,
• the market value of A, selling at $101.46: $36, 682.22.

The result is $91, 673.92. We invest all the money in bonds B, since the
required duration is now 1. (The payoff of these bonds is guaranteed
next year.) We can afford to buy 1, 003.07 bonds B selling at $91.39.
The terminal value of the investment will be about $100,307.

b) After two years the rate goes up to 16%. We cash the same amount as
above for coupons and zero-coupon bonds, but bonds A are now cheaper,
selling at $83.85, so we have less money in total: $85, 305.68. However,
the zero-coupon bonds are now cheap as well, selling at $85.21, and we
can afford to buy 1, 001.07 of them, ending up with $100,107.

2. After one year the rate drops to 9%. In a similar way as before, we arrive
at the current value of the investment by adding the coupons of A, the face
value of B and the market value of bonds A held, obtaining $83, 658.73.
Then we find the weights wA

∼= 0.4013, wB
∼= 0.5987, determining our new

portfolio of 329.56 bonds A and 548.04 bonds B. (We have to sell 165.50
bonds A and buy 548.04 new bonds B.)

a) After two years the rate goes up to 14%. We cash $3, 295.55 from the
coupons of A, which together with the $54, 803.77 obtained from B and
the market value of $29, 174.39 of bonds A gives $87, 273.72 in total. We
buy 1003.89 new zero-coupon bonds B, ending up with $100,389 after
3 years.

b) After two years the rate drops to 6%. Our wealth will then be $94, 405.29,
we can afford to buy 1, 002.43 bonds B, and the final value of our in-
vestment will be $100,243.

As we can see, we end up with more than $100, 000 in each scenario.1

Exercise 10.15

Design an investment of $20, 000 in a portfolio of duration 2 years con-
sisting of two kinds of coupon bonds maturing after 2 years, with annual
coupons, bond A with $20 coupons and $100 face value, and bond B

with $5 coupons and $500 face value, given that the initial rate is 8%.
How much will this investment be worth after 2 years?

1 It can be shown that the future value at time t of a bond investment with duration
equal to t has a minimum if the rate y remains unchanged. This means that rate
jumps in a model with yields independent of maturity lead to arbitrage. In an
arbitrage-free model with rate jumps, the yields must therefore depend on maturity.
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10.2 General Term Structure

Here we shall discuss a model of bond prices without the condition that the
yield should be independent of maturity.

The prices B(n,N) of zero-coupon unit bonds with various maturities de-
termine a family of yields y(n,N) by

B(n,N) = e−(N−n)τy(n,N).

Note that the yields have to be positive, since B(n,N) has to be less than 1
for n < N . The function y(n,N) of two variables n < N is called the term
structure of interest rates. The yields y(0, N) dictated by the current prices
are called the spot rates .

The initial term structure y(0, N) formed by the spot rates is a function
of one variable N . Typically, it is an increasing function, but other graphs
have also been observed in financial markets. In particular, the initial term
structure may be flat , that is, the yields may be independent of N , which is
the case considered in the previous section.

Exercise 10.16

If B(0, 6) = 0.96 dollars, find B(0, 3) and B(0, 9) such that the initial
term structure is flat.

The price of a coupon bond as the present value of future payments can be
written using the spot rates in the following way:

P = C1e−τn1y(0,n1) + C2e−τn2y(0,n2) + · · · + (CN + F )e−τnN y(0,nN ) (10.3)

for a bond with coupons C1, C2, . . . , CN due at times 0 < τn1 < τn2 < · · · <

τnN and with face value F , maturing at time τnN .
Despite the fact that for a coupon bond we cannot use a single rate for

discounting future payments, such a rate can be introduced just as an artificial
quantity. It is called the yield to maturity , and is defined to be the number y

solving the equation

P = C1e−τn1y + C2e−τn2y + · · · + (F + CN )e−τnN y.

Yield to maturity provides a convenient simple description of coupon bonds and
is quoted in the financial press. Of course, if the interest rates are independent
of maturity, then this formula is the same as (10.1).
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Remark 10.1

To determine the initial term structure we need the prices of zero-coupon bonds.
However, for longer maturities (typically over one year) only coupon bonds may
be traded, making it necessary to decompose coupon bonds into zero-coupon
bonds with various maturities. This can be done by applying formula (10.3)
repeatedly to find the yield with the longest maturity, given the bond price and
all the yields with shorter maturities. This procedure was recognised by the
U.S. Treasury, who in 1985 introduced a programme called STRIPS (Separate
Trading of Registered Interest and Principal Securities), allowing an investor
to keep the required cash payments (for certain bonds) by selling the rest (the
‘stripped’ bond) back to the Treasury.

Example 10.9

Suppose that a one-year zero-coupon bond with face value $100 is trading at
$91.80 and a two-year bond with $10 annual coupons and face value $100 is
trading at $103.95. This gives the following equations for the yields

91.80 = 100e−y(0,1),

103.95 = 10e−y(0,1) + 110e−2y(0,2).

From the first equation we obtain y(0, 1) ∼= 8.56%. On substituting this into
the second equation, we find y(0, 2) ∼= 7.45%. As a result, the price of the
‘stripped’ two-year bond, a zero-coupon bond maturing in two years with face
value $100, will be 100e−2y(0,2) ∼= 86.16 dollars. Given the price of a three-year
coupon bond, we could then evaluate y(0, 3), and so on.

Going back to our general study of bonds, let us consider a deterministic
term structure (thus known in advance with certainty). The next proposition
indicates that this, in fact, is not realistic.

Proposition 10.2

If the term structure is deterministic, then the No-Arbitrage Principle implies
that

B(0, N) = B(0, n)B(n,N). (10.4)

Proof

If B(0, N) < B(0, n)B(n,N), then:
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• Buy a bond maturing at time N and write a fraction B(n,N) of a bond
maturing at n. (Here we use the assumption that the future bond prices are
known today.) This gives B(0, n)B(n,N) − B(0, N) dollars now.

• At time n settle the written bonds, raising the required sum of B(n,N) by
issuing a single unit bond maturing at N.

• At time N close the position, retaining the initial profit.

The reverse inequality B(0, N) > B(0, n)B(n,N) can be dealt with in a similar
manner, by adopting the opposite strategy.

Employing the representation of bond prices in terms of yields, we have

B(n,N) =
B(0, N)
B(0, n)

= eτny(0,n)−τNy(0,N).

This would mean that all bonds prices (and so the whole term structure) are
determined by the initial term structure. However, it is clear that one cannot
expect this to hold in real bond markets. In particular, this relation is not
supported by historical data.

This shows that assuming deterministic bond prices would go too far in
reducing the complexity of the model. We have no choice but to allow the future
term structure to be random, only the initial term structure being known with
certainty. In what follows, future bond prices will be random, as will be the
quantities determined by them.

10.2.1 Forward Rates

We begin with an example showing how to secure in advance the interest rate
for a deposit to be made or a loan to be taken at some future time.

Example 10.10

Suppose that the business plan of your company will require taking a loan of
$100, 000 one year from now in order to purchase new equipment. You expect to
have the means to repay the loan after another year. You would like to arrange
the loan today at a fixed interest rate, rather than to gamble on future rates.
Suppose that the spot rates are y(0, 1) = 8% and y(0, 2) = 9% (with τ = 1).
You buy 1, 000 one-year bonds with $100 face value, paying 100, 000e−8% ∼=
92, 311.63 dollars. This sum is borrowed for 2 years at 9%. After one year
you will receive the $100, 000 from the bonds, and after two years you can
settle the loan with interest, the total amount to pay being 92, 311.63e2×9% ∼=
110, 517.09 dollars. Thus, the interest rate on the constructed future loan will
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be ln(110, 517.09/100, 000) ∼= 10%. Financial intermediaries may simplify your
task by offering a so-called Forward Rate Agreement and perform the above
construction of the loan on your behalf.

Exercise 10.17

Explain how a deposit of $50, 000 for six months can be arranged to start
in six months and find the rate if y(0, 6) = 6% and y(0, 12) = 7%, where
τ = 1

12 .

In general, the initial forward rate f(0,M,N) is an interest rate such that

B(0, N) = B(0,M)e−(N−M)τf(0,M,N),

so

f(0,M,N) = − 1
τ(N − M)

ln
B(0, N)
B(0,M)

= − lnB(0, N) − lnB(0,M)
τ(N − M)

.

Note that this rate is deterministic, since it is worked out using the present bond
prices. It can be conveniently expressed in terms of the initial term structure.
Insert into the above expression the bond prices as determined by the yields,
B(0, N) = e−τNy(0,N) and B(0,M) = e−τMy(0,M), to get

f(0,M,N) =
Ny(0, N) − My(0,M)

N − M
. (10.5)

Exercise 10.18

Suppose that the following spot rates are provided by central London
banks (LIBOR, the London Interbank Offer Rate, is the rate at which
money can be deposited; LIBID, the London Interbank Bid Rate, is the
rate at which money can be borrowed):

Rate LIBOR LIBID
1 month 8.41% 8.59%
2 months 8.44% 8.64%
3 months 9.01% 9.23%
6 months 9.35% 9.54%

As a bank manager acting for a customer who wishes to arrange a loan of
$100, 000 in a month’s time for a period of 5 months, what rate could you
offer and how would you construct the loan? Suppose that another insti-
tution offers the possibility of making a deposit for 4 months, starting 2
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months from now, at a rate of 10.23%. Does this present an arbitrage op-
portunity? All rates stated in this exercise are continuous compounding
rates.

As time passes, the bond prices will change and, consequently, so will the
forward rates. The forward rate over the interval [M,N ] determined at time
n < M < N is defined by

B(n,N) = B(n,M)e−(N−M)τf(n,M,N),

that is,

f(n,M,N) = − lnB(n,N) − lnB(n,M)
(N − M)τ

.

The instantaneous forward rates f(n,N) = f(n,N,N + 1) are the forward
rates over a one-step interval. Typically, when τ is one day, the instantaneous
forward rates correspond to overnight deposits or loans. The formula for the
forward rate

f(n,N) = − lnB(n,N + 1) − lnB(n,N)
τ

(10.6)

will enable us to reconstruct the bond prices, given the forward rates at a
particular time n.

Example 10.11

Let τ = 1
12 , n = 0, N = 0, 1, 2, 3, and suppose that the bond prices are

B(0, 1) = 0.9901,

B(0, 2) = 0.9828,

B(0, 3) = 0.9726.

Then we have the following implied yields

y(0, 1) ∼= 11.94%,

y(0, 2) ∼= 10.41%,

y(0, 3) ∼= 11.11%,

and forward rates
f(0, 0) ∼= 11.94%,

f(0, 1) ∼= 8.88%,

f(0, 2) ∼= 12.52%.

Observe that, using the formula for the forward rates, we get

exp(−(0.1194 + 0.0888 + 0.1252)/12) ∼= 0.9726 = B(0, 3)

which illustrates the next proposition.
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Proposition 10.3

The bond price is given by

B(n,N) = exp{−τ(f(n, n) + f(n, n + 1) + · · · + f(n,N − 1))}.

Proof

For this purpose note that

f(n, n) = − lnB(n, n + 1)
τ

,

since B(n, n) = 1, so

B(n, n + 1) = exp{−τf(n, n)}.
Next,

f(n, n + 1) = − lnB(n, n + 2) − lnB(n, n + 1)
τ

and, after inserting the expression for B(n, n + 1),

B(n, n + 2) = exp{−τ(f(n, n) + f(n, n + 1))}.
Repeating this a number of times, we arrive at the required general formula.

We have a simple representation of the forward rates in terms of the yields:

f(n,N) = (N + 1 − n)y(n,N + 1) − (N − n)y(n,N). (10.7)

In particular,
f(n, n) = y(n, n + 1),

resulting in the intuitive formula

y(n,N) =
f(n, n) + f(n, n + 1) + · · · + f(n,N − 1)

N − n
.

Example 10.12

We can clearly see from the above formulae that if the term structure is flat,
that is, y(n,N) is independent of N, then f(n,N) = y(n,N). Now consider an
example of f(n,N) increasing with N for a fixed n, and compute the corre-
sponding yields

f(0, 0) = 8.01%,

f(0, 1) = 8.03%,

f(0, 2) = 8.08%,

y(0, 1) = 8.01%,

y(0, 2) = 8.02%,

y(0, 3) = 8.04%.
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We can see that the yields also increase. (See Exercise 10.20 below for a gener-
alisation of this.)

However, the forward rates do not have to increase with maturity even if
the yields do:

f(0, 0) = 9.20%,

f(0, 1) = 9.80%,

f(0, 2) = 9.56%,

y(0, 1) = 9.20%,

y(0, 2) = 9.50%,

y(0, 3) ∼= 9.52%.

Exercise 10.19

Can a forward rate be negative?

Exercise 10.20

Prove that if f(n,N) increases with N , then the same is true for y(n,N).

10.2.2 Money Market Account

The short rate is defined by r(n) = f(n, n). An alternative expression is r(n) =
y(n, n + 1), so this is a rate valid for one step starting at time n. The short
rates are unknown in advance, except for the current one, r(0). It is important
to distinguish between r(n) and f(0, n). Both rates apply to a single step from
time n to n + 1, but the former is random, whereas the latter is known at the
present moment and determined by the initial term structure.

The money market account denoted by A(n), n ≥ 1, is defined by

A(n) = exp{τ(r(0) + r(1) + · · · + r(n − 1))}
with A(0) = 1, and represents the value at time n of one dollar invested in
an account attracting interest given by the short rate under continuous com-
pounding. For example, if τ = 1

365 , then the interest is given by the overnight
rate.

The money market account defined in Chapter 2 was a deterministic
sequence independent of the particular way the initial dollar is invested.
Here A(n) is random and, as will be seen below, in general different from
exp{τny(0, n)}, the latter being deterministic and constructed by using zero-
coupon bonds maturing at time n.

Example 10.13

In the setting introduced in Example 10.11, suppose that the bond prices change
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as follows:

B(0, 1) = 0.9901,

B(0, 2) = 0.9828,

B(0, 3) = 0.9726,

B(1, 2) = 0.9947,

B(1, 3) = 0.9848, B(2, 3) = 0.9905.

The corresponding yields are

y(0, 1) ∼= 11.94%,

y(0, 2) ∼= 10.41%,

y(0, 3) ∼= 11.11%,

y(1, 2) ∼= 6.38%,

y(1, 3) ∼= 9.19%, y(2, 3) ∼= 11.45%.

The forward rates are

f(0, 0) ∼= 11.94%,

f(0, 1) ∼= 8.88%,

f(0, 2) ∼= 12.52%,

f(1, 1) ∼= 6.38%,

f(1, 2) ∼= 12.00%, f(2, 2) ∼= 11.45%.

We can read off the short rates and compute the values of the money market
account

r(0) = f(0, 0) ∼= 11.94%,

r(1) = f(1, 1) ∼= 6.38%,

r(2) = f(2, 2) ∼= 11.45%,

A(0) = 1,
A(1) ∼= 1.0100,

A(2) ∼= 1.0154,

A(3) ∼= 1.0251.

Exercise 10.21

Which bond prices in Example 10.13 can be altered so that the values
of the money market remain unchanged?

Exercise 10.22

Using the data in Example 10.13, compare the logarithmic return on
an investment in the following securities over the period from 0 to 3:
a) zero-coupon bonds maturing at time 3; b) single-period zero-coupon
bonds; c) the money market account.
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Stochastic Interest Rates

This chapter is devoted to modelling the time evolution of random interest
rates. We adopt an approach similar to the binomial model of stock prices in
Chapter 3. Modelling the evolution of interest rates can be reduced to modelling
the evolution of the bond prices, since the latter determine the former. We begin
with some properties that a model of bond prices should satisfy, emphasising
the differences between bonds and stock.

First, let us recall that the evolution of interest rates or bond prices is
described by functions of two variables, the running time and the maturity
time, whereas stock prices are functions of just one variable, the running time.

Second, there are many ways of describing the term structure: bond prices,
implied yields, forward rates, short rates. Bond prices and yields are clearly
equivalent, being linked by a simple formula. Bond prices and forward rates are
also equivalent. The short rates are different, easier to handle, but the problem
of reconstructing the term structure emerges. This may be non-trivial, since
short rates usually carry less information.

Third, the model needs to match the initial data. For a stock this is just
the current price. In the case of bonds the whole initial term structure is given,
imposing more restrictions on the model, which has to be consistent with all
currently available market information.

Fourth, bonds become non-random at maturity. This is in sharp contrast
with stock prices. The fact that a bond gives a sure dollar at maturity has to
be included in the model.

Finally, the dependence of yields on maturity must be quite special. Bonds
with similar maturities will typically behave in a similar manner. In statistical

237
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terms this means that they are strongly positively correlated.

11.1 Binomial Tree Model

The shape of the tree will be similar to that in Section 3.2. However, to facilitate
the necessary level of sophistication of the model, it has to be more complex.
Namely, the probabilities and returns will depend on the position in the tree.
We need suitable notation to distinguish between different positions.

By a state we mean a finite sequence of consecutive up or down movements.
The state depends, first of all, on time or, in other words, on the number of
steps. We shall use sequences of letters u and d of various lengths, the length
corresponding to the time elapsed (the number of steps from the root of the
tree). At time 1 we have just two states s1 = u or d, at time 2 four states
s2 = ud, dd, du, or uu. We shall write s2 = s1u or s1d, meaning that we go
up or, respectively, down at time 2, having been at s1 at time 1. In general,
sn+1 = snu or snd.

The probabilities will be allowed to depend on particular states. We write
p(sn) to denote the probability of going up at time n + 1, having started at
state sn at time n. At the first step the probability of going up will be denoted
by p without an argument. In Figure 11.1 we have p = 0.3, p(u) = 0.1, p(d) =
0.4, p(uu) = 0.4, p(ud) = 0.2, p(du) = 0.5, p(dd) = 0.4.

Figure 11.1 States and probabilities

Let us fix a natural number N as the time horizon. It will be the upper
bound of the maturities of all the bonds considered. The states sN at time N

represent the complete scenarios of bond price movements.
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Next, we shall describe the evolution of bond prices. At time 0 we are given
the initial bond prices for all maturities up to N , that is, a sequence of N

numbers
B(0, 1), B(0, 2), B(0, 3), . . . , B(0, N − 1), B(0, N).

At time 1 one of the prices becomes redundant, namely the first bond matures
and only the remaining N − 1 bonds are still being traded. We introduce ran-
domness by allowing two possibilities distinguished by the states u and d, so
we have two sequences

B(1, 2; u), B(1, 3,u), . . . , B(1, N − 1; u), B(1, N ; u),
B(1, 2; d), B(1, 3; d), . . . , B(1, N − 1; d), B(1, N ; d).

At time 2 we have four states and four sequences of length N − 2:

B(2, 3,uu), . . . , B(2, N − 1; uu), B(2, N ; uu),
B(2, 3; ud), . . . , B(2, N − 1; ud), B(2, N ; ud),
B(2, 3; du), . . . , B(2, N − 1; du), B(2, N ; du),
B(2, 3; dd), . . . , B(2, N − 1; dd), B(2, N ; dd).

We do not require that the ud and du prices coincide, which was the case for
stock prices movements in Section 3.2.

This process continues in the same manner. At each step the length of the
sequence decreases by one and the number of sequences doubles. At time N −1
we have just single numbers, 2N−1 of them,

B(N − 1, N ; sN−1)

indexed by all possible states sN−1. The tree structure breaks down here be-
cause the last movement is certain: The last bond matures, becoming a sure
dollar at time N, B(N,N ; sN ) = 1 for all states.

Example 11.1

A particular evolution of bond prices for N = 3, with monthly steps (τ = 1
12 )

is given in Figure 11.2. The prices of three bonds with maturities 1, 2, and 3
are shown.

The evolution of bond prices can be described be means of returns. Suppose
we have reached state sn−1 and the bond price B(n − 1, N ; sn−1) becomes
known. Then we can write

B(n,N ; sn−1u) = B(n − 1, N ; sn−1) exp{k(n,N ; sn−1u)},
B(n,N ; sn−1d) = B(n − 1, N ; sn−1) exp{k(n,N ; sn−1d)},
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Figure 11.2 Evolution of bond prices in Example 11.1

implicitly defining the logarithmic returns

k(n,N ; sn−1u) = ln
B(n,N ; sn−1u)

B(n − 1, N ; sn−1)
,

k(n,N ; sn−1d) = ln
B(n,N ; sn−1d)

B(n − 1, N ; sn−1)
.

We assume here that k(n,N ; sn−1u) ≥ k(n,N ; sn−1d).

Remark 11.1

Note that there are some places in the tree where the returns are non-random
given the state sn−1 is known. Namely,

k(n, n; sn−1u) = k(n, n; sn−1d) = ln
1

B(n − 1, n; sn−1)
,

since B(n, n; sn) = 1 for all sn.

Example 11.2

From the data in Example 11.1 we extract the prices of bonds with maturity 3,
completing the picture with the final value 1. The tree shown in Figure 11.3

Figure 11.3 Prices of the bond maturing at time 3 in Example 11.2
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describes the random evolution of a single bond purchased at time 0 for 0.9726.
The returns are easy to compute, for instance

k(2, 3; ud) = ln
B(2, 3; ud)
B(1, 3; u)

∼= 0.27%.

The results are gathered in Figure 11.4. (Recall that the length of each step is
one month.)

Figure 11.4 Returns on the bond maturing at time 3 in Example 11.2

Exercise 11.1

For the tree of weekly returns shown in Figure 11.5 construct the tree of
bond prices and fill in the missing returns.

Figure 11.5 Returns in Exercise 11.1

The evolution of bond prices is in perfect correspondence with the evolution
of implied yields to maturity. Namely,

y(n,m; sn) =
1

τ(m − n)
ln

1
B(n,m; sn)

with the same tree structure as for bond prices. In particular, the final yields are
non-random given that the state sn−1 at the penultimate step is known. Note
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that the words ‘up’ and ‘down’ lose their meaning here because the yield goes
down as the bond price goes up. Nevertheless, we keep the original indicators
u and d.

Example 11.3

We continue Example 11.1 and find the yields, bearing in mind that τ = 1
12 .

The results are collected in Figure 11.6.

Figure 11.6 Yields in Example 11.3

Exercise 11.2

Take the returns in Exercise 11.1 and find the yield y(0, 3). What is the
general relationship between the returns and yields to maturity? Can
you complete the missing returns without computing the bond prices?

Now consider the instantaneous forward rates. At the initial time 0 there
are N forward rates

f(0, 0), f(0, 1), f(0, 2), . . . , f(0, N − 1)

generated by the initial bond prices. Note that the first number is the short
rate r(0) = f(0, 0). For all subsequent steps the current bond prices imply the
forward rates. Formula (10.6) applied to random bond prices allows us to find
the random evolution of forward rates:

f(n,N ; sn) = − lnB(n,N + 1; sn) − lnB(n,N ; sn)
τ

. (11.1)

At time 1 we have two possible sequences of N −1 forward rates obtained from
two sequences of bond prices

f(1, 1; u), f(1, 2; u), . . . , f(1, N − 1; u),
f(1, 1; d), f(1, 2; d), . . . , f(1, N − 1; d).
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At time 2 we have four sequences of N−2 forward rates, and so on. At time N−1
we have 2N−1 single numbers f(N − 1, N − 1; sN−1).

Example 11.4

Using (11.1), we can evaluate the forward rates for the data in Example 11.1.
For instance,

f(1, 2; u) = − lnB(1, 3; u) − lnB(1, 2; u)
τ

.

Alternatively, we can use the yields found in Example 11.3 along with for-
mula (10.7):

f(1, 2; u) = 2y(1, 3; u) − y(1, 2; u).

The results are gathered in Figure 11.7.

Figure 11.7 Forward rates in Example 11.4

The information contained in forward rates is sufficient to reconstruct the
bond prices, as was shown in Proposition 10.3.

Exercise 11.3

Suppose a tree of forward rates is given as in Figure 11.8. Find the
corresponding bond prices (using one-month steps).

The short rates are just special cases of forward rates,

r(n; sn) = f(n, n; sn)

for n ≥ 1, with deterministic r(0) = f(0, 0). The short rates are also given by
r(n; sn) = y(n, n + 1; sn), n ≥ 1, and r(0) = y(0, 1), that is, by the rates of
return on a bond maturing at the next step. This is obvious from the relations
between the forward rates and yields.
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Figure 11.8 Forward rates in Exercise 11.3

We are now ready to describe the money market account. It starts with
A(0) = 1. The next value

A(1) = exp(τr(0))

is still deterministic. It becomes random at subsequent steps. At time 2 there
are two values depending on the states at time 1:

A(2; u) = exp(τ(r(0) + r(1; u)) = A(1) exp{τr(1; u)},
A(2; d) = exp(τ(r(0) + r(1; d)) = A(1) exp{τr(1; d)}.

Next, for example,

A(3; ud) = exp(τ(r(0) + r(1; u) + r(2; ud)) = A(2; u) exp{τr(2; ud)}.
In general,

A(n + 1; sn−1u) = A(n; sn−1) exp{τr(n; sn−1u)},
A(n + 1; sn−1d) = A(n; sn−1) exp{τr(n; sn−1d)}.

Exercise 11.4

Find the evolution of the money market account if the forward rates are
the same as in Exercise 11.3.

For bond investments the money market account plays the same role as
the risk-free component of investment strategies on the stock market in ear-
lier chapters. It is used to discount future cash flows when valuing bonds and
derivative securities, as will be shown below.
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11.2 Arbitrage Pricing of Bonds

Suppose that we are given the binomial tree of bond prices B(n,N ; sn) for
a bond maturing at the fixed time horizon N. In addition, we are given the
money market process A(n; sn−1). As was mentioned in the introduction to
this chapter, the prices of other bonds cannot be completely arbitrary. We
shall show that the prices B(n,M ; sn) for M < N can be replicated by means
of bonds with maturity N and the money market. As a consequence of the
No-Arbitrage Principle, the prices of B(n,M ; sn) will have to be equal to the
values of the corresponding replicating strategies.

Example 11.5

Consider the data in Example 11.1. At the first step the short rate is deter-
ministic, being implied by the price B(0, 1). The first two values of the money
market account are A(0) = 1 and A(1) = 1.01. As the underlying instrument
we take the bond maturing at time 3. The prices of this bond at time 0 and 1
are given in Figure 11.9, along with the prices of the bond maturing at time 2.
We can find a portfolio (x, y), with x being the number of bonds of maturity 3

Figure 11.9 Bond prices from Example 11.1

and y the position in the money market, such that the value of this portfolio
matches the time 1 prices of the bond maturing at time 2. To this end we solve
the following system of equations

0.9848x + 1.01y = 0.9948,

0.9808x + 1.01y = 0.9907,

obtaining x = 1 and y ∼= 0.0098. The value of this portfolio at time 0 is
1×B(0, 3) + 0.0098×A(0) ∼= 0.9824, which is not equal to B(0, 2). The prices
in Figure 11.9 provide an arbitrage opportunity:

• Sell a bond maturing at time 2 for $0.9828 and buy the portfolio constructed
above for $0.9824.

• Whatever happens at time 1, the value of the portfolio will be sufficient to
buy the bond back, the initial balance $0.0004 being the arbitrage profit.



246 Mathematics for Finance

The model in Example 11.1 turns out to be inconsistent with the No-Arbitrage
Principle and has to be rectified. We can only adjust some of the future prices,
since the present prices of all bonds are dictated by the market. It is easy to
see that by taking B(1, 2; u) = 0.9958 with B(1, 2; d) unchanged, or by letting
B(1, 2; d) = 0.9913 with B(1, 2; u) unchanged, we can eliminate the arbitrage
opportunity. Of course, there are many other ways of repairing the model by a
simultaneous change of both values of B(1, 2). Let us put B(1, 2; d) = 0.9913
and leave B(1, 2; u) unchanged. The rectified tree of bond prices is shown in
Figure 11.10 and the corresponding yields in Figure 11.11.

Figure 11.10 Rectified tree of bond prices in Example 11.5

Figure 11.11 Rectified tree of yields in Example 11.5

Remark 11.2

The process of rectifying bond prices in Example 11.5 bears some resemblance
to the pricing of general derivative securities described in Chapter 8. The role
of the derivative security is played by the bond maturing at time 2. The bond
maturing at time 3 plays the role of the underlying security. The difference
is that the present price of the bond of maturity 2 is fixed and we can only
adjust the future prices in the model to eliminate arbitrage. At this stage we
are concerned only with building consistent models rather than with pricing
securities.
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Exercise 11.5

Evaluate the prices of a bond maturing at time 2 given a tree of prices
of a bond maturing at time 3 and short rates as shown in Figure 11.12,
with τ = 1/12.

Figure 11.12 Bond prices and short rates in Exercise 11.5

We can readily generalize Example 11.5. The underlying bond matures at
time N and we can find the structure of prices of any bond maturing at M < N.

The replication proceeds backwards step-by-step starting from time M , for
which B(M,M ; sM ) = 1 in each state sM . The first step is easy: for each
state sM−1 we take a portfolio with x = 0 and y = 1/A(M ; sM−1), since the
bond becomes risk free one step prior to maturity.

Next, consider time M−2. For any state sM−2 we find x = x(M−1; sM−2),
the number of bonds maturing at N , and y = y(M − 1; sM−2), the position in
the money market, by solving the system

xB(M − 1, N ; sM−2u) + yA(M − 1; sM−2) = B(M − 1,M ; sM−2u),

xB(M − 1, N ; sM−2d) + yA(M − 1; sM−2) = B(M − 1,M ; sM−2d).

In this way we can find the prices at time M − 2 of the bond maturing at
time M ,

B(M − 2,M ; sM−3u) = xB(M − 2, N ; sM−3u) + yA(M − 2; sM−3),

B(M − 2,M ; sM−3d) = xB(M − 2, N ; sM−3d) + yA(M − 2; sM−3).

We can iterate the replication process moving backwards through the tree.

Remark 11.3

Replication is possible if a no-arbitrage condition analogous to Condition 3.2
is satisfied for the binomial tree. Here the condition u > r > d of Chapter 3 is
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replaced by

k(n,N ; sn−1u) > τr(n − 1; sn−1) > k(n,N ; sn−1d). (11.2)

Any future cash flow can be replicated in a similar fashion. Consider, for
example, a coupon bond with fixed coupons.

Example 11.6

Take a coupon bond maturing at time 2 with face value F = 100, paying
coupons C = 10 at times 1 and 2. We price the future cash flow by using the
zero-coupon bond maturing at time 3 as the underlying security. The coupon
bond price P at a particular time will not include the coupon due (the so-
called ex-coupon price). Assume that the structure of the bond prices is as in
Figure 11.10.

Consider time 1. In state u the short rate is determined by the price
B(1, 2; u) = 0.9947, so we have r(1; u) ∼= 6.38%. Hence P (1; u) ∼= 109.4170.

In state d we use B(1, 2; d) = 0.9913 to find r(1; d) ∼= 10.49% and P (1; d) ∼=
109.0485.

Consider time 0. The cash flow at time 1 which we are to replicate includes
the coupon due, so it is given by P (1; u) + 10 ∼= 119.417 and P (1; d) + 10 ∼=
119.0485. The short rate r(0) ∼= 11.94% determines the money market account
as in Example 11.5, A(1) = 1.01, and we find x ∼= 92.1337, y ∼= 28.3998. Hence
P (0) ∼= 118.009 is the present price of the coupon bond.

An alternative is to use the spot yields: y(0, 1) ∼= 11.94% and y(0, 2) ∼=
10.41% to discount the future payments with the same result: 118.009 ∼= 10 ×
exp(− 1

12 × 11.94%) + 110 × exp(− 2
12 × 10.41%).

In general,

P (0) = C1 exp{−τy(0, 1)} + C2 exp{−2τy(0, 2)}
+ · · · + (CN + F ) exp{−Nτy(0, N)}. (11.3)

(For simplicity we include all time steps, so Ck = 0 at the time steps k when
no coupon is paid.) At each time k when a coupon is paid, the cash flow is the
sum of the (deterministic) coupon and the (stochastic) price of the remaining
bond:

Ck + P (k; sk) = Ck + Ck+1 exp{−τy(k, k + 1; sk)}
+ · · · + (Cn + F ) exp{−τ(n − k)y(k, n; sk)}.

Quite often the coupons depend on other quantities. In this way a coupon
bond may become a derivative security. An important benchmark case is de-
scribed below, where the coupons are computed as fractions of the face value.
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These fractions, defining the coupon rate, are obtained by converting the short
rate to an equivalent discrete compounding rate. In practice, when τ is one day,
the coupon rate will be the overnight LIBOR rate.

Proposition 11.1

A coupon bond maturing at time N with random coupons

Ck(sk−1) = (exp{τr(k − 1; sk−1)} − 1)F (11.4)

for 0 < k ≤ N is trading at par. (That is, the price P (0) is equal to the face
value F .)

Proof

Fix time N − 1 and a state sN−1. In this state the value P (N − 1; sN−1)
of the bond is F + CN (sN−1) discounted at the short rate, which gives
P (N − 1; sN−1) = F if the coupon is expressed by (11.4). Proceeding back-
wards through the tree and applying the same argument for each state, we
finally arrive at P (0) = F .

Exercise 11.6

Find the coupons of a bond trading at par and maturing at time 2, given
the yields as in Example 11.5, see Figure 11.11.

11.2.1 Risk-Neutral Probabilities

In Chapter 3 we have learnt that the stock price S(n) at time n is equal to the
expectation under the risk-neutral probability of the stock price S(n + 1) at
time n+1 discounted to time n. The situation is similar in the binomial model
of interest rates.

The discount factors are determined by the money market account, or, in
other words, by the short rates. In general, they are random, being of the form
exp{−τr(n; sn)}.

Suppose that state sn has occurred at time n. The short rate determining
the time value of money for the next step is now known with certainty. Consider
a bond maturing at time N with n < N − 1. We are given the bond price
B(n,N ; sn) and two possible values at the next step, B(n+1, N ; snu) and B(n+
1, N ; snd). These values represent a random variable, which will be denoted by
B(n + 1, N ; sn·). If n = N − 1, then the bond matures at the next step N ,
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when it has just one price independent of the state, namely the face value. We
are looking for a probability p∗ such that

B(n,N ; sn) = [p∗B(n + 1, N ; snu) + (1 − p∗)B(n + 1, N ; snd)]

× exp{−τr(n; sn)}. (11.5)

This equation can be solved for p∗, which in principle depends on n, N and sn.
(As will turn out soon, see Proposition 11.2, p∗ is in fact independent of ma-
turity N .) Recalling the definition of logarithmic returns, we have

B(n + 1, N ; sn+1) = B(n,N ; sn) exp{k(n + 1, N ; sn+1)},
which gives

p∗(n,N ; sn) =
exp{τr(n; sn)} − exp{k(n + 1, N ; snd)}

exp{k(n + 1, N ; snu)} − exp{k(n + 1, N ; snd)} . (11.6)

These numbers are called the risk-neutral or martingale probabilities. Condi-
tion (11.2) for the lack of arbitrage can now be written as

0 < p∗(n,N ; sn) < 1.

Example 11.7

We shall find the tree of risk-neutral probabilities p∗(n, 3; sn) for n = 0, 1, using
the data in Example 11.5 (the bond prices as shown in Figure 11.10).

First we compute the returns on the money market. The simplest way is
to use the yields (Figure 11.11). With τ = 1

12 we have τr(n; sn) = y(n, n +
1; sn)/12, n = 0, 1, which gives the following values:

τr(1; u) = 0.521%
τr(0) = 0.995% <

τr(1; d) = 0.874%

Next, we find the returns k(1, 3; s1) and k(2, 3; s2) on bonds. For example, if
s2 = ud, then k(2, 3; ud) = ln(0.9875

0.9848 ). The results are collected below:

k(2, 3; uu) = 0.58%
k(1, 3; u) = 1.25% <

/ k(2, 3; ud) = 0.27%

\ k(2, 3; du) = 1.01%
k(1, 3; d) = 0.84% <

k(2, 3; dd) = 0.84%
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We can see that the no-arbitrage conditions are satisfied: 0.84% < 0.99% <

1.25%, 0.27% < 0.52% < 0.58% and 0.84% < 0.87% < 1.01%.

Finally, we find the desired probabilities by a direct application of (11.6):
p∗(0) = 0.3813, p∗(1; u) = 0.8159, p∗(1; d) = 0.1811, see Figure 11.13.

Figure 11.13 Risk-neutral probabilities in Example 11.7

A crucial observation about the model is this: Pricing via replication is
equivalent to pricing by means of the risk-neutral probability. This follows from
the No-Arbitrage Principle and applies to any cash flow, even a random one,
where the amounts depend on the states. This opens a way to pricing absolutely
any security by means of the expectation with respect to the probabilities
p∗(n,N ; sn). The expectation is computed step-by-step, starting at the last
one and proceeding backwards through the tree.

Example 11.8

Consider a coupon bond maturing at N = 2 with face value F = 100 and
with coupons equal to 5% of the current value of the bond, paid at times 1
and 2. In particular, the coupon at maturity is C2 = 5 in each state. Using the
risk-neutral probabilities from Example 11.7, we can find the bond values at
time 1. In the up state we have the discounted value of 105 due at maturity
using the short rate r(1; u) ∼= 6.26%, which gives 104.4540. In the same way in
the down state we obtain 104.0865. Now we add 5% coupons, so the amounts
due at time 1 become 109.6767 in the up state and 109.2908 in the down state.
Using the risk-neutral probabilities, we find the present value of the bond:
108.3545 ∼= (0.3813 × 109.6767 + 0.6187 × 109.2908)/1.01.

Exercise 11.7

Use the risk-neutral probabilities in Example 11.7 to find the present
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value of the following random cash flow: At time 2 we receive $20 in the
state uu, $10 in the states ud and du, and nothing in the state dd. No
payments are due at other times.

Exercise 11.8

Find an arbitrage opportunity for the bond prices in Figure 11.14.

Figure 11.14 Bond prices in Exercise 11.8

Exercise 11.9

Suppose that the risk-neutral probabilities are equal to 1
2 in every state.

Given the following short rates, find the prices of a bond maturing at
time 3 (with a one-month time step, τ = 1

12 ):

r(2; uu) = 8.3%
r(1; u) = 8.5% <

/ r(2; ud) = 8.9%
r(0) = 9.5%

\ r(2; du) = 9.1%
r(1; d) = 9.8% <

r(2; dd) = 9.3%

The next proposition gives an important result, which simplifies the model
significantly.

Proposition 11.2

The lack of arbitrage implies that the risk-neutral probabilities are independent
of maturity.
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Proof

Consider two bonds with maturities M ≤ N and fix an n ≤ M . For each of the
two bonds we have

B(n,M ; sn) = [p∗(n,M ; sn)B(n + 1,M ; snu) + (1 − p∗(n,M ; sn))

×B(n + 1,M ; snd)] exp{−τr(n; sn)}, (11.7)

B(n,N ; sn) = [p∗(n,N ; sn)B(n + 1, N ; snu) + (1 − p∗(n,N ; sn))

×B(n + 1, N ; snd)] exp{−τr(n; sn)}. (11.8)

Our goal is to show that p∗(n,M ; sn) = p∗(n,N ; sn) in any state sn.
We can replicate the prices of the bond maturing at time M by means of the

bond with maturity N and the money market account. Hence we find numbers
x, y such that

B(n + 1,M ; snu) = xB(n + 1, N ; snu) + yA(n + 1; sn),

B(n + 1,M ; snd) = xB(n + 1, N ; snd) + yA(n + 1; sn).

The No-Arbitrage Principle implies that equalities of this kind must also hold
at time n,

B(n,M ; sn−1u) = xB(n,N ; sn−1u) + yA(n; sn−1),

B(n,M ; sn−1d) = xB(n,N ; sn−1d) + yA(n; sn−1).

Inserting the values of the M -bonds into (11.7) and using the formula for the
money market account, after some algebraic transformations we obtain

B(n,N ; sn) = [p∗(n,M ; sn)B(n + 1, N ; snu) + (1 − p∗(n,M ; sn))

×B(n + 1, N ; snd)] exp{−τr(n; sn)}.
This can be solved for p∗(n,M ; sn). It turns out that the solution coincides
with the probability p∗(n,N ; sn) implied by (11.8), as claimed.

Exercise 11.10

Spot an arbitrage opportunity if the bond prices are as in Figure 11.15.

11.3 Interest Rate Derivative Securities

The tools introduced above make it possible to price any derivative security
based on interest rates or, equivalently, on bond prices. Within the binomial tree
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Figure 11.15 Data for Exercise 11.10

model the cash flow associated with the derivative security can be replicated
using the money market account and a bond with sufficiently long maturity.
The bond does not even have to be the underlying security, since the prices
of various bonds must be consistent. An alternative is to use the risk-neutral
probabilities. The latter approach is often preferable to replication because of
its simplicity. The equivalence of both methods should be clear in view of what
has been said before.

The pricing of complex securities can essentially be reduced to finding the
associated cash flows. Below we present examples of some classical interest rate
contingent claims. We begin with the simplest case of options.

11.3.1 Options

The underlying securities for interest rate options are bonds of various kinds.

Example 11.9

With the bond prices as in Example 11.5 (Figure 11.10), consider a call option
with exercise time 2 and strike price X = 0.99 on a zero-coupon bond maturing
at time 3. Starting with the final payoffs shown in the last column in the table
below, we move back step-by-step, computing the risk-neutral expectations of
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the consecutive values discounted by the appropriate short rates:

n = 0 n = 1 n = 2
0.0005

0.00041 <

/ 0
0.00024

\ 0.0008
0.00014 <

0

As a result, the price of the option is 0.00024.

Exercise 11.11

Assume the structure of bond prices in Example 11.5 (Figure 11.10).
Consider a coupon bond maturing at time 2 with face value F = 100
and coupons C = 1 payable at each step. Find the price of an American
call option expiring at time 2 with strike price X = 101.30. (Include the
coupon in the bond price at each step.)

Call options on bonds can be used by institutions issuing bonds to include
the possibility of buying the bond back prior to maturity for a prescribed price.
A bond that carries such a provision is called a callable bond . Its price should
be reduced by the price of the attached option.

11.3.2 Swaps

Writing and selling a bond is a method of borrowing money. In the case of a
coupon bond trading at par the principal represents the sum borrowed and the
coupons represent the interest. This interest may be fixed or floating (variable).
The interest is fixed if all coupons are the same. Floating interest can be realised
in many ways. Here we assume that it is determined by the short rates as
in (11.4). The basis for our discussion is laid by Proposition 11.1, according to
which the market value of such a floating-coupon bond must be equal to its face
value, the bond trading at par. For a fixed-coupon bond trading at par the size
of the coupons can easily be found from (11.3). We could say that the resulting
fixed coupon rate is equivalent to the variable short rate over the lifetime of
the bond.
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Example 11.10

Consider a fixed-coupon bond and a floating-coupon bond, both with annual
coupons, trading at par and maturing after two years with face value F = 100.
Given that the tree of one- and two-year zero-coupon bond prices is

B(1, 2; u) = 0.9101
B(0, 1) = 0.9123
B(0, 2) = 0.8256

<

B(1, 2; d) = 0.8987

where a time step is taken to be one year, τ = 1, we can evaluate the coupons
of the fixed- and floating-coupon bonds. The size of the floating coupons can
be found from (11.4),

C1 = (B(0, 1)−1 − 1)F ∼= 9.6131,

C2(u) = (B(1, 2; u)−1 − 1)F ∼= 9.8780,

C2(d) = (B(1, 2; d)−1 − 1)F ∼= 11.2718.

The fixed coupons C can be found by solving equation (11.3), which takes the
form

F = CB(0, 1) + (C + F )B(0, 2).

This gives
C ∼= 10.0351.

By buying a fixed-coupon bond and selling a floating-coupon one (or the other
way round, selling a fixed-coupon bond and buying a floating-coupon one) an
investor can create an random cash flow with present value zero, since the two
kinds of bond have the same initial price.

A company who has sold fixed-coupon bonds and is paying fixed interest
may sometimes wish to switch into paying the floating rate instead. This can
be realised by writing a floating-coupon bond and buying a fixed-coupon bond
with the same present value. In practice, a financial intermediary will provide
this service by offering a contract called a swap. Clearly, a swap of this kind
will cost nothing to enter. Here is an example of a practical situation, where
the role of the intermediary is to match the needs of two particular companies.

Example 11.11

Suppose that company A wishes to borrow at a variable rate, whereas B prefers
a fixed rate. Banks offer the following effective rates (that is, rates referring to
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annual compounding):

A B
fixed 11.40% 13.40%

variable LIBOR + 2% LIBOR + 3%

In this case we say that A has comparative advantage over B in the fixed rate,
with B having comparative advantage over A in the variable rate. (Notwith-
standing the fact that the overall credit rating of A is better, as reflected by
the lower interest rates offered.) In these circumstances A should borrow at
the fixed rate, B should borrow at the variable rate, and they can swap their
interest payments.

Consider a principal of $100, 000 borrowed for one year and suppose that
LIBOR is 10% and (just for simplicity) remains the same during the first year
of the loan. If A borrows at the variable rate and B at the fixed rate, then
the total interest paid will be $25, 400 between them. However, if A borrows
at the fixed rate and B at the variable rate, the interest payments will be only
$24, 400 in total. The difference of $1, 000 will be available to share between
the two companies if they arrange to swap the rates. (In practice, this amount
would be reduced by a fee charged by the intermediary arranging the deal.)
If LIBOR changes to 9%, say, in the second year of the loan, so will the total
interest payable, but the difference will remain at $1, 000.

How should this difference be shared between the two companies? To answer
the question, we assume the term structure of interest rates determined by the
prices of one- and two-year zero-coupon bonds in Example 11.10. In particular,
we can identify LIBOR with the effective short rate implied by the bond prices,
B(0, 1)−1 − 1 in year one and B(1, 2)−1 − 1 in year two. These are the same
rates as those implied by the floating coupons in Example 11.10. The fixed
coupons in the same example imply a rate of 10.04%.

Instead of swapping interest payments with B, company A would achieve
the same result by taking a loan of $100, 000 at the fixed rate of 11.40% offered
by the bank, buying 1, 000 of the fixed-coupon bonds, and writing 1, 000 of the
floating-coupon bonds considered in Example 11.10. As a result, company A
will have borrowed $100, 000 at the rate 11.40%−10.04%+LIBOR = LIBOR+
1.36%. Compared to the variable rate of LIBOR + 2% offered to company A,
this is a gain of 0.64%. On a $100, 000 loan this would mean a gain of $640 in
each year.

By a similar argument, instead of swapping with A, company B could bor-
row $100, 000 at the variable rate LIBOR + 3%, buy 1, 000 floating-coupon
bonds and write 1, 000 fixed-coupon bonds. As a result, B would pay interest
at LIBOR + 3%−LIBOR + 10.04% = 13.04%, a gain of 0.36% as compared to
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the fixed rate of 13.40% it was offered. This means a gain of $360 in each year
on an $100, 000 loan.

The result is that the $1, 000 gain should be shared as $640 and $360 be-
tween companies A and B.

Finally, note that the value of the swap may vary with time and state,
departing from the initial value of zero. If a company wishes to enter into a
swap agreement at a later time, it may purchase a swaption, which is a call
option on the value of the swap (with prescribed strike price and expiry time).

11.3.3 Caps and Floors

A cap is a provision attached to a variable-rate bond which specifies the maxi-
mum coupon rate paid in each period over the lifetime of a loan. A caplet is a
similar provision applied to a particular single period. In other words, a caplet
is a European option on the level of interest paid or received. A cap can be
thought of as a series of caplets.

Example 11.12

We take a loan by selling a par floating-coupon bond maturing at time 3. (That
is, a bond which always has the par value, the coupons being implied by the
short rates as in (11.4).) We use the bond prices and rates in Example 11.5,
see Figures 11.10 and 11.11. The cash flow shown below includes the initial
amount received for selling the bond together with the coupons and face value
to be paid:

n = 0 n = 1 n = 2
−0.99990 — −100.52272

100 <

−0.99990 — −100.87764

Consider a caplet that applies at time 1 (one month) with strike interest rate of
8% (corresponding to 0.67% for a one-month period). The coupon determined
by the caplet rate is 0.66889 and we modify the cash flow accordingly. At time 0
we find the bond price by discounting its time 1 value, 100.66889 in each state,
that is 100 plus the coupon. This gives the following cash flow:

n = 0 n = 1 n = 2
−0.66889 — −100.52272

99.67227 <

−0.66889 — −100.87764
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The price of the bond is reduced by the value of the caplet, that is, by 0.32773.
For a caplet at time 2 with the same strike rate the maximum size of the

coupon is 0.66889, as before. In the up state we pay the original interest,
exercising the caplet in the down state. The value of the bond at time 1 is
not 100, since the final coupons are no longer the same as for the par bond.
The time 1 prices are obtained by discounting the time 2 values. At time 0 we
find the bond price by evaluating the risk-neutral expectation of the discounted
values of the bond at time 1. The resulting cash flow is

n = 0 n = 1 n = 2
−0.99990 — −100.52272

99.87323 <

−0.99990 — −100.66889

This fixes the price of this caplet at 0.12677.
Finally, consider a cap for both times 1 and 2 with the same strike rate as

above. The cash flow can be obtained in a similar manner:

n = 0 n = 1 n = 2
−0.66889 — −100.52272

99.54550 <

−0.66889 — −100.66889

We can see that the value of the cap, 0.45450, is the sum of the values of the
caplets.

Analogously, a floor is a provision limiting the coupon from below. This
will be of value for a bond holder. It is composed from a series of floorlets, each
referring to a single period.

Exercise 11.12

In the framework of the above example, value a floor expiring at time 2
with strike rate 8%, based on the bond prices in Example 11.5.

11.4 Final Remarks

We conclude this chapter with some informal remarks on possible ways in which
models of the structure of bond prices can be built. This is a complex area and
all we can do here is to make some general comments.

As we have seen, the theory of interest rates is more complicated than the
theory of stock prices. In order to be able to price interest rate derivatives,
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we need a model of possible movements of bond prices for each maturity. The
bond prices with different maturities have to be consistent with each other. As
we have seen above, the specification of

a) a model of possible short rates,

b) a model of possible values of a bond with the longest maturity (consistent
with the initial term structure)

determines the structure of possible prices of all bonds maturing earlier. An
alternative approach is to specify

a) a model of possible short rates,

b) the probabilities at each state,

and, taking these probabilities as risk-neutral ones, to compute the prices of all
bonds for all maturities. The latter method is conceptually simpler, especially
if we take the same probability in each state. The flexibility of short rate mod-
elling allows us to obtain sufficiently many models consistent with the initial
term structure.

If so, the simplest choice of probability 1/2 at each state of the binomial
tree appears to be as good as any, and we can focus on constructing short rate
models so that their parameters are consistent with historical data. A general
short-rate model in discrete time can be described as follows. Let tn = nτ .
Then the following relations specify a tree of the rate movements

r(tn+1) − r(tn) = µ(tn, r(tn))τ + σ(tn, r(tn))ξn

where ξn = ±1 with probability 1/2 each, and µ(t, r), σ(t, r) are suitably
chosen functions. In the continuous time limit (in the spirit of Section 3.3.2)
these relations lead to a stochastic differential equation of the form

dr(t) = µ(t, r(t))dt + σ(t, r(t))dw(t).

There are many ways in which the functions µ and σ can be specified, but none
of them is universally accepted. Here are just a few examples: µ(t, r) = b − ar,

σ(t, r) = σ (Vasiček model), µ(t, r) = a(b − r), σ(t, r) = σ
√

r (Cox–Ingersoll–
Ross model), or µ(t, r) = θ(t)r, σ(t, r) = σr (Black–Derman–Toy model).

Given the short-rates, the next step is to compute the bond prices. These
will depend on the functions µ and σ. Two problems may be encountered:

1. The model is too crude, for example these functions are just constants. Then
we may not be able to adjust them so that the resulting bond prices agree
with the initial term structure.

2. The model is too complicated, for example we take absolutely general func-
tions µ, σ. Fitting the initial term structure imposes some constraints on
the parameters, but many are left free and the result is too general to be of
any practical use.
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These problems can be avoided if some middle-of-the-road solution is adopted.
Yet another alternative is to specify the dynamics of the entire curve of for-

ward rates. This determines the time evolution of the term structure, with the
initial term structure playing the role of initial data. This sounds conceptually
simple, but the model (the Heath–Jarrow–Morton model in continuous time
setting) is mathematically complex.

The literature on the subject is vast and expanding. We recommend that
the reader interested in pursuing this topic should look, for example, at
Pliska (1997), and Jarrow (1995) for the discrete time setting, or Björk (1998)
and Chen (1996) for continuous time models.
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Solutions

Chapter 1

1.1 The value of the portfolio at time 0 is

V (0) = xS(0) + yA(0) = 1, 600

dollars. The value of the portfolio at time 1 will be

V (1) = xS(1) + yA(1) =

{
1, 800 if stock goes up,
1, 700 if stock goes down.

Hence, the return on the portfolio will be

KV =
V (1) − V (0)

V (0)
=

{
0.1250 if stock goes up,
0.0625 if stock goes down,

that is, either 12.5% or 6.25%.

1.2 Given the same bond and stock prices as in Exercise 1.1, the value of a portfolio
(x, y) at time 1 will be

V (1) =

{
x30 + y100 if stock goes up,
x20 + y100 if stock goes down.

Thus, we obtain a system of equations

{
x30 + y100 = 1, 160,
x20 + y100 = 1, 040.

The solution is x = 12 and y = 8. A portfolio with 12 shares of stock and
8 bonds will produce the desired value at time 1. The time 0 value of this
portfolio is

V (0) = 12 × 25 + 8 × 90 = 1, 020

dollars.

1.3 An arbitrage opportunity can be realised as follows:

263
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• Use dealer A to change 1 dollar into 1
1.5844

∼= 0.6312 pounds.

• Use dealer B to change 0.6312 pounds into 0.6312
0.6401

∼= 0.9861 euros.
• Use dealer A to change 0.9861 euros into 0.9861× 1.0202 ∼= 1.0060 dollars.

The arbitrage gain will be about 0.0060 dollars.

1.4 We want both xS(0) and yA(0) to be equal to a half of the initial wealth. This
gives x80 = 5, 000 and y100 = 5, 000, so x = 62.5 and y = 50. The value of
this portfolio at time 1 will be

V (1) = 62.5S(1) + 50A(1) =

{
11, 750 if stock goes up,
9, 250 if stock goes down,

and hence the return on this portfolio will be

KV =

{
0.175 if stock goes up,

−0.075 if stock goes down.

Now we can compute the expected return

E(KV ) = 0.175 × 0.8 − 0.075 × 0.2 = 0.125,

which is 12.5%, and the risk

σV =

√
(0.175 − 0.125)2 × 0.8 + (−0.075 − 0.125)2 × 0.2 = 0.1,

that is, 10%.

1.5 The following strategy will realise an arbitrage opportunity. At time 0:

• Borrow $34.
• Buy a share of stock for $34.
• Enter into a short forward contract with forward price $38.60 and delivery

date 1.

At time 1:

• Sell the stock for $38.60, closing the short forward position.
• Pay 34 × 1.12 = 38.08 dollars to clear the loan with interest.

The balance of 38.60 − 38.08 = 0.52 dollars will be your arbitrage profit.

1.6 Suppose that a sterling bond promising to pay £100 at time 1 is selling for x
pounds at time 0. To find x consider the following strategy. At time 0:

• Borrow 1.6x dollars and change the sum into x pounds.
• Purchase a sterling bond for x pounds.
• Take a short forward position to sell £100 for $1.50 to a pound with

delivery date 1.

Then, at time 1:

• Cash the bond, collecting £100.
• Close the short forward position by selling £100 for $150.
• Repay the cash loan with interest, that is, 1.68x dollars in total.

The balance of all these transactions is 150 − 1.68x dollars, which must be
equal to zero or else an arbitrage opportunity would arise. It follows that a
sterling bond promising to pay £100 at time 1 must sell for x = 150

1.68
∼= 89.29

pounds at time 0.
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1.7 a) The payoff of a call option with strike price $90 will be

C(1) =

{
30 if stock goes up,
0 if stock goes down.

The replicating investment into x shares and y bonds satisfies the system of
equations {

x120 + y110 = 30,
x80 + y110 = 0.

The solution is x = 3
4

and y = − 6
11

. Hence the price of the option must be

C(0) =
3

4
× 100 − 6

11
× 100 ∼= 20.45

dollars.
b) The payoff of a call option with strike price $110 will be

C(1) =

{
10 if stock goes up,
0 if stock goes down.

The replicating investment into x shares and y bonds satisfies

{
x120 + y110 = 10,
x80 + y110 = 0.

Solving this system of equations, we find that x = 1
4

and y = − 2
11

. Hence the
price of the option is

C(0) =
1

4
× 100 − 2

11
× 100 ∼= 6.82

dollars.

1.8 a) The replicating investment into x shares and y bonds satisfies the system
of equations {

x120 + y105 = 20,
x80 + y105 = 0,

which gives x = 1
2

and y = − 8
21

. Hence

C(0) =
1

2
× 100 − 8

21
× 100 ∼= 11.91

dollars.
b) In this case the replicating investment into x shares and y bonds satisfies

{
x120 + y115 = 20,
x80 + y115 = 0,

so x = 1
2

and y = − 8
23

. It follows that

C(0) =
1

2
× 100 − 8

23
× 100 ∼= 15.22

dollars.
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1.9 We need to find an investment into x shares and y bonds replicating the put
option, that is, such that xS(1) + yA(1) = P (1), no matter whether the stock
price goes up or down. This leads to the system of equations{

x120 + y110 = 0,
x80 + y110 = 20.

The solution is x = − 1
2

and y = 6
11

. To replicate the put option we need to

take a short position of 1
2

a share in stock and to buy 6
11

of a bond. The value
of this investment at time 0 is

xS(0) + yA(0) = −1

2
× 100 +

6

11
× 100 ∼= 4.55

dollars. By a similar argument as in Proposition 1.3, it follows that xS(0) +
yA(0) = P (0), or else an arbitrage opportunity would arise. Therefore, the
price of the put must be P (0) ∼= 4.55 dollars.

1.10 The investor will buy 500
100

= 5 shares and 500
13.6364

∼= 36.6667 options. Her final
wealth will then be 5×S(1)+36.6667×C(1), that is, 5×120+36.6667×20 ∼=
1, 333.33 dollars if the price of stock goes up to $120, or 5×80+36.6667×0 ∼=
400.00 dollars if it drops to $80.

1.11 a) If p = 0.25, then the standard deviation of the return is about 52% when
no option is purchased and about 26% with the option.
b) If p = 0.5, then the standard deviation of the return is about 60% and 30%,
respectively.
c) For p = 0.75 the standard deviation of the return is about 52% and 26%,
respectively.

1.12 The standard deviation of a random variable taking values a and b with
probabilities p and 1 − p, respectively, is |a − b|√p(1 − p). If no option is in-
volved, then the return on stock will be 60% or −60%, depending on whether
stock goes up or down. In this case |a − b| = |60% − (−60%)| = 120%. If
one option is purchased, then the return on the investment will be 35% or
−25%, and |a − b| = |35% − (−25%)| = 60%. Clearly, the standard deviation

|a − b|√p(1 − p) will be reduced by a half, no matter what p is.

Chapter 2

2.1 The rate r satisfies (
1 +

61

365
× r

)
× 9, 000 = 9, 020.

This gives r ∼= 0.0133, that is, about 1.33%. The return on this investment
will be

K(0,
61

365
) =

9, 020 − 9, 000

9, 000
∼= 0.0022,

that is, about 0.22%.

2.2 Denote the amount to be paid today by P . Then the return will be

1, 000 − P

P
= 0.02.

The solution is P ∼= 980.39 dollars.
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2.3 The time t satisfies
(1 + t × 0.09) × 800 = 830,

which gives t ∼= 0.4167 years, that is, 0.4167 × 365 ∼= 152.08 days. The return
will be

K(0, t) =
830 − 800

800
= 0.0375,

that is, 3.75%.

2.4 The principal P to be invested satisfies

(
1 +

91

365
× 0.08

)
× P = 1, 000,

which gives P ∼= 980.44 dollars.

2.5 The time t when the future value will be double the initial principal satisfies
the equation (

1 +
0.06

365

)365t

= 2.

The solution is t ∼= 11.5534 years. Because no interest will be paid for a fraction
of the last day, this needs to be rounded up to a whole number of days, which
gives 11 years and 202 days. (We disregard leap years and assume for simplicity
that each year has 365 days.)

2.6 The interest rate r satisfies the equation

(1 + r)10 = 2,

which gives r ∼= 0.0718, that is, about 7.18%.

2.7 a) In the case of annual compounding the value after two years will be

V (2) =

(
1 +

0.1

1

)2×1

100 = 121.00

dollars.
b) Under semi-annual compounding the value will be

V (2) =

(
1 +

0.1

2

)2×2

100 ∼= 121.55

dollars, which is clearly greater than in case a).

2.8 At 15% compounded daily the deposit will grow to

(
1 +

0.15

365

)1×365

1, 000 ∼= 1, 161.80

dollars after one year. If interest is compounded semi-annually at 15.5%, the
value after one year will be

(
1 +

0.155

2

)1×2

1, 000 ∼= 1, 161.01

dollars, which is less than in the former case.
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2.9 The initial principal P satisfies the equation

(1 + 0.12)2 P = 1, 000.

It follows that P ∼= 797.19 dollars.

2.10 a) Under daily compounding the present value is

100, 000

(
1 +

0.05

365

)−100×365

∼= 674.03

dollars.
b) If annual compounding applies, then the present value is

100, 000 (1 + 0.05)−100 ∼= 760.45

dollars.

2.11 The return will be

K(0, 1) =

(
1 +

0.1

12

)12

− 1 ∼= 0.1047,

that is, about 10.47%.

2.12 Using the binomial formula to expand the mth power, we obtain

K(0, 1) = (1 +
r

m
)m − 1

= 1 + r +
(1 − 1

m
)

2!
r2 + · · · + (1 − m−1

m
)

m!
rm − 1 > r

if m is an integer greater than 1.

2.13 Denote the interest rate by r, the amount borrowed by P and the amount of
each instalment by C,

C =
P

PA(r, 5)
=

Pr

1 − (1 + r)−5
,

see Example 2.4. Let n = 1, 2, 3, 4 or 5. The present value of the outstanding
balance after n − 1 instalments are paid is equal to the amount borrowed
reduced by the present value of the first n − 1 instalments:

P − C

1 + r
− · · · − C

(1 + r)n−1
= P

(1 + r)6−n − 1

(1 + r)5 − 1
.

The actual outstanding balance remaining after n−1 instalments are paid can
be found by dividing the above by the discount factor (1 + r)−(n−1), which
gives

P
(1 + r)5 − (1 + r)n−1

(1 + r)5 − 1
. (S.1)

The interest included in the nth instalment is, therefore,

P
(1 + r)5 − (1 + r)n−1

(1 + r)5 − 1
r. (S.2)
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The capital repaid as part of the nth instalment is the difference between the
outstanding balance of the loan after the (n − 1)st and after the nth instal-
ment. By (S.1) this difference is equal to

P
(1 + r)n − (1 + r)n−1

(1 + r)5 − 1
= P

r (1 + r)n−1

(1 + r)5 − 1
. (S.3)

Putting P to be $1, 000 and r to be 15% in (S.1), (S.2) and (S.3), we can
compute the figures collected in the table:

t (years) interest paid ($) capital repaid ($) outstanding balance ($)
0 — — 1, 000.00
1 150.00 148.32 851.68
2 127.75 170.56 681.12
3 102.17 196.15 484.97
4 72.75 225.57 259.40
5 38.91 259.40 0.00

2.14 The amount you can afford to borrow is

PA(18%, 10) × 10, 000 =
1 − (1 + 0.18)−10

0.18
× 10, 000 ∼= 44, 941

dollars.

2.15 The present value of the balance after 40 years is

PA(5%, 40) × 1, 200 =
1 − (1 + 0.05)−40

0.05
× 1, 200 ∼= 20, 591

dollars. Dividing by the discount factor (1 + 0.05)−40, we find that the actual
balance after 40 years will be

20, 591

(1 + 0.05)−40
∼= 144, 960

dollars.

2.16 The annual payments will amount to

C =
100, 000

PA(6%, 10)
∼= 13, 586.80

dollars each. The outstanding balance to be paid to clear the mortgage after
8 years (once the 8th annual payment is made) will be

PA(6%, 2) × C ∼= 24, 909.93

dollars.

2.17 Suppose that payments C, C(1+g), C(1+g)2, . . . are made after 1 year, 2 years,
3 years, and so on. If the interest rate is constant and equal to r, then the
present values of these payments are C (1 + r)−1 , C(1 + g) (1 + r)−2 , C(1 +

g)2 (1 + r)−3 , . . . . The present value of the infinite stream of payments is,
therefore,

C

1 + r
+

C(1 + g)

(1 + r)2
+

C(1 + g)2

(1 + r)3
+ . . . =

C

r − g
.
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The condition g < r must be satisfied or otherwise the series will be divergent.
Using this formula and the tail-cutting procedure, we can find that for a stream
of n payments

C

r − g
− C(1 + g)n

r − g

1

(1 + r)n = C
1 −

(
1+g
1+r

)n

r − g
.

2.18 The time t it will take to earn $1 in interest satisfies

e0.1t × 1, 000, 000 ∼= 1, 000, 001.

This gives t ∼= 0.00001 years, that is, 315.36 seconds.

2.19 a) The value in year 2000 of the sum of $24 for which Manhattan was bought
in 1626 would be

24e(2000−1626)×0.05 ∼= 3, 173, 350, 575

dollars, assuming continuous compounding at 5%.
b) The same amount compounded at 5% annually would be worth

24(1 + 0.05)2000−1626 ∼= 2, 018, 408, 628

dollars in year 2000.

2.20 $100 deposited at 10% compounded continuously will become

100e0.1 ∼= 110.52

dollars after one year. The same amount deposited at 10% compounded
monthly will become

100

(
1 +

0.1

12

)12

∼= 110.47

dollars. The difference is about $0.05.
If the difference is to be less than $0.01, the compounding frequency m

should satisfy

100

(
1 +

0.1

m

)m

> 110.51.

This means that m should be greater than about 55.19.

2.21 The present value is

1, 000, 000e−20×0.06 ∼= 301, 194

dollars.

2.22 The rate r satisfies
950e0.5r = 1, 000.

It follows that

r =
1

0.5
ln

1, 000

950
∼= 0.1026,

that is, about 10.26%.

2.23 The interest rate is

r =
0.03

2/12
= 0.18,

that is, 18%.



Solutions 271

2.24 The rate r satisfies

er =

(
1 +

0.12

12

)12

.

The solution is r ∼= 0.1194, about 11.94%.

2.25 The frequency m satisfies (
1 +

0.2

m

)m

= 1 + 0.21.

Whence m = 2.0.

2.26 If monthly compounding at a rate r applies, then
(
1 + r

12

)12
= 1 + re and the

present value of the annuity is

V (0) =
C

1 + r
12

+
C(

1 + r
12

)2 + · · · + C(
1 + r

12

)12n

=
C

(1 + re)
1/12

+
C

(1 + re)
2/12

+ · · · + C

(1 + re)
n

= C
1 − (1 + re)

−n

(1 + re)
1/12 − 1

.

2.27 If bimonthly compounding at a rate r applies, then
(
1 + r

6

)6
= 1 + re and the

present value of the perpetuity is

V (0) =
C

1 + r
6

+
C(

1 + r
6

)2 +
C(

1 + r
6

)3 + · · ·

=
C

(1 + re)
1/6

+
C

(1 + re)
2/6

+
C

(1 + re)
3/6

+ · · ·

= C
1

(1 + re)
1/6 − 1

.

2.28 We solve the equation

100 = 95 (1 + r)
1
2

for r to find the implied effective rate to be about 10.80%. If this rate remains
constant, then the bond price will reach $99 at a time t such that

100 = 99 (1 + r)(
1
2−t) .

The solution is t ∼= 0.402 years, that is, about 0.402× 365 ∼= 146.73 days. The
bond price will reach $99 on day 147.

2.29 The interest rate for annual compounding implied by the bond can be found
by solving the equation

(1 + r)−(1−0.5) = 0.9455

for r. The solution is about 11.86%. By solving the equation
(
1 +

r

2

)−2(1−0.5)

= 0.9455,

we obtain the semi-annual rate of about 11.53%, and solving

e−r(1−0.5) = 0.9455,

we find the continuous rate to be about 11.21%.
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2.30 a) If the continuous compounding rate is 8%, then the price of the bond will
be

5e−0.08 + 5e−2×0.08 + 5e−3×0.08 + 105e−4×0.08 ∼= 89.06

dollars.
b) If the rate is 5%, then the price of the bond will be

5e−0.05 + 5e−2×0.05 + 5e−3×0.05 + 105e−4×0.05 ∼= 99.55

dollars.

2.31 The price of the bond as a function of the continuous compounding rate r can
be expressed as 5e−r + 5e−2r + 5e−3r + 105e−4r. The graph of this function is
shown in Figure S.1. When r ↘ 0, the price approaches 5 + 5 + 5 + 105 = 120
dollars. In the limit as r ↗ ∞ the price tends to zero.

Figure S.1 Bond price versus interest rate in Exercise 2.31

2.32 The time t price of the coupon bond in Examples 2.9 and 2.10 is

10er(t−1) + 10er(t−2) + 10er(t−3) + 10er(t−4) + 110er(t−5) if 0 ≤ t < 1,

10er(t−2) + 10er(t−3) + 10er(t−4) + 110er(t−5) if 1 ≤ t < 2,

10er(t−3) + 10er(t−4) + 110er(t−5) if 2 ≤ t < 3,

10er(t−4) + 110er(t−5) if 3 ≤ t < 4,

110er(t−5) if 4 ≤ t < 5.

The graph is shown in Figure S.2.

2.33 In Figure S.2 we can see that the bond price will reach $95 for the first time dur-
ing year one, when the bond price is given by 10er(t−1)+10er(t−2)+10er(t−3)+
10er(t−4) + 110er(t−5). Putting r = 0.12, we can find the desired time t when
the price will reach $95 by solving the equation

10er(t−1) + 10er(t−2) + 10er(t−3) + 10er(t−4) + 110er(t−5) = 95.

This gives t ∼= 0.4257 years or 155.4 days.

2.34 Since the bond is trading at par, its initial price is the same as the face value
F = 100. The implied continuous compounding rate r can be found by solving
the equation

8e−r + 8e−2r + 108e−3r = 100.

This gives r ∼= 0.0770 or 7.70%.
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Figure S.2 Coupon bond price versus time in Exercise 2.32

2.35 By solving the equation
(1 + r)−1 = 0.89

we find that r ∼= 0.1236, that is, the effective rate implied by the bond is about
12.36%. The price of the bond after 75 days will be

B(75/365, 1) = B(0, 1) (1 + r)
75
365 = 0.89 (1 + 0.1236)

75
365 ∼= 0.9115

and the return will be

K(0, 75/365) =
B(75/365, 1) − B(0, 1)

B(0, 1)
∼= 0.9115 − 0.89

0.89
∼= 0.0242,

about 2.42%.

2.36 The initial price of a six-month unit bond is e−0.5r, where r denotes the implied
continuous rate. If the bond is to produce a 7% return over six months, then

1 − e−0.5r

e−0.5r
= 0.07,

which gives r ∼= 0.1353, or 13.53%.

2.37 The continuous rate implied by the bond satisfies

e−r = 0.92.

The solution is r ∼= 0.0834. At time t the bond will be worth 0.92ert. It will
produce a 5% return at a time t such that

0.92ert − 0.92

0.92
= 0.05,

which gives t ∼= 0.5851 years or 213.6 days.

2.38 At time 0 we buy 1/B(0, 1) = er bonds, at time 1 we increase our holdings to

er/B(1, 2) = e2r bonds, and generally at time n we purchase e(n+1)r one-year
bonds.
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2.39 Because the bond is trading at par and the interest rates remain constant,
the price of the bond at the beginning of each year will be $100. The sum of
$1, 000 will buy 10 bonds at the beginning of year one. At the end of the year
the coupons will pay 10 × 8 = 80 dollars, enough to buy 0.8 bonds at $100
each. As a result, the investor will be holding 10 + 0.8 = 10.8 bonds in year
two. At the end of that year the coupons will pay 10.8 × 8 = 86.4 dollars and
0.864 additional bonds will be purchased at $100 each. The number of bonds
held in year three will be 10.8 + 0.864 = 11.664, and so on.

In general, the number of bonds held in year n will be

10

(
1 +

8

100

)n−1

,

which gives 10.0000, 10.8000, 11.6640, 12.5971, 13.6049 bonds held in years
one to five.

Chapter 3

3.1 The tree representing the scenarios and price movements in Example 3.1 is
shown in Figure S.3.

Figure S.3 Tree of price movements in Example 3.1

3.2 The tree representing the scenarios and price movements is shown in Fig-
ure S.4. There are altogether eight scenarios represented by the paths through
the tree leading from the ‘root’ on the left towards the rightmost branch tips.

3.3 We can use (3.1) to find

Scenario S(0) S(1) S(2) S(3)
ω1 45.00 49.50 51.98 46.78
ω2 45.00 47.25 51.98 57.17
ω3 45.00 47.25 42.53 46.78

The tree is shown in Figure S.5.

3.4 When dividends are payable, formula (3.1) becomes

S(n) = S(n − 1)(1 + K(n)) − div(n),

which gives
Scenario S(0) S(1) S(2) S(3)
ω1 45.00 48.50 49.93 43.93
ω2 45.00 46.25 49.88 53.86
ω3 45.00 46.25 40.63 43.69
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Figure S.4 Tree of price movements in Exercise 3.2

Figure S.5 Tree of price movements in Exercise 3.3

3.5 The return over two time steps as compared to the sum of one-step returns
can take the following values:

Scenario K(0, 2) K(1) + K(2)
ω1 15.50% 15.00%
ω2 15.50% 15.00%
ω3 −5.50% −5.00%

Over three time steps we have

Scenario K(0, 3) K(1) + K(2) + K(3)
ω1 3.95% 5.00%
ω2 27.05% 25.00%
ω3 3.95% 5.00%

The sum of one-step returns tends to be larger then the return over the total
interval if the sign of one-step returns alternates.

3.6 First find K(0, 2) and then the one-step returns K(1) = K(2) = K from the
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relation 1 + K(0, 2) = (1 + K)2 (assuming that 1 + K > 0):

Scenario K(0, 2) K(1) = K(2)
ω1 17.14% 8.23%
ω2 −8.57% −4.38%
ω3 −20.00% −10.56%

3.7 The formula
1 + K(0, 2) = (1 + K(1)) (1 + K(2))

can be used to find K(2). For example, the following scenarios and values of
K(2) are consistent with the conditions of Exercise 3.7:

Scenario K(0, 2) K(1) K(2)
ω1 21.00% 10.00% 10.00%
ω2 10.00% 10.00% 0.00%
ω3 −1.00% −10.00% 10.00%

This is not the only possible solution. Another one can be obtained from the
above by changing scenario ω2 to

Scenario K(0, 2) K(1) K(2)
ω2 10.00% −10.00% 22.22%

with the other two scenarios unaltered.

3.8 For the three scenarios in Example 3.2 we find

Scenario k(1) k(2) k(0, 2)
ω1 5.31% 3.39% 8.70%
ω2 5.31% −10.92% −5.61%
ω3 −5.61% 1.90% −3.70%

In all three cases k(0, 2) = k(1) + k(2).

3.9 Let K denote the return in the third scenario. If the expected return is equal
to 6%, then

1

2
× (−5%) +

1

4
× 6% +

1

4
× K = 6%.

Solving for K, we find that the return in the third scenario must be 28%.

3.10 First, compute the returns K(1), K(2) and K(0, 2) in each scenario:

Scenario K(1) K(2) K(0, 2)
ω1 10.00% 9.09% 20.00%
ω2 5.00% −4.76% 0.00%
ω3 −10.00% 11.11% 0.00%

It follows that

E(K(1)) ∼= 0.25 × 10.00% + 0.25 × 5.00% − 0.5 × 10.00% ∼= −1.25%,

E(K(2)) ∼= 0.25 × 9.09% − 0.25 × 4.76% + 0.5 × 11.11% ∼= 6.64%,

E(K(0, 2)) ∼= 0.25 × 20.00% + 0.25 × 0.00% + 0.5 × 0.00% ∼= 5.00%.

Clearly,

(1 + E(K(1)))(1 + E(K(2))) ∼= 1.0530 �= 1.0500 ∼= 1 + E(K(0, 2)).
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3.11 Since the quarterly returns K(1), K(2), K(3), K(4) are independent and iden-
tically distributed,

E(K(1)) = E(K(2)) = E(K(3)) = E(K(4))

and

1 + E(K(0, 3)) = (1 + E(K(1))3,

1 + E(K(0, 4)) = (1 + E(K(1))4.

Thus, if E(K(0, 3)) = 12%, then the expected quarterly return E(K(1)) ∼=
3.85% and the expected annual return E(K(0, 4)) ∼= 16.31%.

3.12 By Condition 3.1 the random variables

S(1)

S(0)
= 1 + K(1),

S(2)

S(1)
= 1 + K(2),

S(3)

S(2)
= 1 + K(3) (S.4)

are independent, each taking two values 1 + d and 1 + u with probabilities p
and 1 − p, respectively.

The price S(2), which is the product of S(0) and the first two of these
random variables, takes up to four values corresponding to the four price
movement scenarios, that is, paths through the two-step tree of stock prices
shown in Figure 3.3 (in which S(0) = 1 for simplicity). Among these four
values of S(2) there are in fact only three different ones,

S(2) =




S(0)(1 + u)2 with probability p2,
S(0)(1 + u)(1 + d) with probability 2p(1 − p),
S(0)(1 + d)2 with probability (1 − p)2.

The price S(3), which is the product of S(0) and the three independent
random variables in (S.4), takes up to eight values corresponding to the eight
price movement scenarios, that is, paths through the three-step tree of stock
prices in Figure 3.4 (with S(0) = 1 for simplicity). Among these eight values
of S(3) there are only four different ones,

S(3) =




S(0)(1 + u)3 with probability p3,
S(0)(1 + u)2(1 + d) with probability 3p2(1 − p),
S(0)(1 + u)(1 + d)2 with probability 3p(1 − p)2,
S(0)(1 + d)3 with probability (1 − p)3.

3.13 The top values of S(1) and S(2) can be used to find u:

u =
92 − 87

87
∼= 0.0575.

Next, u and the top value of S(1) give the value of S(0):

S(0) ∼= 87

1 + 0.0575
∼= 82.27

dollars. Finally, d is determined by S(0) and the bottom value of S(1):

d ∼= 76 − 82.27

82.27
∼= −0.0762.
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3.14 Given the continuous risk-free rate of 14% and the time step τ = 1/12, we
find the one-step return

r = e0.14/12 − 1 ∼= 0.0117.

By Condition 3.2, u > r ∼= 0.0117. This means that the middle value S(0)(1+
u)(1 + d) of S(2) must be no less than about 22(1 + 0.0117)(1− 0.01) ∼= 22.04
dollars.

3.15 Consider the system of equations

S(0)(1 + u)2 = 32,

S(0)(1 + u)(1 + d) = 28,

S(0)(1 + d)2 = x.

It follows that
32

28
=

1 + u

1 + d
=

28

x

and x = 282/32 = 24.50 dollars. However, the tree cannot be reconstructed
uniquely. For any value S(0) > 0 one can find u and d consistent with the
data.

3.16 The values of u and d can be found by solving the equations

S(0)(1 + u)2 = 121,

S(0)(1 + d)2 = 100,

and selecting those solutions that satisfy 1+u > 0 and 1+d > 0. If S(0) = 100,
then u = 0.1 and d = 0. If S(0) = 104, then u ∼= 0.0786 and d ∼= −0.0194.

3.17 We only need to consider the values of d between −1 and r, that is, −1 < d <
1/10. As d increases between these two bounds, p∗ decreases from 11/13 to 0.
The dependence of p∗ on d is shown in Figure S.6.

Figure S.6 The risk-neural probability p∗ as a function of d

3.18 By (3.4) the condition d < r < u is equivalent to d < p∗u+(1−p∗)d < u. This,
in turn, can be written as 0 < p∗(u − d) < u − d or, equivalently, 0 < p∗ < 1.

3.19 By Proposition 3.5

E∗(S(3)|S(2) = 110) = 110(1 + r) = 110(1 + 0.2) = 132

dollars.
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3.20 By Condition 3.3 the random variables S(1)/S(0) = 1+K(1) and S(2)/S(1) =
1+K(2) are independent, each taking three values 1+d, 1+n and 1+u with
probabilities p, q and 1 − p − q, respectively. Therefore S(2), which is the
product of these two random variables and the number S(0), takes up to nine
values. Among these nine values there are only six different ones,

S(2) =




S(0)(1 + u)2 with probability p2,
S(0)(1 + n)2 with probability q2,
S(0)(1 + d)2 with probability (1 − p − q)2,
S(0)(1 + u)(1 + n) with probability 2pq,
S(0)(1 + u)(1 + d) with probability 2p(1 − p − q),
S(0)(1 + n)(1 + d) with probability 2q(1 − p − q).

3.21 Let p∗, q∗, 1−p∗−q∗ be the probabilities of upward, middle and downward price
movements, respectively. Condition (3.6) implies that 0.2p∗−0.1(1−p∗−q∗) =
0, that is, q∗ = 1−3p∗ and 1−p∗−q∗ = 2p∗. Observe that p∗, 1−3p∗, 2p∗ ∈ [0, 1]
if and only if p∗ ∈ [0, 1/3]. It follows that p∗, q∗, 1 − p∗ − q∗ are risk-neutral
probabilities if and only if q∗ = 1 − 3p∗ and p∗ ∈ [0, 1/3].

3.22 Solving the system of equations

ln(1 + u) = mτ + σ
√

τ ,

ln(1 + d) = mτ − σ
√

τ ,

we find σ ∼= 0.052 and m ∼= 0.059.

3.23 Since p = 1/2 and ξ(n)2 = τ ,

E(ξ(n)) =
1

2

√
τ − 1

2

√
τ = 0,

Var(ξ(n)) = E(ξ(n)2) − E(ξ(n))2 =
1

2
τ +

1

2
τ = τ,

E(k(n)) = mτ + σE(ξ(n)) = mτ,

Var(k(n)) = σ2Var(ξ(n)) = σ2τ.

3.24 By (3.2)

S(1) = S(0)ek(1) = S(0)emτ+σξ(1),

S(2) = S(0)ek(1)+k(2) = S(0)e2mτ+σ(ξ(1)+ξ(2)).

3.25 Let t = n
N

. Because the ξN (i) are independent, E(ξN (i)) = 0 and Var(ξN (i)) =
1
N

for each i = 1, 2, . . . , it follows that

E(wN (t)) = E(ξN (1) + · · · + ξN (n))

= E(ξN (1)) + · · · + E(ξN (n)) = 0,

Var(wN (t)) = Var(ξN (1) + · · · + ξN (n))

= Var(ξN (1)) + · · · + Var(ξN (1)) =
n

N
= t.
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Chapter 4

4.1 We can use the formulae in the proof of Proposition 4.1 to find

y(1) =
200 − 35.24 × 60 − 24.18 × 20

100
∼= −23.98,

V (1) ∼= 35.24 × 65 + 24.18 × 15 − 23.98 × 110 ∼= 15.50,

y(2) =
15.50 + 40.50 × 65 − 10.13 × 15

110
∼= 22.69,

V (2) ∼= −40.50 × 75 + 10.13 × 25 + 22.69 × 121 ∼= −38.60.

4.2 For a one-step strategy admissibility reduces to a couple of inequalities, V (0) ≥
0 and V (1) ≥ 0. The first inequality can be written as

10x + 10y ≥ 0.

The second inequality means that both values of the random variable V (1)
should be non-negative, which gives two more inequalities to be satisfied by x
and y,

13x + 11y ≥ 0,

9x + 11y ≥ 0.

The set of portfolios (x, y) satisfying all these inequalities is shown in Fig-
ure S.7.

Figure S.7 Admissible portfolios in Exercise 4.2

4.3 Suppose that there is a self-financing predictable strategy with initial value
V (0) = 0 and final value 0 �= V (2) ≥ 0, such that V (1) < 0 with positive
probability. The last inequality means that this strategy is not admissible, but
we shall construct an admissible one that violates the No-Arbitrage Principle.
Here is how to proceed to achieve arbitrage:

• Do not invest at all at time 0.
• At time 1 check whether the value V (1) of the non-admissible strategy is

negative or not. If V (1) ≥ 0, then refrain from investing at all once again.
However, if V (1) < 0, then take the same position in stock as in the non-
admissible strategy and a risk-free position that is lower by −V (1) than
that in the non-admissible strategy.
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This defines a predictable self-financing strategy. Its time 0 and time 1 value
is 0. The value at time 2 will be{

0 if V (1) ≥ 0,
V (2) − V (1) > 0 if V (1) < 0.

This is, therefore, an admissible strategy realising an arbitrage opportunity.

4.4 If you happen to know that an increase in stock price will be followed by a fall
at the next step, then adopt this strategy:

• At time 0 do not invest in either asset.
• At time 1 check whether the stock has gone up or down. If down, then

again do not invest in either asset. But if stock has gone up, then sell
short one share for S(0)u, investing the proceeds risk-free.

Clearly, the time 0 and time 1 value of this strategy is V (0) = V (1) = 0. If
stock goes down at the first step, then the value at time 2 will be V (2) = 0.
But if stock goes up at the first step, then it will go down at the second step
and V (2) = S(0)u(r − d) will be positive, as required, since u > r > d. (The
notation is as in Section 3.2.)

Clearly, this is not a predictable strategy, which means that no arbitrage
has been achieved.

4.5 a) If there are no short-selling restrictions, then the following strategy will
realise an arbitrage opportunity:

• At time 0 do not invest at all.
• At time 1 check the price S(1). If S(1) = 120 dollars, then once again do

not invest at all. But if S(1) = 90 dollars, then sell short one share of the
risky asset and invest the proceeds risk-free.

The time 0 and time 1 value of this admissible strategy is 0. The value at
time 2 will be {

0 in scenarios ω1 and ω2,
3 in scenario ω3,

which means that arbitrage can be achieved.
b) In a) above arbitrage has been achieved by utilising the behaviour of stock
prices at the second step in scenario ω2: The return on the risky asset is
lower than the risk-free return. Thus, shorting the risky asset and investing
the proceeds risk-free creates arbitrage. However, when short selling of risky
assets is disallowed, then this arbitrage opportunity will be beyond the reach
of investors.

4.6 The arbitrage strategy described in Solution 4.5 involves buying a fraction of
a bond. If S(1) = 90 dollars, then one share of stock should be shorted and
9
11

of a bond purchased at time 1. To obtain an arbitrage strategy involving
an integer number of units of each asset, multiply these quantities by 11, that
is, short sell 11 shares of stock and buy 9 bonds.

4.7 Suppose that transaction costs of 5% apply whenever stock is bought or sold.
An investor who tried to follow the strategy in Solution 4.5, short selling one
share of stock at time 1 if S(1) = 90 dollars, would have to pay transaction
costs of 90 × 5% = 4.50 dollars. If the remaining amount of 90 − 4.50 = 85.50
dollars were invested risk-free, it would be worth 85.5 × 121

110
= 94.05 dollars

at time 2. But closing the short position in stock would cost $96, making the
final wealth negative. As a result, there is no arbitrage strategy.
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4.8 The put option gives the right (but no obligation) to sell one share of stock
for the strike price X = 110 dollars at time 2. We consider an extended model
with three assets, the stock, the money market, and the option. The unit prices
of these assets are S(n), A(n), PE(n), where PE(n) is the market price of the
put option at time n = 0, 1, 2. The time 2 price of the put option is

PE(2) = max{X − S(2), 0}.
According to the Fundamental Theorem of Asset Pricing, the discounted stock

and option prices S̃(n) = S(n)/A(n) and P̃E(n) = PE(n)/A(n) should form a
martingale under some probability measure P∗, or else an arbitrage opportu-
nity would arise. From Example 4.5 we know that there is only one probability

P∗ turning S̃(n) into a martingale. Because of this, P̃E(n) must be a martin-
gale under the same probability P∗. It follows that

PE(1) =
A(1)

A(2)
E∗(P

E(2)|S(1)) and PE(0) =
A(0)

A(1)
E∗(P

E(1)).

Using the values of P∗ for each scenario found in Example 4.5, we can compute
PE(1) and PE(0). For example

PE(1, ω3) = PE(1, ω4) =
A(1)

A(2)

P∗(ω3)P
E(2, ω3) + P∗(ω4)P

E(2, ω4)

P∗(ω3) + P∗(ω4)

=
110

121

1
25

× 20 + 1
100

× 30
1
25

+ 1
100

∼= 20.00

dollars. In this manner, we obtain

Scenario PE(0) PE(1) PE(2)
ω1 1.96 1.21 0.00
ω2 1.96 1.21 4.00
ω3 1.96 20.00 20.00
ω4 1.96 20.00 30.00

Chapter 5

5.1 In the first investment project

E(K1) = 0.12 × 0.25 + 0.12 × 0.75 = 0.12,

Var(K1) = (0.12 − 0.12)2 × 0.25 + (0.12 − 0.12)2 × 0.75 = 0.

In the second project

E(K2) = 0.11 × 0.25 + 0.13 × 0.75 = 0.125,

Var(K2) = (0.11 − 0.125)2 × 0.25 + (0.13 − 0.125)2 × 0.75 = 0.000075.

Finally, in the third project

E(K3) = 0.02 × 0.25 + 0.22 × 0.75 = 0.17,

Var(K3) = (0.02 − 0.17)2 × 0.25 + (0.22 − 0.17)2 × 0.75 = 0.0075.

The first project is the least risky one, in fact, it is risk-free. The third project
involves the highest risk.
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5.2 First we put K2(ω2) = x and compute

Var(K1) = 0.001875,

Var(K2) = 0.187 5x2 + 0.015x + 0.0003.

The two securities will have the same risk if Var(K1) = Var(K2). This gives
the following equation

0.0003 + 0.187 5x2 + 0.015x = 0.001875

with two solutions x = −0.14 or 0.06. This means that K2(ω2) = −14% or
6%.

5.3 First we use the formula eki = 1 + Ki for i = 1, 2 to compute the logarithmic
returns and then work out the variance of each return:

Scenario Probability K1 K2 k1 k2

ω1 0.5 10.53% 7.23% 10.01% 6.98%
ω2 0.5 13.89% 10.55% 13.01% 10.03%
Variance 0.000282 0.000276 0.000224 0.000232

We find that Var(K1) > Var(K2), whereas Var(k1) < Var(k2).
This is an interesting observation because it shows that greater risk as

measured by Var(K) does not necessarily mean greater risk in the sense of
Var(k). Nevertheless, when the rates of return are of the order of 10% or lower,
the differences between these two measures of risk are tiny and can simply
be ignored in financial practice. This is because the errors due to inaccurate
estimation of the parameters (the probabilities and values of return rates in
different scenarios) are typically greater than these differences.

5.4 Let x1 and x2 be the number of shares of type 1 and 2 in the portfolio. Then

V (1) = x1S1(1) + x2S2(1) = V (0)

(
w1

S1(1)

S1(0)
+ w2

S2(1)

S2(0)

)

= 100

(
0.25 × 48

45
+ 0.75 × 32

33

)
= 99.394.

5.5 The return on the portfolio is KV = w1K1 + w2K2. This gives

KV = 0.30 × 12% − 0.7 × 4% = 0.8% in scenario ω1,
KV = 0.30 × 10% + 0.7 × 7% = 7.9% in scenario ω2.

5.6 The initial and final values of the portfolio are

V (0) = x1S1(0) + x2S2(0),

V (1) = x1S1(0)ek1 + x2S2(0)ek2

= V (0)
(
w1e

k1 + w2e
k2
)

.

As a result, the return on the portfolio is

ekV =
V (1)

V (0)
= w1e

k1 + w2e
k2 .
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5.7 First we find E(K1) = 7% and E(K2) = 23%. If the expected return on the
portfolio is to be E(KV ) = 20%, then by (5.4) and (5.1) the weights must
satisfy the system of equations

7w1 + 23w2 = 20,

w1 + w2 = 1.

The solution is w1 = 18.75% and w2 = 81.25%.

5.8 First, we find compute µ1 = 4% and µ2 = 16% from the data in Example 5.6.
Next, (5.7) and (5.1) give the system of equations

4w1 + 14w2 = 46,

w1 + w2 = 1,

for the weights w1 and w2. The solution is w1 = −3.2 and w2 = 4.2. Finally,
we use (5.7) with the values σ2

1
∼= 0.0184, σ2

2
∼= 0.0024 and ρ12

∼= −0.96309
computed in Example 5.6 to find the risk of the portfolio:

σ2
V

∼= (−3.2)2 × 0.0184 + (4.2)2 × 0.0024

+2 × (−3.2) × 4.2 × (−0.96309) ×
√

0.0184 ×
√

0.0024
∼= 0.40278.

5.9 The returns on risky securities are non-constant random variables, that is,
K1(ω1) �= K1(ω2) and K2(ω1) �= K2(ω2). Because of this, the system of equa-
tions

K1(ω1) = aK2(ω1) + b,

K1(ω2) = aK2(ω2) + b,

must have a solution a �= 0 and b. It follows that K1 = aK2 + b.
Now, use the properties of covariance and variance to compute

Cov(K1, K2) = Cov(aK2 + b, K2) = aCov(K2, K2) = aVar(K2) = aσ2
2 ,

σ2
1 = Var(K1) = Var(aK2 + b) = a2Var(K2) = a2σ2

2 .

It follows that σ1 = |a|σ2 and

ρ12 =
Cov(K1, K2)

σ1σ2
=

aσ2
2

|a|σ2
2

= ±1.

5.10 Using the values σ2
1
∼= 0.0184, σ2

2
∼= 0.0024 and ρ12

∼= −0.96309 computed in
Example 5.6, we find s0 from (5.13):

s0 =
σ2

1 − ρ12σ1σ2

σ2
1 + σ2

2 − 2ρ12σ1σ2

∼= 0.73809.

This means that the weights in the portfolio with minimum risk are w1 =
0.73809 and w2 = 0.26191 and it involves no short selling.

5.11 µV = 0.06, σV
∼= 1.013.

5.12 The weights of the three securities in the minimum variance portfolio are w ∼=[
0.314 0.148 0.538

]
, the expected return on the portfolio is µV

∼= 0.173
and the standard deviation is σV

∼= 0.151.
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5.13 The weights in the portfolio with the minimum variance among all attainable
portfolios with expected return µV = 20% are w ∼= [ 0.672 −0.246 0.574

]
.

The standard deviation of this portfolio is σV
∼= 0.192.

5.14 The weights and standard deviations of portfolios along the minimum variance
line, parametrised by the expected return µV , are

w ∼= [ −2.027 + 13.492µV 2.728 − 14.870µV 0.298 + 1.376µV

]
,

σV =
√

0.625 − 6.946µV + 20.018µ2
V .

This minimum variance line is presented in Figure S.8, along with the set of
attainable portfolios with short selling (light shading) and without (darker
shading).

Figure S.8 Minimum variance line and attainable portfilios on the w2, w3 and
σ, µ planes

5.15 Let m be the one-row matrix formed by the expected returns of the three
securities. By multiplying the γwC = m − µu equality by C−1uT and, re-
spectively, C−1mT , we get

µV (m − µu)C−1uT = (m − µu)C−1mT ,

since wuT = 1 and wmT = µV . This can be solved for µ to get

µ =
mC−1(mT − µV uT )

uC−1 (mT − µV uT )
∼= 0.142.

Then, γ can be computed as follows:

γ = (m − µu)C−1uT ∼= 1.367.

5.16 The market portfolio weights are w ∼= [ 0.438 0.012 0.550
]
. The expected

return on this portfolio is µM
∼= 0.183 and the standard deviation is σM

∼=
0.156.

5.17 βV
∼= 0.857, αV

∼= −0.102.
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5.18 The expected return on the portfolio can be expressed as KV = w1K1 + · · ·+
wnKn in terms of the expected returns on the individual securities. Because
covariance is linear in each of its arguments,

βV =
Cov(KV , KM )

σ2
M

= w1
Cov(K1, KM )

σ2
M

+ · · · + wn
Cov(Kn, KM )

σ2
M

= w1β1 + · · · + wnβn.

5.19 The equation of the characteristic line is y = βV x + αV , where βV is the
beta factor of that security and αV = µV −βV µM . In the CAPM the equation
µV = rF +(µM −rF )βV of the security market line holds. Substitution into the
formula for αV gives αV = rF −rF βV , so the equation of the characteristic line
becomes y = βV (x − rF ) + rF . Clearly, the characteristic line of any security
will pass through the point with coordinates rF , rF .

Chapter 6

6.1 Yes, there is an arbitrage opportunity. We enter into a long forward contract
and sell short one share, investing 70% of the proceeds at 8% and paying the
remaining 30% as a security deposit to attract interest at 4%. At the time of
delivery the cash investments plus interest will be worth about $18.20, out of
which $18 will need to be paid for one share to close out the short position in
stock. This leaves a $0.20 arbitrage profit.

The rates d for the security deposit such that there is no arbitrage oppor-
tunity satisfy 30% × 17 × ed + 70% × 17 × e8% ≤ 18. The highest such rate is
d ∼= 0.1740%.

6.2 We take 1 January 2000 to be time 0. By (6.2)

F (0, 3/4) = S(0)e0.06× 3
4 , F (1/4, 3/4) = 0.9S(0)e0.06× 2

4 .

It follows that the forward price drops by

F (0, 3/4) − F (1/4, 3/4)

F (0, 3/4)
=

e
3
4×6% − 0.9e

1
2×6%

e
3
4×6%

∼= 11.34%.

6.3 The present value of the dividends is

div0 = 1e−
6
12×12% + 2e−

9
12×12% ∼= 2.77

dollars. The right-hand side of (6.4) is equal to

[S(0) − div0]e
rT ∼= (120 − 2.77)e

10
12×12% ∼= 129.56

dollars, which is less than the quoted forward price of $131. As a result, there
will be an arbitrage opportunity, which can be realised as follows:

• on 1 January 2000 enter into a short forward position and borrow $120 to
buy stock;

• on 1 July 2000 collect the first dividend of $1 and invest risk-free;
• on 1 October 2000 collect the second dividend of $2 and invest risk-free;
• on 1 November 2000 close out all positions.
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You will be left with an arbitrage profit of

131 − 120e
10
12×12% + 1e

4
12×12% + 2e

1
12×12% ∼= 1.44

dollars.

6.4 No arbitrage profit can be realised in these circumstances. Though the theoret-
ical no-arbitrage forward price is about $87.83, the first strategy in the proof
of Proposition 6.2 brings a loss of 89− 83e10% + 2e0.5×7% ∼= −0.66 dollars and
the second one results in a loss of −89 + 83e7% − 2e0.5×10% ∼= −2.08 dollars.

6.5 The euro plays the role of the underlying asset with dividend yield 3%. Hence
the forward price (the exchange rate) is

F (0, 1/2) = 0.9834e0.5(4%−3%) ∼= 0.9883

euros to a dollar.

6.6 At time t

• borrow and pay (or receive and invest, if negative) the amount V (t) to
acquire a short forward contract with forward price F (0, T ) and delivery
date T ,

• initiate a new long forward contact with forward price F (t, T ) at no cost.

Then at time T

• close out both forward contracts receiving (or paying, if negative) the
amounts S(T ) − F (0, T ) and S(T ) − F (t, T ), respectively;

• collect V (t)er(T−t) from the risk-free investment, with interest.

The final balance V (t)er(T−t) − [F (t, T ) − F (0, T )] > 0 will be your arbitrage
profit.

6.7 By (6.3) the initial forward price is F (0, 1) ∼= 45.72 dollars. This takes into
account the dividend paid at time 1/2.

a) If S(9/12) = 49 dollars, then F (9/12, 1) ∼= 49.74 dollars by (6.2). It
follows by (6.8) that V (9/12) ∼= 3.96 dollars.

b) If S(9/12) = 51 dollars, then F (9/12) ∼= 51.77 dollars and V (9/12) ∼=
5.96 dollars.

6.8 Let t = 1/365, T = 1/4. We apply the formula (6.11) to get

f(t, T ) − f(0, T ) = S(t)er(T−t) + S(0)erT = 0

if S(t) = S(0)ert, that is, if the stock grows at the risk-free rate.

6.9 Since f(t, T ) = S(t)er(T−t), the random variables S(t) and f(t, T ) are perfectly

correlated with ρS(t)f(t,T ) = 1 and σf(t,T ) = er(T−t)σS(t). It follows that N =

e−r(T−t).

6.10 Observe that Theorem 6.5 on the equality of futures and forward prices applies
also in the case of an asset with dividends paid continuously. We can, therefore,
use (6.6) to obtain

rdiv = 8% − 1

0.75
ln

14, 100

13, 500
∼= 2.20%.
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6.11 The return on the index will be 3.37%. For rF = 1% this gives the futures prices
f(0, 3) ∼= 916.97 and f(1, 3) ∼= 938.49. If the beta coefficient for a portfolio is
βV = 1.5, then the expected return on this portfolio will be µV

∼= 4.56%.
To construct a portfolio with βṼ = 0 and initial value V (0) = 100 dollars,
supplement the original portfolio with N ∼= 0.1652 short futures contracts
(observe that N is the same as in Example 6.4).

If the actual return on the original portfolio during the first time step
happens to be equal to the expected return, then its value after one step will
be V (1) ∼= 104.56 dollars. Marking to market requires the holder of N ∼= 0.1652
short forward contracts to pay $3.56. As a result, after one step the value of

the portfolio with forward contracts will be Ṽ (1) ∼= 104.56 − 3.56 = 101.00
dollars, once again matching the risk-free growth.

Chapter 7

7.1 The investment will bring a profit of

(36 − S(T ))+ − 4.50e0.12× 3
12 = 3,

where S(T ) is the stock price on the exercise date. This gives S(T ) ∼= 28.36
dollars.

7.2 E((S(T ) − 90)+ − 8e0.09× 6
12 ) ∼= −5.37 dollars.

7.3 By put-call parity 2.83−PE = 15.60−15.00e−
3
12×0.0672, so PE ∼= 1. 98 dollars.

7.4 Put-call parity is violated, 5.09− 7.78 > 20.37− 24e−0.0748× 6
12 . Arbitrage can

be realised as in the first part of the proof of Theorem 7.1:

• Buy a share for $20.37;
• Buy a put option for $7.78;
• Write and sell a call option for $5.09;
• Borrow $23.06 at the interest rate of 7.48%.

The balance of these transactions is zero. After six months

• Sell one share for $24 by exercising the put option or settling the short
position in calls, depending on whether the share price turns out to be
below or above the strike price;

• Repay the loan with interest, amounting to 23.06e
1
2×0.0748 ∼= 23.94 dollars

in total.

The balance of 24 − 23.96 = 0.06 dollars will be your arbitrage profit.

7.5 If CE − PE > S(0) − div0 − Xe−rT , then at time 0 buy a share and a put
option, write and sell a call option, and invest (or borrow, if negative) the
balance on the money market at the interest rate r. As soon as you receive
the dividend, invest it at the rate r. At the exercise time T close the money
market investment and sell the share for X, either by exercising the put if
S(T ) < X, or by settling the call if S(T ) ≥ X. The final balance (CE − PE −
S(0) + div0)e

rT + X > 0 will be your arbitrage profit.
On the other hand, if CE −PE < S(0)−div0 −Xe−rT , then at time 0 sell

short a share, write and sell a put, and buy a call option, investing the balance
on the money market. When a dividend becomes due on the shorted share,
borrow the amount and pay it to the owner of the stock. At time T close the
money market position, buy a share for X by exercising the call if S(T ) > X
or settling the put if S(T ) ≤ X, and close the short position in stock. Your
arbitrage profit will be (−CE + PE + S(0) − div0)e

rT − X > 0.
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7.6 If CE − PE < S(0)e−rdivT − Xe−rT , then at time 0 sell short e−rdivT of a
share, write and sell a put, and buy a call option, investing the balance at
the rate r. Between time 0 and T pay dividends to the stock owner, raising
cash by shorting the stock. This will lead to one shorted share held at time T.
If the put option is exercised at time T , you will have to buy a share for X.
Use this share to close the short position in stock. You will be left with a call
option and a positive amount (−CE + PE + S(0)e−rdivT − Xe−rT )erT > 0. If
the put option is not exercised at all, then you can use the call to buy a share
for X at time T , closing the short position in stock. You will also be left with
a positive final balance (−CE + PE + S(0)e−rdivT − Xe−rT )erT > 0.

On the other hand, if CE −PE > S(0)e−rdivT −Xe−rT , then the opposite
strategy will also lead to arbitrage.

7.7 The strike price is equal to the forward price (more precisely, the exchange
rate) of 0.9883 euros to a dollar computed in Solution 6.5.

7.8 If S(0) − Xe−rT < CA − PA, then write and sell a call, buy a put, and buy
a share, investing (or borrowing, if negative) the balance at the rate r. Now
the same argument as in the first part of the proof of Theorem 7.2 applies,
except that the arbitrage profit may also include the dividend if the call is
exercised after the dividend becomes due. (Nevertheless, the dividend cannot
be included in this inequality because the option may be exercised and the
share sold before the dividend is due.)

If CA −PA < S(0)−div0 −X, then at time 0 sell short a share, write and
sell a put, and buy a call option, investing the balance at the rate r. If the put
is exercised at time t < T , you will have to buy a share for X, borrowing the
amount at the rate r. As the dividend becomes due, borrow the amount at the
rate r and pay it to the owner of the share. At time T return the share to the
owner, closing the short sale. You will be left with the call option and a positive
amount (S(0) + PA−CA − div0)e

rT − Xer(T−t) > XerT − Xer(T−t) ≥ 0. (If
the put is exercised before the dividend becomes due, you can increase your
arbitrage profit by closing out the short position in stock immediately, in which
case you would not have to pay the dividend.) If the put is not exercised before
expiry T , then the second part of Solution 7.5 applies.

7.9 If S(0) − Xe−rT < CA − PA, then use the same strategy as in the first part
of the proof of Theorem 7.2. The resulting arbitrage profit will in fact be
increased by the dividends accumulated up to the time when the call option
is exercised.

If CA − PA < S(0)e−rdivT − X, then at time 0 sell short e−rdivT of a
share, write and sell a put, and buy a call option, investing the balance at the
rate r. Between time 0 and T pay dividends to the stock owner, raising cash
by shorting the stock. This will lead to one shorted share held at time T. If
the put option is exercised at time t ≤ T , you will have to buy a share for X,
borrowing this amount at the rate r. At time T use this share to close the short
position in stock. You will be left with a call option and a positive amount
(−CA + PA + S(0)e−rdivT )erT − Xer(T−t) ≥ (−CA + PA + S(0)e−rdivT −
X)erT > 0 plus any dividends accumulated since the share was bought at
time t. If the put option is not exercised at all, then you can use the call to
buy a share for X at time T , closing the short position in stock. You will also
be left with a positive final balance (−CA + PA + S(0)e−rdivT )erT − X >
(−CA + PA + S(0)e−rdivT − X)erT > 0.

7.10 If CE > CA, then write and sell a European call and purchase an American
call. The difference CE −CA will be your arbitrage income. To keep it, do not
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exercise the American option until expiry, when either both options will turn
out worthless, or the loss from settling the European call will be recovered by
exercising the American call. The argument for put options is similar.

7.11 Suppose that CE ≥ S(0) − div0. In this case write and sell a call option and
buy stock, investing the balance on the money market. As soon as you receive
the dividends, also invest them on the money market. On the exercise date
you can sell the stock for at least min(S(T ), X), settling the call option. Your
final wealth will be positive, (CE − S(0) + div0)e

rT + min(S(T ), X) > 0. This
proves that CE < S(0) − div0.

The remaining bounds follow by the put-call parity relation (7.5) for
dividend-paying stock: S(0) − div0 − Xe−rT ≤ CE, since PE ≥ 0; −S(0) +
div0 +Xe−rT ≤ PE, since CE ≥ 0; and PE < Xe−rT , since CE < S(0)−div0.

7.12 For dividend-paying stock the regions determined by the bounds on call and
put prices in Proposition 7.3 are shown as shaded areas in Figure S.9.

Figure S.9 Bounds on European call and put prices for dividend-paying stock

7.13 If CA ≥ S(0), then buy a share, write and sell an American call and invest
the balance CA − S(0) without risk. If the option is exercised before or at
expiry, then settle your obligation by selling the share for X. If the option
is not exercised at all, you will end up with the share worth S(T ) at expiry.
In either case the final cash value of this strategy will be positive. The final
balance will in fact also include the dividend collected, unless the option is
exercised before the dividend becomes due.

7.14 Suppose that X ′ < X ′′, but CE(X ′) ≤ CE(X ′′). We can write and sell a
call with strike price X ′′ and buy a call with strike price X ′, investing the
difference CE(X ′′) − CE(X ′) without risk. If the option with strike price X ′′

is exercised at expiry, we will need to pay (S(T ) − X ′′)+. This amount can
be raised by exercising the option with strike price X ′ and cashing the payoff

(S(T ) − X ′)+. Because X ′ < X ′′ and (S(T ) − X ′)+ ≥ (S(T ) − X ′′)+ with
strict inequality whenever X ′ < S(t), it follows that an arbitrage profit will
be realised.

The inequality for puts follows by a similar arbitrage argument.

7.15 Consider four cases:

1) If S(T ) ≤ X ′ < X < X ′′, then (7.9) reduces to 0 ≤ 0.

2) If X ′ < S(T ) ≤ X < X ′′, then (7.9) becomes 0 ≤ α (S(T ) − X ′),
obviously satisfied for X ′ < S(T ).

3) If X ′ < X < S(T ) ≤ X ′′, then (7.9) can be written as S(T ) − X ≤
α (S(T ) − X ′). This holds because X = αX ′ + (1 − α)X ′′ and S(T ) ≤
X ′′.
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4) Finally, if X ′ < X < X ′′ < S(T ), then (7.9) becomes an equality,
S(T )−X = α (S(T ) − X ′) + (1−α) (S(T ) − X ′′) because X = αX ′ +
(1 − α)X ′′.

7.16 Suppose that PE(S′) ≤ PE(S′′) for some S′ < S′′, where S′ = x′S(0) and
S′′ = x′′S(0). Write and sell a put option on a portfolio with x′′ shares and
buy a put option on a portfolio with x′ shares, investing the balance PE(S′′)−
PE(S′) without risk. If the written option is exercised at time T , then the
liability can be met by exercising the other option. Since x′ < x′′, the payoffs

satisfy (X − x′S(T ))
+ ≥ (X − x′′S(T ))

+
with strict inequality whenever X ≥

x′S(T ). It follows that this is an arbitrage strategy.

7.17 Suppose that X ′ < X ′′, but CA(X ′) ≤ CA(X ′′). We can write and sell the
call with strike price X ′′ and purchase the call with strike price X ′, investing
the balance CA(X ′′)−CA(X ′) without risk. If the written option is exercised

at time t ≤ T , we will have to pay (S(t) − X ′′)+. This liability can be met

by exercising the other option immediately, receiving the payoff (S(t) − X ′)+.

Since (S(t) − X ′′)+ ≤ (S(t) − X ′)+ with strict inequality whenever X ′ < S(t),
this strategy leads to arbitrage.

The inequality for put options can be proved in a similar manner.

7.18 We shall prove Proposition 7.19 for American put options. The argument for
European puts is similar. By Proposition 7.15 PA(S) is a decreasing function
of S. When S ≥ X, the intrinsic value of a put option is zero, and so the time
value, being equal to PA(S), is also a decreasing function of S. On the other
hand, PA(S′)− PA(S′′) ≤ S′′ − S′ for any S′ < S′′ by Proposition 7.16. This
implies that PA(S′) − (X − S′)+ ≤ PA(S′′) − (X − S′′)+ if S′ < S′′ ≤ X, so
the time value is an increasing function of S for S ≤ X. As a result, the time
value has a maximum at S = X.

Chapter 8

8.1 Let us compute the derivative of the price CE(0) of a call option with respect
to u. The formula for the price, assuming that Sd < X < Su, is

CE(0) =
1

1 + r

r − d

u − d
[S(0)(1 + u) − X].

The derivative with respect to u is equal to

(r − d)[X − S(0)(1 + d)]

(1 + r)(u − d)2
=

(r − d)[X − Sd]

(1 + r)(u − d)2
.

This is positive in our situation, since r > d and X > Sd, so CE(0) increases
as u increases.

The derivative of CE(0) with respect to d is equal to

− (u − r)[S(0)(1 + u) − X]

(1 + r)(u − d)2
= − (u − r)[Su − X]

(1 + r)(u − d)2
,

which is negative, since r < u and X < Su. The option price decreases as d
increases.
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8.2 If r = 0 and S(0) = X = 1, then CE(0) = −ud
u−d

. For u = 0.05 and d = −0.05

we have u − d = 0.1 and CE(0) = 0.025 dollars. However, if u = 0.01 and
d = −0.19, then u − d = 0.2. The variance of the return on stock is equal to
(u− d)2p(1− p) and is higher in the latter case, but the option price is lower:
CE(0) = 0.0095 dollars.

8.3 To replicate a call option the writer needs to buy stock initially and sell it
when the option is exercised. The following system of equations needs to be
solved to find the replicating portfolio:

{
110(1 − c)x + 1.05y = 10,
90(1 − c)x + 1.05y = 0.

For c = 2% we obtain x ∼= 0.5102 and y ∼= −42.8471, so the initial value of
the replicating portfolio will be 100x + y ∼= 8.1633 dollars. If c = 0, then the
replicating portfolio will be worth 7.1429 dollars. Note that the money market
position y is the same for each c.

8.4 The borrowing rate should be used to replicate a call, since the money market
position will be negative. This gives x(1) ∼= 0.6667 and y(1) ∼= −40.1786, so the
replicating portfolio value is 9.8214 dollars. For a put we obtain x(1) ∼= −0.3333
and y(1) ∼= 27.7778 using the rate for deposits, so the replicating portfolio will
be worth 2.7778 dollars initially.

The results are consistent with the put and call prices obtained from (8.3)
with the appropriate risk-neutral probability (computed using the correspond-
ing interest rate), p∗ ∼= 0.7333 for a call and p∗ ∼= 0.6 for a put.

8.5 The option price at time 0 is 22.92 dollars. In addition to this amount, the
option writer should borrow 74.05 dollars and buy 0.8081 of a share. At time 1,
if S(1) = 144, then the amount of stock held should be increased to 1 share,
the purchase being financed by borrowing a further 27.64 dollars, increasing
the total amount of money owed to 109.09 dollars. If, on the other hand,
S(1) = 108 dollars at time 1, then some stock should be sold to reduce the
number of shares held to 0.2963, and 55.27 dollars should be repaid, reducing
the amount owed to 26.18 dollars. (In either case the amount owed at time 1
includes interest of 7.40 dollars on the amount borrowed at time 0.)

8.6 At time 1 the stock prices Su = 144 and Sd = 108 dollars (the so-called cum-
dividend prices) drop by the amount of the dividend to 129 and 93 dollars
(the so-called ex-dividend prices). These prices generate the prices at time 2,
hence Suu = 154.80, Sud = 116.10, Sdu = 111.60 and Sdd = 83.70 dollars. The
option will be exercised with payoff 34.80 dollars if the stock goes up twice.
In the remaining scenarios the payoff will be zero. The option value at time 1
will be 21.09 dollars in the up state and zero dollars in the down state. The
replicating portfolio constructed at time 1 and based on ex-dividend prices
consists of 0.8992 shares and a loan of 94.91 dollars in the up state, and no
shares and no money market position in the down state. The option price
at time 0 is 12.78 dollars. Replication (based on the cum-dividend prices at
time 1, since the dividend is available to the owner of the stock purchased at
time 0) involves buying 0.5859 shares and borrowing 57.52 dollars.

8.7 From the Cox–Ross–Rubinstein formula CE(0) ∼= 5.93 dollars, PE(0) ∼= 7.76
dollars.

8.8 The least integer m such that S(0)(1 + u)m(1 + d)N−m > X is m = 35.
From the Cox–Ross–Rubinstein formula we obtain CE(0) ∼= 3.4661 dollars
and x(1) = [1 − Φ(m − 1, N, q)] ∼= 0.85196 shares.
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8.9 The delta of a European call becomes equal to 1 at the first step n such that
the option will be in the money independently of whether the stock goes up
or down at the next step, that is, S(0)(1 + u)n(1 + d) > X (in this case
S(0)(1 + u)n+1 > X as well). This gives

n >
ln X − ln S(0) − ln(1 + d)

ln(1 + u)
.

8.10 The stock values are

n 0 1 2 3
79.86

72.60 <
66.00 < 68.97

S(n) 60.00 < 62.70 <
57.00 < 59.57

54.15 <
51.44

The American put prices are

n 0 1 2 3
0.00

0.00 <
0.50 < 0.00

PA(n) 2.52 < 1.10 <
5.00 < 2.43

7.85 <
10.56

The option will be exercised early in the d node at time 1 or in the dd node
at time 2 (bold figures).

8.11 The values of the European and American calls are the same,

n 0 1 2
52.80

34.91 <
CE(n) = CA(n) 22.92 < 9.60

5.82 <
0.00

At time 2 both options have, of course, the same payoff. At time 1 the American
call will not be exercised in the up state, as this would bring only 24 dollars,
which less than the value of holding the option until expiry. In the down state
the American call will be out of the money and will not be exercised either.
Similarly, it will not be exercised at time 0. As a result, the American call is
equivalent to its European counterpart.

8.12 The ex-dividend stock prices are

n 0 1 2
12.32

11.20 <
/ 10.64

S(n) 12.00
ex-div \ 10.34

9.40 <
8.93



294 Mathematics for Finance

The corresponding European and American put prices will be

n 0 1 2
1.68
1.68

2.53
2.80

<

/
3.36
3.36

PE(n)
PA(n)

3.42
3.69

\ 3.66
3.66

4.33
4.60

<

5.07
5.07

At time 1 the payoff of the American put option in both the up and down
states will be higher than the value of holding the option to expiry, so the
option should be exercised in these states (indicated by bold figures).

8.13 Take b such that S(0)eσb+ru− 1
2 σ2u = a and put V (t) = W (t)+

(
m − r + 1

2
σ2
)

t
σ

for any t ≥ 0, which is a Wiener process under P∗. In particular, V (u) is nor-
mally distributed under P∗ with mean 0 and variance u. The right-hand side
of (8.8) is therefore equal to

E∗
(
e−ruS(u)1S(u)<a

)
= S(0)E∗

(
eσV (u)− 1

2 σ2u1V (u)<b

)

= S(0)

∫ b

−∞
eσx− 1

2 σ2u 1√
2πt

e−
x2
2u dx

= S(0)

∫ b

−∞

1√
2πt

e−
(x−σu)2

2u dx.

Now observe that, since V (t) is a Wiener process under P∗, the random vari-
ables V (u) and V (t) − V (u) are independent and normally distributed with
mean 0 and variance u and t − u, respectively. As a result, their joint density

is 1
2πt

e
− y2

2(t−u)− x2
2u . This enables us to compute the left-hand side of (8.8),

E∗
(
e−rtS(t)1S(u)<a

)
= S(0)E∗

(
eσV (t)− 1

2 σ2u1V (u)<b

)

= S(0)E∗
(
eσ(V (t)−V (u))+σV (u)− 1

2 σ2u1V (u)<b

)

= S(0)

∫ b

−∞

(∫ ∞

−∞
eσy+σx− 1

2 σ2t 1

2πt
e
− y2

2(t−u)− x2
2u dy

)
dx

= S(0)

∫ b

−∞

(∫ ∞

−∞

1

2πt
e
− (y−σ(t−u))2

2(t−u) − (x−σu)2

2u dy

)
dx

= S(0)

∫ b

−∞

1√
2πt

e−
(x−σu)2

2u dx

We can now see that the two sides of (8.8) are equal to one another.
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8.14 Consider the distribution function

F (x) = P∗ {W (t) < x} = P∗

{
V (t) < x +

(
m − r +

1

2
σ2

)
t

σ

}

=

∫ x+(m−r+ 1
2 σ2) t

σ

−∞

1√
2π

e−
y2
2 dy,

where V (t) = W (t) +
(
m − r + 1

2
σ2
)

t
σ

is normally distributed under P∗. As
a result, the density of W (t) under P∗ is

dF (x)

dx
=

1√
2π

e−
1
2 (x+(m−r+ 1

2 σ2) t
σ )2 .

8.15 By put-call parity, for t = 0

PE(0) = CE(0) − S(0) + Xe−rT

= S(0)(N(d1) − 1) − Xe−rT (N(d2) − 1)

= −S(0)N(−d1) + Xe−rT N(−d2).

Now, by substituting t for 0 and T − t for T , we obtain the Black–Scholes
formula for PE(t).

Chapter 9

9.1 By put-call parity (7.1)

d

dS
PE(S) =

d

dS
CE(S) − 1 = N(d1) − 1 = −(1 − N(d1)) = −N(−d1),

where d1 is given by (8.9). The delta of a put option is negative, consistently
with the fact that the value of a put option decreases as the price of the
underlying asset increases.

9.2 We maximise 581.96×S −30, 779.62−1, 000×CE(S, 1
365

), where S stands for

the stock price after one day, and CE(S, t) is the price of a call at time t, one
day in our case, with 89 days to maturity, and where σ = 30% and r = 8%,
as before. Equating the derivative with respect to S to zero, we infer that the
delta of the option after one day should be the same as the delta on day zero,
d
dS

CE(S, 1
365

) = 0.58196. This gives the following condition for the stock price
(after inverting the normal distribution function):

ln S
60

+ (r + 1
2
σ2) × 89

365

σ
√

89
365

=
ln 60

60
+ (r + 1

2
σ2) × 90

365

σ
√

90
365

.

The result is S ∼= 60.0104 dollars.

9.3 The premium for a single put is 0.031648 dollars (from the Black–Scholes
formula), so the bank will receive 1, 582.40 dollars by writing and selling 50, 000
puts. The delta of a single put is −0.355300, so the delta-hedging portfolio
requires shorting 17, 765.00 shares, which will raise 32, 332.29 dollars. This
gives a total of 33, 914.69 dollars received to be invested at 5%. The value of
the delta neutral portfolio consisting of the shored stock, invested cash and
sold options will be −32, 332.29 + 33, 914.69 − 1, 582.40 = 0.00 dollars.
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One day later the shorted shares will be worth 17, 765 × 1.81 = 32, 154.64
dollars, whereas the cash investment will grow to 33, 914.69e0.05/365 ∼= 33, 919.34
dollars. The put price will increase to 0.035182 dollars, so the price of 50, 000
puts will be 1, 759.11 dollars. The value of the delta neutral portfolio will be
−32, 154.64 + 33, 919.34 − 1, 759.11 ∼= 5.59 dollars.

9.4 The price of a single put after one day will now be 0.038885 dollars, the 50, 000
options sold will therefore be worth 1944.26 dollars, the stock and cash deposit
positions remaining as in Solution 9.3. The delta neutral portfolio will bring
a loss of 179.56 dollars.

9.5 If the stock price does not change, S(t) = S(0) = S, then the value of the
portfolio after time t will be given by

V (t) = SN(d1) − Xerte−rT N(d2) − CE(S, t),

where CE(S, t) is given by the Black–Scholes formula and d1, d2 by (8.9). Then

d

dt
V (t)

∣∣∣∣
t=0

= −rXe−rT N(d2) − d

dt
CE(S, t)

∣∣∣∣
t=0

= −rXe−rT N(d2) − thetaCE

=
σS

2
√

2πT
e−d2

1/2,

which is positive.

9.6 Using put-call parity and the Greek parameters for a call, we can find those
for a put:

deltaPE = N(d1) − 1 = deltaCE − 1 = −N(−d1),

gammaPE = gammaCE ,

thetaPE = − Sσ

2
√

2πT
e−

d2
1
2 + rXe−rT N(−d2),

vegaPE = vegaCE ,

rhoPE = −TXe−rT N(−d2).

(The Greek parameters are computed at time t = 0.) These equalities can also
be verified directly by differentiating the Black–Scholes formula for the put
price.

9.7 The rho of the original option is 7.5878, the delta of the additional option is
0.4104 and the rho is 7.1844. The delta-rho neutral portfolio requires buying
approximately 148.48 shares of stock and 1, 056.14 additional options, while
borrowing $7, 693.22. The position after one day is presented in the following
table, in which we also recall the results of the delta hedge:

delta-rho deltaS( 1
365

)
r = 8% r = 9% r = 15% r = 9%

58.00 −7.30 −9.65 −26.14 −133.72
58.50 −2.71 −4.63 −17.95 −97.22
59.00 0.18 −1.23 −10.93 −72.19
59.50 1.59 0.77 −4.85 −58.50
60.00 1.76 1.60 0.52 −55.96
60.50 0.92 1.50 5.45 −64.38
61.00 −0.68 0.72 10.16 −83.51
61.50 −2.78 −0.47 14.90 −113.07
62.00 −5.13 −1.84 19.91 −152.78
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9.8 With 95% probability the logarithmic return on the exchange rate satisfies
k > m + xσ ∼= −23.68%, where x ∼= −1.645, so that N(x) ∼= 5%. The 1, 000
dollars converted into euros, invested without risk at the rate rEUR, and con-
verted back into dollars after one year, will give 1, 000erEURek dollars. With
probability 95% this amount will satisfy

1, 000erEURek > 1, 000erEURem+xσ ∼= 821.40 dollars.

On the other hand, 1, 000 dollars invested at the rate rUSD would have grown
to 1, 000erUSD ∼= 1, 051.27 dollars. As a result,

VaR = 1, 000erUSD − 1, 000erEURem+xσ ∼= 229.88 dollars.

9.9 A single call costs $21.634. We purchase approximately 46.22 options. With
probability 5% the stock price will be less than $49.74. We shall still be able
to exercise the options, cashing $450.18 in the borderline case. The alternative
risk-free investment of $1, 000 at 8% would grow to $1, 040.81. Hence VaR ∼=
590.63 dollars. If the stock grows at the expected rate, reaching $63.71, then
we shall obtain $1, 095.88 when the options are exercised. With 5% probability
the stock price will be above $81.6 and then our options will be worth at least
$1, 922.75.

9.10 The cost of a single bull spread is $0.8585, with expected return 29.6523%,
standard deviation 99.169%, and VaR equal to $15, 000 (at 74.03% confidence
level). If 92.95% of the capital is invested without risk and the remainder in
the bull spread, then the expected return will the same as on stock, with risk
of 6.9957% and VaR equal to $650.

9.11 A put with strike price $56 costs $0.426. A put with strike price $58 costs
$0.9282. The expected return on the bear spread is 111.4635%, the risk reach-
ing 177.2334%. The worst case scenario (among those admitted by the an-
alyst) is when the stock price drops to $58.59. In this scenario, which will
happen with conditional probability 0.3901, the investor will lose everything,
so VaR = 15, 000 dollars at 60.99% confidence level.

Chapter 10

10.1 The yields are y(0) ∼= 14.08% and y(3) ∼= 13.63%. Thus B(0, 3) = e−3τy(0) ∼=
0.9654 dollars. Arbitrage can be achieved as follows:

• At time 0 buy a 6-month bond for B(0, 6) = 0.9320 dollars, raising the
money by issuing 0.9654 of a 3-month bond, which sells at B(0, 3) ∼= 0.9654
dollars.

• At time 3 (after 3 months) issue 0.9989 of a 3-month bond, which sells
at B(3, 6) = 0.9665 dollars, and use the proceeds of $0.9654 to settle the
fraction of a 3-month bond issued at time 0.

• At time 6 (after half a year) the 6-month bond bought at time 0 will pay $1,
out of which $0.9989 will settle the fraction of a 3-month bond issued at
time 3.

The balance of $0.0011 will be the arbitrage profit.

10.2 The implied rates are y(0) ∼= 12.38% and y(6) ∼= 13.06%. Investing $100,
we can buy 106.38 bonds now and 113.56 after six months. The logarithmic
return over one year is ln(113.56/100) ∼= 12.72%, the arithmetic mean of the
semi-annual returns.
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10.3 To achieve a return of 14%, we would have to sell the bond for 0.8700e14% ∼=
1.0007 dollars, which is impossible. (A zero-coupon bond can never fetch a
price higher than its face value.)

In general, we have to solve the equation B(0, 12)ek = e−τy(6) to find
y(6), where k is the prescribed logarithmic return. The left-hand side must be
smaller than 1.

10.4 During the first six months the rate is y(n) ∼= 8.34%, for n = 0, . . . , 179,
and during the rest of the year y(n) ∼= 10.34%, for n = 180, . . . , 360. The

bond should be sold for 0.92e4.88% ∼= 0.9660 dollars or more. This cannot
be achieved during the first six months, since the highest price before the
rate changes is B(179, 360) ∼= 0.9589 dollars. On the day of the rate change
B(180, 360) ∼= 0.9496 dollars, and we have to wait until day n = 240, on which
the bond price will exceed the required $0.9660 for the first time.

10.5 The rate can be found by using a spreadsheet with goal seek facility to solve
the equation

10.896 ×
(
10 + 10e−y(1) + 10e−2y(1) + 110e−3y(1)

)
= 1, 000ek.

This gives y(1) ∼= 12.00% for k = 12% in case a), y(1) ∼= 12.81% for k = 10%
in case b) and y(1) ∼= 11.19% for k = 14% in case c).

10.6 The numbers were found using an Excel spreadsheet with accuracy higher
than the displayed 2 decimal points.

10.7 Scenario 1: $1, 427.10; Scenario 2: $1, 439.69.

10.8 Formula (10.2) can be applied directly to find D ∼= 1.6846.

10.9 The duration is equal to 4 if the face value is $73.97. The smallest possible
duration, which corresponds to face value F = $0, is about 2.80 years. For
very high face values F the duration is close to 5, approaching this number as
F goes to infinity.

When F = 100, the coupon value C ∼= 13.52 gives duration of 4 years. If
the coupon value is zero, then the duration is 5 years. For very high coupon
values C tending to infinity the duration approaches about 2.80 years.

10.10 Since the second derivative of P (y) is positive,

d2

dy2
P (y) = (τn1)

2C1e
−τn1y + (τn2)

2C2e
−τn2y + · · · + (τnN )2(CN + F )e−τnN y

> 0,

P is a convex function of y.

10.11 Solving the system 6 = 2wA + 3.4wB , wA + wB = 1, we find wA
∼= −1.8571

and wB
∼= 2.8571. As a result, we invest $14, 285.71 to buy 14, 005.60 bonds B,

raising the shortfall of $9, 285.71 by issuing 9, 475.22 bonds A.

10.12 The yield on the coupon bond A is about 13.37%, so the price of the zero-
coupon bond B is $87.48. The coupon bond has duration 3.29 and we find
the weights to be wA

∼= 0.4366 and wB
∼= 0.5634. This means that we invest

$436.59 to buy 4.2802 bonds A and $563.41 to buy 6.4403 bonds B.

10.13 Directly from the definition (10.2) of duration we compute the duration Dt at
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time t (note that the bond price grows by a factor of eyt),

Dt =
1

eytP (y)

(
(τn1 − t)C1e

−y(τn1−t) + · · · + (τnN − t)(CN + F )e−y(τnN−t)
)

=
1

P (y)

(
(τn1 − t)C1e

−τn1y + · · · + (τnN − t)(CN + F )e−τnN y)
= D0 − t,

since the weights C1e
−τn1y/P (y), C2e

−τn2y/P (y), . . . , (CN + F )e−τnN y/P (y)
add up to one.

10.14 Denote the annual payments by C1, C2 and the face value by F , so that

P (y) = C1e
−y + (C2 + F )e−2y,

D(y) =
C1e

−y + 2(C2 + F )e−2y

P (y)
.

Compute the derivative of D(y) to see that it is negative:

d

dy
D(y) =

−C1(C2 + F )e−3y

P (y)2
< 0.

10.15 We first find the prices and durations of the bonds: PA(y) ∼= 120.72, PB(y) ∼=
434.95, DA(y) ∼= 1.8471, DB(y) ∼= 1.9894. The weights wA

∼= −7.46%, wB
∼=

107.46% give duration 2, which means that we have to buy 49.41 bonds B and
issue 12.35 bonds A. After one year we shall receive $247.05 from the coupons
of B and will have to pay the same amount for the coupons of A. Our final
amount will be $23, 470.22, exactly equal to the future value of $20, 000 at 8%,
independently of any rate changes.

10.16 If the term structure is to be flat, then the yield y(0, 6) = 8.16% applies to
any other maturity, which gives B(0, 3) = 0.9798 dollars and B(0, 9) = 0.9406
dollars.

10.17 Issue and sell 500 bonds maturing in 6 months with $100 face value, obtaining
$48, 522.28. Use this sum to buy 520.4054 one-year bonds. After 6 months
settle the bonds issued by paying $50, 000. After one year cash the face value
of the bonds purchased. The resulting rate is 8%.

10.18 You need to deposit 100, 000e−8.41%/12 ∼= 99, 301.62 dollars for one month,
which will grow to the desired level of $100, 000, and borrow the same amount
for 6 months at 9.54%. Your customer will receive $100, 000 after 1 month
and will have to pay 99, 301.62e9.54%/2 ∼= 104, 153.09 dollars after 6 months,
which implies a forward rate of 9.77%. (The rate can be obtained directly from
(10.5).)

The rate for a 4-month loan starting in 2 months is

f(0, 2, 6) =
6 × 9.35% − 2 × 8.64%

4
∼= 10.09%,

so a deposit at 10.23% would give an arbitrage opportunity.

10.19 To see that the forward rates f(n, N) may be negative, let us analyse the case
with n = 0 for simplicity. Then

f(0, N) = (N + 1)y(0, N + 1) − Ny(0, N)
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and f(0, N) < 0 requires that (N + 1)y(0, N + 1) < Ny(0, N). The border
case is when y(0, N + 1) = N

N+1
y(0, N), which enables us to find a numerical

example. For instance, for N = 8 and y(0, 8) = 9% a negative value f(0, 8)
will be obtained if y(0, 9) < 8

9
× 9% = 8%.

10.20 Suppose that f(n, N) increases with N. We want to show that the same is
true for

y(n, N) =
f(n, n) + f(n, n + 1) + · · · + f(n, N − 1)

N − n
.

This follows from the fact that if a sequence an increases, then so does the
sequence of averages Sn = a1+···+an

n
. To see this multiply the target inequality

Sn+1 > Sn by n(n+1) to get (after cancellations) nan+1 > a1 + · · ·+ an. The
latter is true, since an+1 > ai for all i = 1, . . . , n.

10.21 The values of B(0, 2), B(0, 3), B(1, 3) have no effect on the values of the money
market account.

10.22 a) For an investment of $100 in zero-coupon bonds, divide the initial cash
by the price of the bond B(0, 3) to get the number of bonds held, 102.82,
which gives final wealth of $102.82. The logarithmic return is 2.78%. b) For an
investment of $100 in single-period zero-coupon bonds, compute the number
of bonds maturing at time 1 as 100/B(0, 1) ∼= 100.99. Then, at time 1 find the
number of bonds maturing at time 2 in a similar way, 100.99/B(1, 2) ∼= 101.54.
Finally, we arrive at 101.54/B(2, 3) ∼= 102.51 bonds, each giving a dollar at
time 3. The logarithmic return is 2.48%. c) An investment of $100 in the money
market account, for which we receive 100A(3) ∼= 102.51 at time 3, produces
the same logarithmic return of 2.48% as in b).

Chapter 11

11.1 We begin from the right, that is, from the face values of the bonds, first
computing the values of B(2, 3) in all states. These numbers together with
the known returns give B(1, 3; u) and B(1, 3; d). These, in turn, determine the
missing returns k(2, 3; ud) = 0.20% and k(2, 3; dd) = 0.16%. The same is done
for the first step, resulting in k(1, 3; d) = 0.23%. The bond prices are given in
Figure S.10.

Figure S.10 Bond prices in Solution 11.1

11.2 Because of the additivity of the logarithmic returns, k(1, 3; u) + k(2, 3; uu) +
k(3, 3; uuu) = 0.64% gives the return in the period of three weeks. To obtain
the yield we have to rescale it to the whole year by multiplying by 52/3, hence
y(0, 3) = 11.09%. Note that we must have k(1, 3; u)+k(2, 3; ud)+k(3, 3; udu) =
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0.64% which allows us to find k(2, 3; ud) = 0.20%. The other missing returns
can be computed in a similar manner, first k(1, 3; d), then k(2, 3; dd).

11.3 The bond prices are given in Figure S.11.

Figure S.11 Bond prices in Solution 11.3

11.4 The money market account is given in Figure S.12. Note that the values for
the ‘up’ movements are lower than for the ‘down’ movements. This is related
to the fact that the yield decreases as the bond price increases, and our trees
are based on bond price movements.

Figure S.12 Money market account in Solution 11.4

11.5 The prices B(1, 2; u) = 0.9980 and B(1, 2; d) = 0.9975 are found by discounting
the face value 1 to be received at time 2, using the short rates r(1; u) and
r(1; d). The price B(0, 2) = 0.9944 can be found by the replication procedure.

11.6 At time 2 the coupons are 0.5227 or 0.8776, depending on whether we are in
the up or down state at time 1. At time 1 the coupon is 0.9999.

11.7 At time 1 we find 18.0647 = (0.8159 × 20 + 0.1841 × 10)/1.0052 in the up
state and 1.7951 = (0.1811× 10 + 0.8189× 0)/1.0088 in the down state. Next,
applying the same formula again, we obtain 7.9188 = (0.3813 × 18.3928 +
0.6187 × 1.7951)/1.01.

11.8 There is an arbitrage opportunity at time 1 in the up state. The price
B(1, 2; u) = 0.9924 implies that the growth factor in the money market is
1.00766, whereas the prices of the bond maturing at time 3 imply growth fac-
tors 1.01159 and 1.00783. To realise arbitrage, bonds with maturity 3 should
be bought, the purchase financed by a loan in the money market.
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11.9 Using formula (11.5) and the short rates given, we find the following structure
of bond prices:

B(2, 3; uu) = 0.9931
B(1, 3; u) = 0.9859 <

/ B(2, 3; ud) = 0.9926
B(0, 3) = 0.9773

\ B(2, 3; du) = 0.9924
B(1, 3; d) = 0.9843 <

B(2, 3; dd) = 0.9923

11.10 It is best to compute the risk-neutral probabilities. The probability at time 1
of the up movement based on the bond maturing at time 3 is 0.76, whereas the
probability based on the bond maturing at time 2 is 0.61. The present price of
the bond maturing at time 2 computed using the prices of the bond maturing
at time 3 and the risk-neutral probabilities computed from these prices is
0.9867. So, shorting at time 0 the bond maturing at time 3 and buying the
bond maturing at time 2 will give an arbitrage profit.

11.11 At time 2 the option is worthless. At time 1 we evaluate the bond prices by
adding the coupon to the discounted final payment of 101.00 at the appropriate
(monthly) money market rate: 0.521% in the up state and 0.874% in the down
state. The results are 101.4748 and 101.1213, respectively. The option can
be exercised at that time in the up state, so the cash flow is 0.1748 and 0,
respectively. Expectation with respect to the risk-neutral probabilities of the
discounted cash flow gives the initial value 0.06598 of the option.

11.12 The coupons of the bond with the floor provision differ from the par bond at
time 2 in the up state: 0.66889 instead of 0.52272. This results in the following
bond prices at time 1: 101.14531 in the up state and 100.9999 in the down
state. (The latter is the same as for the par bond.) Expectation with respect
to the risk-neutral probability gives the initial bond price 100.05489, so the
floor is worth 0.05489.
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Glossary of Symbols

A fixed income (risk free) security price; money market account
B bond price
β beta factor
c covariance

C call price; coupon value
C covariance matrix

CA American call price
CE European call price
C̃E discounted European call price

Cov covariance
delta Greek parameter delta

div dividend
div0 present value of dividends

D derivative security price; duration
D̃ discounted derivative security price

DA price of an American type derivative security
E expectation

E∗ risk-neutral expectation
f futures price; payoff of an option; forward rate
F forward price; future value; face value

gamma Greek parameter gamma
Φ cumulative binomial distribution
k logarithmic return

K return
i coupon rate

m compounding frequency; expected logarithmic return
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M market portfolio
m expected returns as a row matrix
µ expected return
N cumulative normal distribution(

N
k

)
the number of k-element combinations out of N elements

ω scenario
Ω probability space
p branching probability in a binomial tree

p∗ risk-neutral probability
P put price; principal

PA American put price
PE European put price
P̃E discounted European put price
PA present value factor of an annuity

r interest rate
rdiv dividend yield

re effective rate
rF risk-free return
rho Greek parameter rho

ρ correlation
S risky security (stock) price
S̃ discounted risky security (stock) price
σ standard deviation; risk; volatility
t current time

T maturity time; expiry time; exercise time; delivery time
τ time step

theta Greek parameter theta
u row matrix with all entries 1
V portfolio value; forward contract value, futures contract value

Var variance
VaR value at risk
vega Greek parameter vega

w symmetric random walk; weights in a portfolio
w weights in a portfolio as a row matrix
W Wiener process, Brownian motion
x position in a risky security

X strike price
y position in a fixed income (risk free) security; yield of a bond
z position in a derivative security



Index

admissible
– portfolio 5
– strategy 79, 88
American
– call option 147
– derivative security 183
– put option 147
amortised loan 30
annuity 29
arbitrage 7
at the money 169
attainable
– portfolio 107
– set 107

basis
– of a forward contract 128
– of a futures contract 140
basis point 218
bear spread 208
beta factor 121
binomial
– distribution 57, 180
– tree model 7, 55, 81, 174, 238
Black–Derman–Toy model 260
Black–Scholes
– equation 198
– formula 188
bond
– at par 42, 249
– callable 255
– face value 39
– fixed-coupon 255
– floating-coupon 255
– maturity date 39

– stripped 230
– unit 39
– with coupons 41
– zero-coupon 39
Brownian motion 69
bull spread 208
butterfly 208
– reversed 209

call option 13, 181
– American 147
– European 147, 188
callable bond 255
cap 258
Capital Asset Pricing Model 118
capital market line 118
caplet 258
CAPM 118
Central Limit Theorem 70
characteristic line 120
compounding
– continuous 32
– discrete 25
– equivalent 36
– periodic 25
– preferable 36
conditional expectation 62
contingent claim 18, 85, 148
– American 183
– European 173
continuous compounding 32
continuous time limit 66
correlation coefficient 99
coupon bond 41
coupon rate 249
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covariance matrix 107
Cox–Ingersoll–Ross model 260
Cox–Ross–Rubinstein formula 181
cum-dividend price 292

delta 174, 192, 193, 197
delta hedging 192
delta neutral portfolio 192
delta-gamma hedging 199
delta-gamma neutral portfolio 198
delta-vega hedging 200
delta-vega neutral portfolio 198
derivative security 18, 85, 253
– American 183
– European 173
discount factor 24, 27, 33
discounted stock price 63
discounted value 24, 27
discrete compounding 25
distribution
– binomial 57, 180
– log normal 71, 186
– normal 70, 186
diversifiable risk 122
dividend yield 131
divisibility 4, 74, 76, 87
duration 222
dynamic hedging 226

effective rate 36
efficient
– frontier 115
– portfolio 115
equivalent compounding 36
European
– call option 147, 181, 188
– derivative security 173
– put option 147, 181, 189
ex-coupon price 248
ex-dividend price 292
exercise
– price 13, 147
– time 13, 147
expected return 10, 53, 97, 108
expiry time 147

face value 39
fixed interest 255
fixed-coupon bond 255
flat term structure 229
floating interest 255
floating-coupon bond 255
floor 259
floorlet 259

forward
– contract 11, 125
– price 11, 125
– rate 233
fundamental theorem of asset pricing

83, 88
future value 22, 25
futures
– contract 134
– price 134

gamma 197
Girsanov theorem 187
Greek parameters 197
growth factor 22, 25, 32

Heath–Jarrow–Morton model 261
hedging
– delta 192
– delta-gamma 199
– delta-vega 200
– dynamic 226

in the money 169
initial
– forward rate 232
– margin 135
– term structure 229
instantaneous forward rate 233
interest
– compounded 25, 32
– fixed 255
– floating 255
– simple 22
– variable 255
interest rate 22
interest rate option 254
interest rate swap 255

LIBID 232
LIBOR 232
line of best fit 120
liquidity 4, 74, 77, 87
log normal distribution 71, 186
logarithmic return 34, 52
long forward position 11, 125

maintenance margin 135
margin call 135
market portfolio 119
market price of risk 212
marking to market 134
Markowitz bullet 113
martingale 63, 83
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martingale probability 63, 250
maturity date 39
minimum variance
– line 109
– portfolio 108
money market 43, 235

no-arbitrage principle 7, 79, 88
normal distribution 70, 186

option
– American 183
– at the money 169
– call 13, 147, 181, 188
– European 173, 181
– in the money 169
– interest rate 254
– intrinsic value 169
– out of the money 169
– payoff 173
– put 18, 147, 181, 189
– time value 170
out of the money 169

par, bond trading at 42, 249
payoff 148, 173
periodic compounding 25
perpetuity 24, 30
portfolio 76, 87
– admissible 5
– attainable 107
– delta neutral 192
– delta-gamma neutral 198
– delta-vega neutral 198
– expected return 108
– market 119
– variance 108
– vega neutral 197
positive part 148
predictable strategy 77, 88
preferable compounding 36
present value 24, 27
principal 22
put option 18, 181
– American 147
– European 147, 189
put-call parity 150
– estimates 153

random interest rates 237
random walk 67
rate
– coupon 249
– effective 36

– forward 233
– – initial 232
– – instantaneous 233
– of interest 22
– of return 1, 49
– spot 229
regression line 120
residual random variable 121
residual variance 122
return 1, 49
– expected 53
– including dividends 50
– logarithmic 34, 52
reversed butterfly 209
rho 197
risk 10, 91
– diversifiable 122
– market price of 212
– systematic 122
– undiversifiable 122
risk premium 119, 123
risk-neutral
– expectation 60, 83
– market 60
– probability 60, 83, 250

scenario 47
security market line 123
self-financing strategy 76, 88
short forward position 11, 125
short rate 235
short selling 5, 74, 77, 87
simple interest 22
spot rate 229
Standard and Poor Index 141
state 238
stochastic calculus 71, 185
stochastic differential equation 71
stock index 141
stock price 47
strategy 76, 87
– admissible 79, 88
– predictable 77, 88
– self-financing 76, 88
– value of 76, 87
strike price 13, 147
stripped bond 230
swap 256
swaption 258
systematic risk 122

term structure 229
theta 197
time value of money 21
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trinomial tree model 64

underlying 85, 147
undiversifiable risk 122
unit bond 39

value at risk 202
value of a portfolio 2
value of a strategy 76, 87
VaR 202
variable interest 255
Vasiček model 260

vega 197
vega neutral portfolio 197
volatility 71

weights in a portfolio 94
Wiener process 69

yield 216
yield to maturity 229

zero-coupon bond 39


