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THE GENERALIZED
METHOD OF MOMENTS

VYUY

18.1 INTRODUCTION

The maximum likelihood estimator is fully efficient among consistent and asymptoti-
cally normally distributed estimators, in the context of the specified parametric model.
The possible shortcoming in this result is that to attain that efficiency, it is necessary to
make possibly strong, restrictive assumptions about the distribution, or data generating
process. The generalized method of moments (GMM) estimators discussed in this
chapter move away from parametric assumptions, toward estimators which are robust
to some variations in the underlying data generating process.

This chapter will present a number of fairly general results on parameter estimation.
We begin with perhaps the oldest formalized theory of estimation, the classical theory
of the method of moments. This body of results dates to the pioneering work of Fisher
(1925). The use of sample moments as the building blocks of estimating equations is
fundamental in econometrics. GMM is an extension of this technique which, as will
be clear shortly, encompasses nearly all the familiar estimators discussed in this book.
Section 18.2 will introduce the estimation framework with the method of moments.
Formalities of the GMM estimator are presented in Section 18.3. Section 18.4 discusses
hypothesis testing based on moment equations. A major applications, dynamic panel
data models, is described in Section 18.5.

Example 18.1 Euler Equations and Life Cycle Consumption
One of the most often cited applications of the GMM principle for estimating economet-
ric models is Hall’s (1978) permanent income model of consumption. The original form of
the model (with some small changes in notation) posits a hypothesis about the optimizing
behavior of a consumer over the life cycle. Consumers are hypothesized to act according to

the model:
T-t 1 T T-t 1 T
Maximize £; {Z (m) U(Ceo)l nt} subject to Z (W) (Ctie — Wepe) = A
=0 =0

The information available at time ¢ is denoted , so that £; denotes the expectation formed
at time ¢ based on information set .. The maximand is the expected discounted stream of
future consumption from time ¢ until the end of life at time T. The individual’s subjective rate
of time preference is § =1/(1 +8). The real rate of interest, r > § is assumed to be constant.
The utility function U(c;) is assumed to be strictly concave and time separable (as shown
in the model). One period’s consumption is ¢;. The intertemporal budget constraint states
that the present discounted excess of ¢; over earnings, w;, over the lifetime equals total
assets A; not including human capital. In this model, it is claimed that the only source of
uncertainty is w;. No assumption is made about the stochastic properties of w; except that
there exists an expected future earnings, E:[w,,. | @;]. Successive values are not assumed
to be independent and w; is not assumed to be stationary. .
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Hall’s major “theorem” in the paper is the solution to the optimization problem, which
states

, 146,
EifU'(criq) |182] = mu (c)

For our purposes, the major conclusion of the paper is “Corollary 1” which states “No in-
formation available in time t apart from the level of consumption, c¢; helps predict future
consumption, ¢;,1, in the sense of affecting the expected value of marginal utility. In par-
ticular, income or wealth in periods t or earlier are irrelevant once ¢; is known.” We can
use this as the basis of a model that can be placed in the GMM framework. In order to
proceed, it is necessary to assume a form of the utility function. A common (convenient)
form of the utility function is U(c;) = C;/ /(1 — «) which is monotonic, U’ =C;® > 0 and con-
cave, U"/U’'=—a/C; < 0. Inserting this form into the solution, rearranging the terms, and
reparameterizing it for convenience, we have

E [(1 +r) (%) <°fc—:‘> - 1|sz,] =E[B(1+r)R}, — 1] =0.

Hall assumed that r was constant over time. Other applications of this modeling framework
[e.g., Hansen and Singleton (1982)] have modified the framework so as to involve a forecasted
interest rate, r;.1. How one proceeds from here depends on what is in the information set.
The unconditional mean does not identify the two parameters. The corollary states that the
only relevant information in the information set is c;. Given the form of the model, the more
natural instrument might be R;. This assumption exactly identifies the two parameters in

the model;
N 1 0
Et (ﬂ(1 +r{+1)Rt+1 — 1) Rt = ol

As stated, the model has no testable implications. These two moment equations would
exactly identify the two unknown parameters. Hall hypothesized several models involving
income and consumption which would overidentify and thus place restrictions on the model.

18.2 CONSISTENT ESTIMATION: THE METHOD
OF MOMENTS

Sample statistics such as the mean and variance can be treated as simple descriptive
measures. In our discussion of estimation in Appendix C, however, we argued, that
in, general, sample statistics each have a counterpart in the population, for example.
the correspondence between the sample mean and the population expected value. The
natural (perhaps obvious) next step in the analysis is to use this analogy to justify using
the sample “moments” as estimators of these population parameters. What remains to
establish is whether this approach is the best, or even a good way to use the sample data
to infer the characteristics of the population.

The basis of the method of moments is as follows: In random sampling, under
generally benign assumptions, a sample statistic will converge in probability to some
constant. For example, with i.i.d. random sampling, 7, = (1/n) Y1, y? will converge
in mean square to the variance plus the square of the mean of the distribution of y;. This
constant will, in turn, be a function of the unknown parameters of the distribution. To
estimate K parameters, 6y, ..., 6, we can compute K such statistics, 7, . . ., Mg, whose
probability limits are known functions of the parameters. These K moments are equated
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to the K functions, and the functions are inverted to express the parameters as functions
of the moments. The moments will be consistent by virtue of a law of large numbers
(Theorems D.4-D.9). They will be asymptotically normally distributed by virtue of the
Lindberg-Levy Central Limit Theorem (D.18). The derived parameter estimators will
inherit consistency by virtue of the Slutsky Theorem (D.12) and asymptotic normality
by virtue of the delta method (Theorem D.21).

This section will develop this technique in some detail, partly to present it in its own
right and partly as a prelude to the discussion of the generalized method of moments,
or GMM, estimation technique, which is treated in Section 18.3.

18.2.1 RANDOM SAMPLING AND ESTIMATING THE PARAMETERS
OF DISTRIBUTIONS

Consider independent, identically distributed random sampling from a distribution
f(y161,...,6k) with finite moments up to E[y*X]. The sample consists of n obser-
vations, yi, ..., y,. The kth “raw” or uncentered moment is

n
=/ _1 k
m = — Yi-
n <
i=1

By Theorem D.1,

and
= 1 k 1 ’ 12
Var[m ] = -~ Var ] = P (1o = i)
By convention, u; = E[y;] = 1. By the Khinchine Theorem, D.5,
plim ), = p; = E [yf].
Finally, by the Lindberg-Levy Central Limit Theorem,

_ d '
«/ﬁ(mk - N;{) — N [O» M/zk - Mkz]-

In general, w; will be a function of the underlying parameters. By computing K
raw moments and equating them to these functions, we obtain K equations that can
(in principle) be solved to provide estimates of the K unknown parameters.

Example 18.2 Method of Moments Estimator for Niu,o?]
In random sampling from N{u, o'2],

RS o
phmﬁz;yf=pllmm1=5[yf]=u

and

RS o
plim - Zy,z = plimmy, = Var[y] + u? = 62 + p2.
Equating the right- and left-hand sides of the probability limits gives moment estimators

~ —

fp=rm =y
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and

n n 2 n
6% =y —m? = <,172y,2> - G;M) =%Z(yf—}7)2-

i=1 i=1
Note that 62 is biased, although both estimators are consistent.

Although the moments based on powers of y provide a natural source of information
about the parameters, other functions of the data may also be useful. Let m(-) be a
continuous and differentiable function not involving the sample size #, and let

I
mk=;§mk(yi), k=1,2,....K.

These are also “moments” of the data. It follows from Theorem D.4 and the corollary.
(D-5), that

plim iy = E[m(y)] = ui(61, ..., 0k).

We assume that u.(-) involves some of or all the parameters of the distribution. With
K parameters to be estimated, the X moment equations,

my — u1(61,...,0x) =0,
my — 261, ...,0k) =0,

mg — g6, ...,0k) =0,

provide K equations in K unknowns, 8, ..., 6k. If the equations are continuous and
functionally independent, then method of moments estimators can be obtained by solv-
ing the system of equations for

ék = ék[ﬁll, e, ri_’l[(].

Assuggested, there may be more than one set of moments that one can use for estimating
the parameters, or there may be more moment equations available than are necessary.

Example 18.3 Inverse Gaussian (Wald) Distribution
The inverse Gaussian distribution is used to model survival times, or elapsed times from some
beginning time until some kind of transition takes place. The standard form of the density for
this random variable is

[ A My —w)?
f(y) = 2ﬂygexp[— 2ty |’ y>0,A>0,u>0.

The mean is u while the variance is ®/x. The efficient maximum likelihood estimators of
the two parameters are based on (1/n) ZL y; and (1/n) Zf=1(1/)//). Since the mean and
variance are simple functions of the underlying parameters, we can also use the sample mean
and sample variance as moment estimators of these functions. Thus, an alternative pair of
method of moments estimators for the parameters of the Wald distribution can be based on
(1/n) ZL y; and (1/n) ZL y2. The precise formulas for these two pairs of estimators is
left as an exercise. : ‘
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Example 18.4 Mixtures of Normal Distributions
Quandt and Ramsey (1978) analyzed the problem of estimating the parameters of a mixture
of normal distributions. Suppose that each observation in a random sample is drawn from
one of two different normal distributions. The probability that the observation is drawn from
the first distribution, N[uy, 02], is A, and the probability that it is drawn from the second is
(1 — 1). The density for the observed y is

f(y) = AN[u1,07] +(1 = A)N[p2,08], 0<i<1

- ;ze—wz[(y—m)m]? P

~1/2ly—12) /o2
- 1/ 1/ e :
(271012) (271022)

The sample mean and second through fifth central moments,

n

1 e
mk—nz;(y, P* k=2,34,5,
=

provide five equations in five unknowns that can be solved (via a ninth-order polynomial) for
consistent estimators of the five parameters. Because y converges in probability to £ [y;] = u,
the theorems given earlier for i, as an estimator of ) apply as well to 7 as an estimator of

e = El(y; — w)"1.
For the mixed normal distribution, the mean and variance are
p=Elyl=c1+(1-Npu.
and
o? =Varly] = 2o + (1 = )0 + 221 — M) (11 — p2)?

which suggests how complicated the familiar method of moments is likely to become. An
alternative method of estimation proposed by the authors is based on

E (6] = AeHoi/2 4 (1 _ p)eetCoil2 = 5,

where t is any value not necessarily an integer. Quandt and Ramsey (1978) suggest choosing
five values of t that are not too close together and using the statistics )

1 n
Me=_7 e
. i=1

to estimate the parameters. The moment equations are M; — A¢(j1, p2, 02, 02, 1) = 0. They
label this procedure the method of moment-generating functions. (See Section B.6. for
definition of the moment generating function.)

In most cases, method of moments estimators are not efficient. The exception is in
random sampling from exponential families of distributions.
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DEFINITION 18.1 Exponential Family
An exponential (parametric) family of distributions is one whose log-likelihood
is of the form

K

In L(0 | data) = a(data) + b(8) + > _ cx(data)s(9),
k=1

where a(-), b(-), c(-), and s(-) are functions. The members of the “family” are
distinguished by the different parameter values.

If the log-likelihood function is of this form, then the functions ck(-) are called
sufficient statistics.! When sufficient statistics exist, method of moments estimator(s)
can be functions of them. In this case, the method of moments estimators will also
be the maximum likelihood estimators, so, of course, they will be efficient, at least
asymptotically. We emphasize, in this case, the probability distribution is fully specified.
Since the normal distribution is an exponential family with sufficient statistics 77} and 7,
the estimators described in Example 18.2 are fully efficient. (They are the maximum
likelihood estimators.) The mixed normal distribution is not an exponential family.
We leave it as an exercise to show that the Wald distribution in Example 18.3 is an
exponential family. You should be able to show that the sufficient statistics are the ones
that are suggested in Example 18.3 as the bases for the MLEs of x and .

Example 18.5 Gamma Distribution
The gamma distribution (see Section C.4.5) is

AP )
— —iy,, P-1
f(y)———r(P)e yP', y>0,P>0,1>0.

The log-likelihood function for this distribution is
1 1 n 1 n
It =[PInA—lnF(P)]—AEZy; +(P-1) Ez;lny,-.
= =

This function is an1 exponential family with a(data) =0, b(#) =n[P In 1 — In['(P)] and two suf-

ficient statistics, 25" . yi and 157 . Iny;. The method of moments estimators based on
n i=1 n i=1 y

IS yiand 2377 iny; would be the maximum likelihood estimators. But, we also have

Yi P/x
“m12": 2l | P(P+1)/32
P nZsling | T [ w(P) ~Inx

1/yi A/(P—1)

(The functions T'(P) and ¥(P) = dInT’(P)/dP are discussed in Section E.5.3.) Any two of
these can be used to estimate A and P.

IStuart and Ord (1989, pp. 1-29) give a discussion of sufficient statistics and exponential families of distribu-
tions. A result that we will use in Chapter 21 is that if the statistics, ci(data) are sufficient statistics, then the
conditional density f[y1,..., ynlck(data), k=1,..., K]is not a function of the parameters.
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For the income data in Example C.1, the four moments listed above are
=/ =) =) = 1 § 2 1
(mi, my,m,m ) =— E Yi, y5. Iny;, —| =1[31.278,1453.96, 3.22139, 0.050014].
n Yi

i=1

The method of moments estimators of # = (P, 1) based on the six possible pairs of these
moments are as follows:
m, m; m’,
(P.3) = m, 2.05682,0.065759
’ m', 2.77198,0.0886239 2.60905, 0.0800475

m, 2.4106,0.0770702 2.26450, 0.071304 3.03580, 0.1018202

¢

The maximum likelihood estimates are 6(rn;, ') = (2.4106, 0.0770702).

18.2.2 ASYMPTOTIC PROPERTIES OF THE METHOD
OF MOMENTS ESTIMATOR

In a few cases, we can obtain the exact distribution of the method of moments estima-
tor. For example, in sampling from the normal distribution, 2 has mean u and vari-
ance o%/n and is normally distributed while 62 has mean [(n — 1)/n]o?, and variance
[(n — 1)/n]*20%/(n — 1) and is exactly distributed as a multiple of a chi-squared vari-
ate with (n — 1) degrees of freedom. If sampling is not from the normal distribution,
the exact variance of the sample mean will still be Var[y]/#n, whereas an asymptotic
variance for the moment estimator of the population variance could be based on the
leading term in (D-27), in Example D.10, but the precise distribution may be intractable.

There are cases in which no explicit expression is available for the variance of
the underlying sample moment. For instance, in Example 18.4, the underlying sample
statistic is

_ 1 n . 1 n
—— Yi — .
= ;:1 eV = p ;:1 M.

The exact variance of M, is known onlyif 7 is an integer. But if sampling is random, since
M, is a sample mean: we can estimate its variance with 1/n times the sample variance
of the observations on M,;. We can also construct an estimator of the covariance of M,
and M, :

n

Est.Asy.Cov[M,, M,] = ’11 {nl Z [(e” — M) (€™ — Ms)]} .
i=1

In general, when the moments are computed as
1 n
=szk()ﬁ), k=1"~-7K’
i=1

where y; is an observation on a vector of variables, an appropriate estimator of the
asymptotic covariance matrix of [/, . .., 7] can be computed using

1
;ij— —{ Z [(m;(yi) — ;) (my(y;) —mk)]}, . k=1,...,K.
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(One might divide the inner sum by n — 1 rather than n. Asymptotically it is the same.)
This estimator provides the asymptotic covariance matrix for the moments used in com-
puting the estimated parameters. Under our assumption of iid random sampling from a
distribution with finite moments up to 2K, F will converge in probability to the appro-
priate covariance matrix of the normalized vector of moments, ® = Asy.Var[,/nm,(0)].
Finally, under our assumptions of random sampling, though the precise distribution is
likely to be unknown, we can appeal to the Lindberg-Levy central limit theorem (D.18)
to obtain an asymptotic approximation.

To formalize the remainder of this derivation, refer back to the moment equations.
which we will now write

M i(61,6s,...,0k) =0, k=1,..., K.

The subscript » indicates the dependence on a data set of # observations. We have also
combined the sample statistic (sum) and function of parameters, (8, ..., 6x) in this
general form of the moment equation. Let G,(0) be the K x K matrix whose kth row
is the vector of partial derivatives

T oMy,
nk — 80; .
Now, expand the set of solved moment equations around the true values of the param-
eters 6 in a lincar Taylor series. The linear approximation is

0~ [M,(80)] + Gn(80)(0 — 6o).
Therefore,
V(@ - 09) ~ —[G, (001 Vn[m,(80)]. (18-1)

(We have treated this as an approximation because we are not dealing formally with
the higher order term in the Taylor series. We will make this explicit in the treatment
of the GMM estimator below.) The argument needed to characterize the large sample
behavior of the estimator, 4, are discussed in Appendix D. We have from Theorem D.18
(the Central Limit Theorem) that ./n i, (f¢) has a limiting normal distribution with
mean vector 0 and covariance matrix equal to ®. Assuming that the functions in the
moment equation are continuous and functionally independent, we can expect G, (6y)
to converge to a nonsingular matrix of constants, I'(#y). Under general conditions, the
limiting distribution of the right hand side of (18-1) will be that of a linear function
of a normally distributed vector. Jumping to the conclusion, we expect the asymptotic
distribution of § to be normal with mean vector 8, and covariance matrix (1/n) x
{—[r"60)] '} @{—[T(Bp)]~*}. Thus, the asymptotic covariance matrix for the method
of moments estimator may be estimated with

S I
Est.Asy.Var [§] = ;[Gn(o)F*G,,(o)]*l.

Example 18.5 (Continued)
Using the estimates 6(m;, m;) = (2.4106, 0.0770702),

a:[—m P/Rz]_ -12.97515 405.8353

¥ 1 ‘[—0.51241 12.97515|
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[The function W' is @?InI'(P) /dP? =(I'T” —I"?)/T2. With P=2.4106, ['=1.250832, ¥ =
0.658347, and &' =0.512408]2. The matrix F is the sample covariance matrix of y and Iny
(using 1/19 as the divisor),

Fo 25.034 0.7155
— |0.7155 0.023873] "

The product is

1 [G'F’1 G] -t [0.38978  0.014605
n = |0.014605 0.00068747 | -

For the maximum likelihood estimator, the estimate of the asymptotic covariance matrix
based on the expected (and actual) Hessian is

PPN B I 7 [051208 001637
n =nl-1/4 P2l T |0.01637 0.00064654] -

The Hessian has the same elements as G because we chose to use the sufficient statistics
for the moment estimators, so the moment equations that we differentiated are, apart from
a sign change, also the derivatives of the log-likelihood. The estimates of the two variances
are 0.51203 and 0.00064654, respectively, which agrees reasonably well with the estimates
above. The difference would be due to sampling variability in a finite sample and the presence
of F in the first variance estimator.

18.2.3 SUMMARY—THE METHOD OF MOMENTS

In the simplest cases, the method of moments is robust to differences in the specification
of the data generating process. A sample mean or variance estimates its population
counterpart (assuming it exists), regardless of the underlying process. It is this freedom
from unnecessary distributional assumptions that has made this method so popular in
recent years. However, this comes at a cost. If more is known about the DGP, its specific
distribution for example, then the method of moments may not make use of all of the
available information. Thus, in example 18.3, the natural estimators of the parameters
of the distribution based on the sample mean and variance turn out to be inefficient.
The method of maximum likelihood, which remains the foundation of much work in
econometrics, is an alternative approach which utilizes this out of sample information
and is, therefore, more efficient.

3 THE GENERALIZED METHOD OF MOMENTS
(GMM) ESTIMATOR

A large proportion of the recent empirical work in econometrics, particularly in macroe-
conomics and finance, has employed GMM estimators. As we shall see, this broad class
of estimators, in fact, includes most of the estimators discussed elsewhere in this book.

Before continuing, it will be useful for you to read (or reread) the following sections:

1. Consistent Estimation: The Method of Moments: Section 18.2,
2. Correlation Between x; and ¢;: Instrumental Variables Estimation, Section 5.4,

2y’ is the digamma function. Values for I'(P), W(P), and W'(P) are tabulated in Abramovitz and Stegun
(1971). The values given were obtained using the IMSL computer program library.
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3. GMM Estimation in the Generalized Regression Model Sections 10.4, 11.3, and
12.6,

Nonlinear Regression Models, Chapter 9,

Optimization, Section E.5,

Robust Estimation of Asymptotic Covariance Matrices, Section 10.3,

. The Wald Test, Theorem 6.1,

. GMM Estimation of Dynamic Panel Data Models, Section 13.6.

® s

The GMM estimation technique is an extension of the method of moments technique
described in Section 18.2.% In the following, we will extend the generalized method of
moments to other models beyond the generalized linear regression, and we will fill in
some gaps in the derivation in Section 18.2.

18.3.1 ESTIMATION BASED ON ORTHOGONALITY CONDITIONS

Estimation by the method of moments proceeds as follows. The model specified for the
random variable y; implies certain expectations, for example

Elyi] = u,

where u is the mean of the distribution of y;. Estimation of x then proceeds by forming
a sample analog to the population expectation:

Elyi —pu] =0.

The sample counterpart to this expectation is the empirical moment equation,

%Z(y,-—m=0.
i=1

The estimator is the value of i that satisfies the sample moment equation. The example
given is, of course, a trivial one. Example 18.5 describes a more elaborate case of sam-
pling from a gamma distribution. The moment conditions used for estimation in that
example (taken two at a time from a set of four) include

Elyi— P/A] =0
and
E[lny; —¥(P)+1Ini] =

(These two coincide with the terms in the likelihood equations for this model.) Inserting
the sample data into the sample analogs produces the moment equations for estimation:

—Z[y, P/i=0

3Formal presentation of the results required for this analysis are given by Hansen (1982); Hansen and
Singleton (1988); Chamberlain (1987); Cumby, Huizinga, and Obstfeld (1983); Newey (1984, 1985a, 1985b);
Davidson and MacKinnon (1993); and McFadden and Newey (1994). Useful summaries of GMM estimation
and other developments in econometrics is Pagan and Wickens (1989) and Matyas (1999). An application of
some of these techniques that contains useful summaries is Pagan and Vella (1989). Some further discussion
can be found in Davidson and MacKinnon (1993). Ruud (2000) provides many of the theoretical details.
Hayashi (2000) is another extensive treatment of estimation centered on GMM estimators.
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and
1 n

= [ny —¥(P)+Ini]=0.
n i=1

Example 18.6 Orthogonality Conditions

Assuming that households are forecasting interest rates as well as earnings, Hall’s consump-
tion model with the corollary implies the following orthogonality conditions:

el s (1))}

Now, consider the apparently different case of the least squares estimator of the
parameters in the classical linear regression model. An important assumption of the
model is

E[X,’S,‘] = E[Xi(yi - X:ﬂ)] =

The sample analog is

N san
. ;Xié‘i = ;Xi(}’i —-x;8) =0.

The estimator of B8 is the one that satisfies these moment equations, which are just the
normal equations for the least squares estimator. So, we see that the OLS estimator is
a method of moments estimator.

For the instrumental variables estimator of Section 5.4, we relied on a large sample
analog to the moment condition,

IR 1<
lim|{ — i& | = plim{ — (Vi — X; =0.
plm(ngze> plm(n;z(y x,ﬂ))

We resolved the problem of having more instruments than parameters by solvmg the

equations
1 ’ 1 ’ B 1 ra
(;X Z) (;Z Z) < Z ) E X8 =0

where the columns of X are the fitted values in regressions on all the columns of Z (that
is, the projections of these columns of X into the column space of Z). (See Section 5.4
for further details.)

The nonlinear least squares estimator was defined similarly, though in this case,
the normal equations are more complicated since the estimator is only implicit. The
population orthogonality condition for the nonhnear regression model is E [xVg;] = 0.
The empirical moment equation is

1 3E[y,' |X,‘,ﬂ] . . ~
71; (T>(V’ — Elyi1x:. ) = 0.

All the maximum likelihood estimators that we have looked at thus far and will
encounter later are obtained by equating the derivatives of a log-likelihood to zero. The



536 CHAPTER 18 4 The Generalized Method of Moments

scaled log-likelihood function is
! InL= ! ilnf( 10, x;)
\ n - n — yl y ALSy

where f(-) is the density function and @ is the parameter vector. For densities that satisty
the regularity conditions [see Section 17.4.1],

E[aln f i IO,Xi)} Y
00

The maximum likelihood estimator is obtained by equating the sample analog to zero:

=0.

1alnL 12”: aln f(y |, 0)
n

n 99 — L

(Dividing by n to make this result comparable with our earlier ones does not change
the solution.) The upshot is that nearly all the estimators we have discussed and will
encounter later can be construed as method of moments estimators. [Manski’s (1992)
treatment of analog estimation provides some interesting extensions and methodolog-
ical discourse.]

As we extend this line of reasoning, it will emerge that nearly all the estimators
defined in this book can be viewed as method of moments estimators.

18.3.2 GENERALIZING THE METHOD OF MOMENTS

The preceding examples all have a common aspect. In each case listed save for the
general case of the instrumental variable estimator, there are exactly as many moment
equations as there are parameters to be estimated. Thus, each of these are exactly
identified cases. There will be a single solution to the moment equations, and at that
solution, the equations will be exactly satisfied.* But there are cases in which there are
more moment equations than parameters, so the system is overdetermined. In Example
18.5, we defined four sample moments,

g=-— Z [yz,yl o lnyz}

with probability limits P/, P(P +1)/4%, »/(P — 1), and ¢ (P)—In A, respectively. Any
pair could be used to estimate the two parameters, but as shown in the earlier example,
the six pairs produce six somewhat different estimates of 8 = (P, 4).

In such a case, to use all the information in the sample it is necessary to devise a way
to reconcile the conflicting estimates that may emerge from the overdetermined system.
More generally, suppose that the model involves K parameters,8 = (61, 62, ..., 0k), and
that the theory provides a set of L > K moment conditions,

E[m(yi, xi,2;,0)] = E[my(0)] =0

where y;, X;, and z; are variables that appear in the model and the subscript i on m; (@)

4That is, of course if there is any solution. In the regression model with collinearity, there are K parameters
but fewer than K independent moment equations.
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indicates the dependence on (y;, X;, Z;). Denote the corresponding sample means as
} 1 1<
m(y, X, Z.0) = ~ }_; (i, %, 2, 0) = ~ ;mﬂ@.

Unless the equations are functionally dependent, the system of L equations in K un-
known parameters,

1 1
my(0) = ;l‘zml(}’iyxi,zi,9) =0, [=1,...,L,
i=1

will not have a unique solution.” It will be necessary to reconcile the (%) different sets
of estimates that can be produced. One possibility is to minimize a criterion function,
such as the sum of squares,

L
g="Y_ i} = m6)m®). (18-2)
=1

It can be shown [see, e.g., Hansen (1982)] that under the assumptions we have made
so far, specifically that plimm(#) = E[m(#)] = 0, minimizing ¢ in (18-2) produces a
consistent (albeit, as we shall see, possibly inefficient) estimator of 8. We can, in fact,
use as the criterion a weighted sum of squares,

g =m(6)'W,m(0),

where W, is any positive definite matrix that may depend on the data but is not a
function of 8, such as I'in (18-2), to produce a consistent estimator of #.” For example,
we might use a diagonal matrix of weights if some information were available about the
importance (by some measure) of the different moments. We do make the additional
assumption that plim W,, = a positive definite matrix, W.

By the same logic that makes generalized least squares preferable to ordinary least
squares, it should be beneficial to use a weighted criterion in which the weights are
inversely proportional to the variances of the moments. Let W be a diagonal matrix
whose diagonal elements are the reciprocals of the variances of the individual moments,

1 1
~ AsyNar[nm] T du
(We have written it in this form to emphasize that the right-hand side involves the

variance of a sample mean which is of order (1/n).) Then, a weighted least squares
procedure would minimize

Wi

g =m@)d m@). (18-3)

3Tt may if L is greater than the sample size, n. We assume that L is strictly less than n.
This approach is one that Quandt and Ramsey (1978) suggested for the problem in Example 18.3.

"In principle, the weighting matrix can be a function of the parameters as well. See Hansen, Heaton and Yaron
(1996) for discussion. Whether this provides any benefit in terms of the asymptotic properties of the estimator
seems unlikely. The one payoff the authors do note is that certain estimators become invariant to the sort of
normalization that we discussed in Example 17.1. In practical terms, this is likely to be a consideration only
in a fairly small class of cases.
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In general, the L elements of m are freely correlated. In (18-3), we have used a diagonal
W that ignores this correlation. To use generalized least squares, we would define the
full matrix, ‘

W = {Asy.Var[ynm]} " = &L (18-4)
The estimators defined by choosing # to minimize
q = m(6)'W,m(6)

are minimum distance estimators. The general result is that if W, is a positive definite
matrix and if '

plimm(@) = 0,

then the minimum distance (generalized method of moments, or GMM) estimator of ¢
is consistent.® Since the OLS criterion in (18-2) uses I, this method produces a consistent
estimator, as does the weighted least squares estimator and the full GLS estimator. What
remains to be decided is the best W to use. Intuition might suggest (correctly) that the
one defined in (18-4) would be optimal, once again based on the logic that motivates
generalized least squares. This result is the now celebrated one of Hansen (1982).
The asymptotic covariance matrix of this generalized method of moments estimator

is
1 -

[re-r] !, (18-5)

1
Voum = ;[I"WF]‘l = N

where T is the matrix of derivatives with jth row equal to
317;(8)
00’
and ® = Asy. Var[/nm]. Finally, by virtue of the central limit theorem applied to the
sample moments and the Slutsky theorem applied to this manipulation, we can expect

the estimator to be asymptotically normally distributed. We will revisit the asymptotic
properties of the estimator in Section 18.3.3.

I’/ = plim

Example 18.7 GMM Estimation of the Parameters of a Gamma
Distribution
Referring once again to our earlier results in Example 18.5, we consider how to use all four
of our sample moments to estimate the parameters of the gamma distribution.® The four
moment equations are

¥i— P/x
y? — P(P +1)/A2
Iny; — ¥(P) +Ini
1y =2 /(P=1)

OO O0OO

8In the most general cases, a number of other subtle conditions must be met so as to assert consistency and the
other properties we discuss. For our purposes, the conditions given will suffice. Minimum distance estimators
are discussed in Malinvaud (1970), Hansen (1982}, and Amemiya (1985).

9We emphasize that this example is constructed only to illustrate the computation of a GMM estimator. The
gamma model is fully specified by the likelihood function, and the MLE is fully efficient. We will examine
other cases that involve less detailed specifications later in the book.
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The sample means of these will provide the moment equations for estimation. Let y; =
y2=y% ys=Iny,and y, = 1/y. Then

n

;
(P, )= (yn = P/3) = Z[y, —walPy 1= g1 = (P ),

i=l

and likewise for my(P, 1), ma(P, 1), and my(P, ).
For our initial set of estimates, we will use ordinary least squares. The optimization problem
is
4
Minimizep, Y _my(P, 1)? Z[y/ w(P, W = m(P, 2)'M(P, 4).
=1 1=1

This estimator will be the minimum distance estimator with W = |. This nonlinear opti-
mization problem must be solved iteratively. As starting values for the iterations, we used the
maximum likelihood estimates from Example 18.5, Py, = 2.4106 and iy, = 0.0770702. The
least squares values that result from this procedure are P = 2.0582996 and 4 = 0.06579888.
We can now use these to form our estimate of W. GMM estimation usually requires a first-
step estimation such as this one to obtain the weighting matrix W. With these new estimates
in hand, we obtained

}’/1—/5/5» yin— P/A /
_ Z yi2 = P P+1>/A yiz = P(P+1) /3
20,1 Ya—W(P)+Ink| | ya—w(P)+Ink

}’i4—)»/(’5— ) Yia — A/(P 1)

(Note, we could have computed & using the maximum likelihood estimates.) The GMM
estimator is now obtained by minimizing

g=m(P, 1) "'m(P, A).

The two estimates are Pgyy = 3.35894 and Agun = 0.124489. At these two values, the
value of the function is g = 1.97522. To obtain an asymptotic covariance matrix for the two
estimates, we first recompute ® as shown above;

24.7051
14 _ 2307126 229,609.5
20 | 06974 588148  0.0230

—0.0283 —-2.1423 -0.0011 0.000065413
To complete the computation, we will require the derivatives matrix,
/() = arm /oP  army/aP ams/dP  dma/oP
| armyjon oM oA Brms/OA O o

[ =P/ —W(P) A[(P—1)?
P/a2 2P(P+1)/3%  1/x —1/P-1)]"

&(0) = —8.0328 —498.01 -0.34635 0.022372
)= 216.74 15178.2  8.0328 —-0.42392|°
Finally,

1 A e 1A 0.202201 0.0117344

—[Go'G

ZO[G I [0 0117344 0000867519}
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ABLE 18.1

Estimates of the Parametersof
a Gamma Distributon

Generalized Method

Parameter Maximum Likelihood of Moments

P 2.4106 3.3589
Standard Error (0.87683) (0.449667)
A 0.0770701 0.12449
Standard Error (0.02707) (0.029099)

gives the estimated asymptotic covariance matrix for the estimators. Recall that in Exam-
ple 18.5, we obtained maximum likelihood estimates of the same parameters. Table 18.1
summarizes.

Looking ahead, we should have expected the GMM estimator to improve the standard
errors. The fact that it does for P but not for A might cast some suspicion on the specification
of the model. In fact, the data generating process underlying these data is not a gamma
population—the values were hand picked by the author. Thus, the findings in Table 18.1
might not be surprising. We will return to this issue in Section 18.4.1.

18.3.3 PROPERTIES OF THE GMM ESTIMATOR

We will now examine the properties of the GMM estimator in some detail. Since the
GMM estimator includes other familiar estimators that we have already encountered,
including least squares (linear and nonlinear), instrumental variables, and maximum
likelihood, these results will extend to those cases. The discussion given here will only
sketch the elements of the formal proofs. The assumptions we make here are somewhat
narrower than a fully general treatment might allow; but they are broad enough to in-
clude the situations likely to arise in practice. More detailed and rigorous treatments may
be found in, for example, Newey and McFadden (1994), White (2001), Hayashi (2000),
Mittelhammer et al. (2000), or Davidson (2000). This development will continue the
analysis begun in Section 10.4 and add some detail to the formal results of Section 16.5.
The GMM estimator is based on the set of population orthogonality conditions,

E[m;(00)] =0

where we denote the true parameter vector by . The subscript i on the term on the
right hand side indicates dependence on the observed data, y;, x;, z;. Averaging this
over the sample observations produces the sample moment equation

E [mn(OO)] =0

where

1 n
m, (8o) = ;mz (00).
This moment is a set of L equations involving the K parameters. We will assume that
this expectation exists and that the sample counterpart converges to it. The definitions
are cast in terms of the population parameters and are indexed by the sample size. To
fix the ideas, consider, once again, the empirical moment equations which define the
instrumental variable estimator for a linear or nonlinear regression model.
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Example 18.8 Empirical Moment Equation for Instrumental Variables
For the IV estimator in the linear or nonlinear regression model, we assume

E[mn(p)] = E [ Zz,[y, h(x,,m]}

There are L instrumental variables in z; and K parameters in 8. This statement defines L
moment equations, one for each instrumental variabie.

We make the following assumptions about the model and these empirical moments:

AssumpTiON 18.1. Convergence of the Empirical Moments: The data generating
process is assumed to meet the conditions for a law of large numbers to apply, so
that we may assume that the empirical moments converge in probability to their
expectation. Appendix D lists several different laws of large numbers that increase in
generality. What is required for this assumption is that

m, (8,) = Zm,wo) L.
i=1

The laws of large numbers that we examined in Appendix D accommodate cases of
independent observations. Cases of dependent or correlated observations can be gath-
ered under the Ergodic Theorem (12.1). For this more general case, then, we would
assume that the sequence of observations m(#) constant a jointly (L x 1) stationary and
ergodic process.

The empirical moments are assumed to be continuous and continuously dif-
ferentiable functions of the parameters. For our example above, this would
mean that the conditional mean function, A#(x;, 8) is a continuous function of
B (though not necessarily of x;).

With continuity and differentiability, we also will be able to assume that the deriva-
tives of the moments,
omm, (o) _ 1 ¢~ 9m;y(8o)
i

5 (60) = 1
G,(0y) = 80' )

converge to a probability limit, say plim G, (0y) = G(8,). For sets of independent obser-
vations, the continuity of the functions and the derivatives will allow us to invoke the
Slutsky Theorem to obtain this result. For the more general case of sequences of depen-
dent observations, Theorem 12.2, Ergodicity of Functions, will provide a counterpart to
the Slutsky Theorem for time series data. In sum, if the moments themselves obey a
law of large numbers, then it is reasonable to assume that the derivatives do as well.

AssumpTioN 18.2. Identification: For any n> K, if 0, and 0, are two different pa-
rameter vectors, then there exist data sets such that m,(81) % m,(0,). Formally, in
Section 16.5.3, identification is defined to imply that the probability limit of the GMM
criterion function is uniquely minimized at the true parameters, 0.
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Assumption 18.2 is a practical prescription for identification. More formal condi-
tions are discussed in Section 16.5.3. We have examined two violations of this crucial
assumption. In the linear regression model, one of the assumptions is full rank of the
matrix of exogenous variables—the absence of multicollinearity in X. In our discussion
of the maximum likelihood estimator, we encountered a case (Example 17.2) in which
the a normalization was needed to identify the vector of parameters. [See Hansen et al.
(1996) for discussion of this case.] Both of these cases are included in this assumption.
The identification condition has three important implications:

Order Condition The number of moment conditions is at least as large as the number
of parameter; L > K. This is necessary but not sufficient for identification.

Rank Condition The L x K matrix of derivatives, G,(8,) will have row rank equal to
K. (Again, note that the number of rows must equal or exceed the number of columns.)

Uniqueness With the continuity assumption, the identification assumption implies
that the parameter vector that satisfies the population moment condition is unique. We
know that at the true parameter vector, plimm,(6,) = 0. If 8, is any parameter vector
that satisfies this condition, then #; must equal 8.

Assumptions 18.1 and 182 characterize the parameterization of the model.
Together they establish that the parameter vector will be estimable. We now make
the statistical assumption that will allow us to establish the properties of the GMM
estimator.

AssumpTiON 18.3.  Asymptotic Distribution of Empirical Moments: We assume that
the empirical moments obey a central limit theorem. This assumes that the moments
have a finite asymptotic covariance matrix, (1/n)®, so that

i, 00) - N[0, ®].

The underlying requirements on the data for this assumption to hold will vary
and will be complicated if the observations comprising the empirical moment are not
independent. For samples of independent observations, we assume the conditions un-
derlying the Lindberg-Feller (D.19) or Liapounov Central Limit Theorem (D.20) will
suffice. For the more general case, it is once again necessary to make some assumptions
about the data. We have assumed that

E[m;@y]=0.

If we can go a step further and assume that the functions m; (#) are an ergodic, stationary
martingale difference series,

E[m;(8o) | m;_;(80), m;_»(8y)...] =0,

then we can invoke Theorem 12.3, the Central Limit Theorem for Martingale Difference
Series. It will generally be fairly complicated to verify this assumption for nonlinear
models, so it will usually be assumed outright. On the other hand, the assumptions are
likely to be fairly benign in a typical application. For regression models, the assumption
takes the form

E[Z,‘Si |Z,'_18i,1, .. ] =0

which will often be part of the central structure of the model.
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With the assumptions in place, we have

THEOREM 18.1 Asymptotic Distribution of the GMM Estimator
Under the preceding assumptions, '

% éGMM _p_) 0
: 8Gmm~ N[O, Viuul, (18-6)
where V yy is defined in (18-5).
SRR e Lo s

We will now sketch a proof of Theorem 18.1. The GMM estimator is obtained by
minimizing the criterion function

gn(0) = mn(o),wnmn(o)

where W, is the weighting matrix used. Consistency of the estimator that minimizes
this criterion can be established by the same logic we used for the maximum likelihood
estimator. It must first be established that g,(#) converges to a value go(#). By our
assumptions of strict continuity and Assumption 18.1, ¢,,(#y) converges to 0. (We could
apply the Slutsky theorem to obtain this result.) We will assume that g,(8) converges to
qo(8) for other points in the parameter space as well. Since W, is positive definite, for
any finite n, we know that

0 < gu@Gmm) < gu(80). (18-7)

Thatis, in the finite sample, 0 cm actually minimizes the function, so the sample value of
the criterion is not larger at § ;5 than at any other value, including the true parameters.
But, at the true parameter values, g,(8g) 0. So, if (18-7) is true, then it must follow
that g, (9GMM) L, 0 as well because of the identification assumption, 18.2. Asn — oo,
qn (6 Gua) and qn(0) converge to the same limit. It must be the case, then, that asn — oo,
Wm0 Gpuy) — Mu(0), since the function is quadratic and W is positive definite. The
identification condition that we assumed earlier now assures that as 7 — 00, 6 g3/» must
equal 8. This establishes consistency of the estimator.

We will now sketch a proof of the asymptotic normality of the estimator: The first

order conditions for the GMM estimator are
3g, (0 o a .
8Om0 _ 5, Gan) Wit @ caass) = 0. (18-8)
00 Gmm

(The leading 2 is irrelevant to the solution, so it will be dropped at this point.) The
orthogonality equations are assumed to be continuous and continuously differentiable.
This allows us to employ the mean value theorem as we expand the empirical moments
in a linear Taylor series around the true value. 6;

1, (0 rnr) = 1, (80) + G, (0) (@ Grn — 00), (18-9)

where @ is a point between 0 gy and the true parameters, 8. Thus, for each element
O = wiBr.oam + (1 — wy)bp & for some wy such that 0 < wy < 1. Insert (18-9) in (18-8) to
obtain

G (0 Gum) W, m,(00) + Gr(B Garn)' W, Gr(0) (0 Grgm — 80) = 0.
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Solve this equation for the estimation error and multiply by /z. This produces
V@ — 00) = ~[Gr@orm) W, Gn @)1 G Gaunt) W,,/niiina (Bo).

Assuming that they have them, the quantities on the left- and right-hand sides have the
same limiting distributions. By the consistency of 6 i we know that 6 Gnm and 6 both
converge to 8. By the strict continuity assumed, it must also be the case that

G..(0) > G(8y) and G, (@ um) = G(8o).

We have also assumed that the weighting matrix, W, converges to a matrix of constants,
W. Collecting terms, we find that the limiting distribution of the vector on the right hand
side must be the same as that on the right hand side in (18-10),

V@ crm — 00) 2> {[G(00) WG(00)] ' G(80)' W} /i, (00). (18-10)

We now invoke Assumption 18.3. The matrix in curled brackets is a set of constants.
The last term has the normal limiting distribution given in Assumption 18.3. The mean
and variance of this limiting distribution are zero and @, respectively. Collecting terms,
we have the result in Theorem 18.1, where

1 - _ _ - _ -
Vomum = E[G(OO)’WG(OO)]‘1G(00)’W<I>WG(00)[G(00)’WG(00)]’1. (18-11)

The final resultis a function of the choice of weighting matrix, W. If the optimal weighting
matrix, W = @, is used, then the expression collapses to

1 - _
Voum,optimal = E[G(OO)’d)*lG(OO)]*l. (18-12)

Returning to (18-11), there is a special case of interest. If we use least squares or
instrumental variables with W = I, then

Voum = ;(G'G)‘lG’OG(G'G)'l.

This equation is essentially (10-23) to (10-24), the White or Newey-West estimator,
which returns us to our departure point and provides a neat symmetry to the GMM
principle.

18.3.4 GMM ESTIMATION OF SOME SPECIFIC
ECONOMETRIC MODELS
Suppose that the theory specifies a relationship
Yi = h(Xi, ﬂ) + &i,

where B is a K x 1 parameter vector that we wish to estimate. This may not be a
regression relationship, since it is possible that

Covle;, h(x;, )] #0

~

or even

Covle;i, x;] #0 foralli and j.
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Consider, for example, a model that contains lagged dependent variables and autocor-
related disturbances. (See Section 12.9.4.) For the present, we assume that

Ele|X]#£0
and
El[ee’ | X] =0’ =13,

where X is symmetric and positive definite but otherwise unrestricted. The disturbances
may be heteroscedastic and/or autocorrelated. But for the possibility of correlation be-
tween regressors and disturbances, this model would be a generalized, possibly non-
linear, regression model. Suppose that at each observation i we observe a vector of
L variables, z;, such that z; is uncorrelated with &;. You will recognize z; as a set of
instrumental variables. The assumptions thus far have implied a set of orthogonality
conditions,

Elze; | %] =0,

which may be sufficient to identify (if L= K) or even overidentify (if L> K) the pa-
rameters of the model.
For convenience, define

eX.f) =y —h(xi,B), i=1....n,
and
Z = n x L matrix whose ith row is z;.

By a straightforward extension of our earlier results, we can produce a GMM estimator
of B. The sample moments will be

1 1
i, (8) = — > mexi, ) = ~Z'e(X, B).
i=1

The minimum distance estimator will be the 8 that minimizes

q = M, (B)' Wi, (B) = (%[e(x, B)’Z])W(%[Z’e(x, B)]) (18-13)
for some choice of W that we have yet to determine. The criterion given above produces
the nonlinear instrumental variable estimator. If we use W= (Z’Z)~!, then we have
exactly the estimation criterion we used in Section 9.5.1 where we defined the nonlinear
instrumental variables estimator. Apparently (18-13) is more general, since we are
not limited to this choice of W. The lincar IV estimator is a special case. For any
given choice of W, as long as there are enough orthogonality conditions to identify
the parameters, estimation by minimizing ¢ is, at least in principle, a straightforward
problem in nonlinear optimization. Hansen (1982) showed that the optimal choice of
W for this estimator is

Womu = {Asy. Var[/r i, (8)]}

-1
1 & 1 -1 (18-14)
75 ; ZiSi:I } = {Asy. Var L/—ﬁl'e(X, ﬂ)} } .

= {Asy. Var
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For our model, this is

W= - ZZ Cov(z;e;, zjej] = — ZZG”Z,Z = Z’ZZ.

zl]l 11]1

If we insert this result in (18-13), we obtain the criterion for the GMM estimator:

(o] (722) (]

There is a possibly difficult detail to be considered. The GMM estimator involves

—Z’ZZ = ZZZ,Z Covle;g;] = ZZZ,Z Cov[(yi — h(xi, B)(y; — h(x;, B)].

11/1 tl]l

The conditions under which such a double sum might converge to a positive definite
matrix are sketched in Sections 5.3.2 and 12.4.1. Assuming that they do hold, estimation
appears to require that an estimate of 8 be in hand already, even though it is the object
of estimation. It may be that a consistent but inefficient estimator of g is available.
Suppose for the present that one is. If observations are uncorrelated, then the cross
observations terms may be omitted, and what is required is

lzfzz = Zzlz Var[(y; — h(x;, B))].

i=1

We can use the White (1980) estimator discussed in Section 11.2.2 and 11.3 for this
case:

1<, .
So=-> u#i—htx, B (18-15)
i=1
If the disturbances are autocorrelated but the process is stationary, then Newey and

West’s (1987a) estimator is available (assuming that the autocorrelations are sufficiently
small at a reasonable lag, p):

1 P n ) r
S=|So+-> w® .Z ciei @Z_, +ziex)| =Y wt)Sy, (18-16)
=1 i=t+1
where
£
H=1-——
wie) = p+1

The maximum lag length p must be determined in advance. We will require that
observations that are far apart in time—that is, for which |i — £| is large—must have
increasingly smaller covariances for us to establish the convergence results that justify
OLS, GLS, and now GMM estimation. The choice of p is a reflection of how far back in
time one must go to consider the autocorrelation negligible for purposes of estimating
(1/n)Z' ¥ Z. Current practice suggests using the smallest integer greater than or equal
to TY4,

Still left open is the question of where the initial consistent estimator should be
obtained. One possibility is to obtain an inefficient but consistent GMM estimator by
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using W = I'in (18-13). That is, use a nonlinear (or linear, if the equation is linear)
instrumental variables estimator. This first-step estimator can then be used to construct
W, which, in turn, can then be used in the GMM estimator. Another possibility is that
B may be consistently estimable by some straightforward procedure other than GMM.

Once the GMM estimator has been computed, its asymptotic covariance matrix
and asymptotic distribution can be estimated based on (18-11) and (18-12). Recall that

1 n
m, () = p Zli&‘,
i=1

which is a sum of L x 1 vectors. The derivative, am,(8)/08’, is a sum of L x K matrices,
S0

_ 1< 1< ag;
= Om B = — i = — i L . -17
G(B) = om(B)/0p néc ) néz {w,} (18-17)
In the model we are considering here,
dei _ —0h(x;, B)
T

The derivatives are the pseudoregressors in the linearized regression model that we
examined in Section 9.2.3. Using the notation defined there,

o _
aﬂ - 10,
SO
_ 1 n 1 n , ] ,
G =-> G = —) mXy = - Z'Xo. (18-18)
i=1 i=1 .

With this matrix in hand, the estimated asymptotic covariance matrix for the GMM
estimator is
-1

g -1
Est.Asy.Var[ﬁ]:{G(B)'(%Z’il) GPB)| =[X\Z)(Z'EZ)y (Z'X)]™"

(18-19)

(The two minus signs, a 1/n? and an 2, all fall out of the result.)

If the X thatappears in (18-19) were oI, then (18-19) would be precisely the asymp-
totic covariance matrix that appears in Theorem 5.4 for linear models and Theorem 9.3
for nonlinear models. But there is an interesting distinction between this estimator
and the IV estimators discussed earlier. In the earlier cases, when there were more
instrumental variables than parameters, we resolved the overidentification by specifi-
cally choosing a set of K instruments, the K projections of the columns of X or Xj into
the column space of Z. Here, in contrast, we do not attempt to resolve the overidenti-
fication; we simply use all the instruments and minimize the GMM criterion. Now you
should be able to show that when T = ol and we use this information, when all is said
and done, the same parameter estimates will be obtained. But, if we use a weighting
matrix that differs from W = (Z'Z/n)~!, then they are not.
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18.4 TESTING HYPOTHESES IN THE GMM
FRAMEWORK

The estimation framework developed in the previous section provides the basis for
a convenient set of statistics for testing hypotheses. We will consider three groups of
tests. The first is a pair of statistics that is used for testing the validity of the restrictions
that produce the moment equations. The second is a trio of tests that correspond to
the familiar Wald, LM, and LR tests that we have examined at several points in the
preceding chapters. The third is a class of tests based on the theoretical underpinnings
of the conditional moments that we used carlier to devise the GMM estimator.

18.4.1 TESTING THE VALIDITY OF THE MOMENT RESTRICTIONS

In the exactly identified cases we examined earlier (least squares, instrumental variables,
maximum likelihood), the criterion for GMM estimation

g = m(0) Wm(6)

would be exactly zero because we can find a set of estimates for which m(6) is exactly
zero. Thus in the exactly identified case when there are the same number of moment
equations as there are parameters to estimate, the weighting matrix W is irrelevant to
the solution. But if the parameters are overidentified by the moment equations, then
these equations imply substantive restrictions. As such, if the hypothesis of the model
that led to the moment equations in the first place is incorrect, at least some of the
sample moment restrictions will be systematically violated. This conclusion provides
the basis for a test of the overidentifying restrictions. By construction, when the optimal
weighting matrix is used,

nq = [ynm@)'] {Est.Asy. Var[ynm@é)]} ' [rnm@)],

so nq is a Wald statistic. Therefore, under the hypothesis of the model,
ng N x’[L - K].
(For the exactly identified case, there are zero degrees of freedom and g = 0.)

Example 18.9 Overidentifying Restrictions
In Hall’'s consumption model with the corollary the two orthogonality conditions noted in
Example 18.6 exactly identify the two parameters. But, his analysis of the model suggests a
way to test the specification. The conclusion, “No information available in time ¢ apart from
the level of consumption, c¢; helps predict future consumption, c;,1, in the sense of affecting
the expected value of marginal utility. In particular, income or wealth in periods t or earlier
are irrelevant once c; is known” suggests how one might test the model. If lagged values
of income (Y; might equal the ratio of current income to the previous period’s income) are
added to the set of instruments, then the model is now overidentified by the orthogonality

- conditions;
1
R: 0
E, 1 R, -1 = .
| (B +r) Rl — 1) x Yo, [0}

Yi-2
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A simple test of the overidentifying restrictions would be suggestive of the validity of the
model. Rejecting the restrictions casts doubt on the original model. Hall's proposed tests
to distinguish the life cycle—permanent income model from other theories of consump-
tion involved adding two lags of income to the information set. His test is more involved
than the one suggested above Hansen and Singleton (1982) operated directly on this form
of the model. Other studies, for example, Campbell and Mankiw (1989) as well as Hall's,
used the model’s implications to formulate more conventional instrumental variable regres-

sion models. . '

The preceding is a specification test, not a test of parametric restrictions. However,
there is a symmetry between the moment restrictions and restrictions on the parameter
vector. Suppose @ is subjected to J restrictions (linear or nonlinear) which restrict
the number of free parameters from K to K — J. (That is, reduce the dimensionality of
the parameter space from K to K — J.) The nature of the GMM estimation problem
we have posed is not changed at all by the restrictions. The constrained problem may
be stated in terms of

gr =Mm(0g)'Wim(0g).

Note that the weighting matrix, W, is unchanged. The precise nature of the solution
method may be changed—the restrictions mandate a constrained optimization. How-
ever, the criterion is essentially unchanged. It follows then that

ngr 5 2[L— (K = )],

This result suggests a method of testing the restrictions, though the distribution theory
is not obvious. The weighted sum of squares with the restrictions imposed, ngg must
be larger than the weighted sum of squares obtained without the restrictions, ng. The
difference is

(nqr — nq) - x2[J]. (18-20)

The test is attributed to Newey and West (1987b). This provides one method of testing
a set of restrictions. (The small-sample properties of this test will be the central focus
of the application discussed in Section 18.5.) We now consider several alternatives.

18.4.2 GMM COUNTERPARTS TO THE WALD, LM, AND LLR TESTS

Section 17.5 described a trio of testing procedures that can be applied to a hypothesis
in the context of maximum likelihood estimation. To reiterate, let the hypothesis to
be tested be a set of J possibly nonlinear restrictions on K parameters 6 in the form
Hy:r(0) =0. Let ¢; be the maximum likelihood estimates of # estimated without the
restrictions, and let ¢y denote the restricted maximum likelihood estimates, that is,
the estimates obtained while imposing the null hypothesis. The three statistics, which
are asymptotically equivalent, are obtained as follows:

LR = likelihood ratio = —2(In Ly — In L),
where

In Lj = log likelihood function evaluated ate¢;, j =0, 1.
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The likelihood ratio statistic requires that both estimates be computed. The Wald statis-
tic is

W = Wald = [r(c;)]'{ Est.Asy. Var[r(cl)]}_l[r(cl)]. (18-21)

The Wald statistic is the distance measure for the degree to which the unrestricted esti-
mator fails to satisfy the restrictions. The usual estimator for the asymptotic covariance
matrix would be

Est.Asy. Var[r(¢c))] = Ay {Est.Asy. Var{¢ ] }A'l, (18-22)
where
A; = 0r(c;)/3¢] (AjisaJ x K matrix).

The Wald statistic can be computed using only the unrestricted estimate. The I.M statistic
is

LM = Lagrange multiplier = g} (¢o){ Est.Asy. Var[g; (co)]}_lgl (co), (18-23)

where

g1(¢eo) = 01In Ly(eg)/0co,

that is, the first derivatives of the unconstrained log-likelihood computed at the restricted
estimates. The term Est.Asy. Var[g; (¢y)] is inverse of any of the usual estimators of the
asymptotic covariance matrix of the maximum likelihood estimators of the parameters,
computed using the restricted estimates. The most convenient choice is usually the
BHHH estimator. The LM statistic is based on the restricted estimates.

Newey and West (1987b) have devised counterparts to these test statistics for the
GMM estimator. The Wald statistic is computed identically, using the results of GMM
estimation rather than maximum likelihood.!? That is, in (18-21), we would use the
unrestricted GMM estimator of 8. The appropriate asymptotic covariance matrix is
(18-12). The computation is exactly the same. The counterpart to the LR statistic is
the difference in the values of ng in (18-20). It is necessary to use the same weighting
matrix, W, in both restricted and unrestricted estimators. Since the unrestricted esti-
mator is consistent under both H, and Hi, a consistent, unrestricted estimator of 8 is
used to compute W. Label this @, ' = {Asy. Var[/n m; (cl)]}_l. In each occurrence,
the subscript 1 indicates reference to the unrestricted estimator. Then ¢ is minimized
without restrictions to obtain ¢; and then subject to the restrictions to obtain go. The
statistic is then (ngy — ng;).!! Since we are using the same W in both cases, this statistic
is necessarily nonnegative. (This is the statistic discussed in Section 18.4.1.)

Finally, the counterpart to the LM statistic would be

LMgumu = nmy(eo) ;' Gi(co)] [Gi(co) ®7' Gi(co)] - [Gi(eo) @] 'y (eo)].

108ee Burnside and Eichenbaum (1996) for some small-sample results on this procedure. Newey and
McFadden (1994) have shown the asymptotic equivalence of the three procedures.

HNewey and West label this test the D test.
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The logic for this LM statistic is the same as that for the MLE. The derivatives of the
minimized criterion g in (18-3) are
d - La_1.
gi(¢o) = 0 = 2G(eo)' b} 'miey).
8(3()
The LM statistic, LMy, is a Wald statistic for testing the hypothesis that this vector

equals zero under the restrictions of the null hypothesis. From our earlier results, we
would have

4 _ R " 4=
Est.Asy. Var[g) (¢y)] = —G (co) ;" {Est.Asy. Var[/n m(co)]} &7 G (co).
The estimated asymptotic variance of /n m(cp) is @1, so

4 _ n _
Est.Asy. Var[g)(¢g)] = ;Gl (co)’<I>1_1G1(co).
The Wald statistic would be
Wald = g (¢o)’'{ Est.Asy. Var[g; (co)]}_lgl (co)

R (18-24)
= nmj(co) ] G(eo){ Geo) &' G(cy) }  Gleo) &7y (cp).

.5 APPLICATION: GMM ESTIMATION OF A
DYNAMIC PANEL DATA MODEL OF LOCAL
GOVERNMENT EXPENDITURES

(This example continues the analysis begun in Example 13.7.) Dahlberg and Johansson
(2000) estimated a model for the local government expenditure of several hundred
municipalities in Sweden observed over the 9-year period ¢ = 1979 to 1987. The equation
of interest is

m m m
Sic =0+ Zﬂjsi,t—j + Z YiRi—j+ ZSjGi,t—j + fi +&ir
j=1 j=1 j=t
fori=1,..., N=265andt=m+1,...,9.(We have changed their notation slightly to
make it more convenient.) S;;, R;; and G;, are municipal spending, receipts (taxes and
fees) and central government grants, respectively. Analogous equations are specified for
the current values of R;; and G;,. The appropriate lag length, m, is one of the features
of interest to be determined by the empirical study. The model contains a municipality
specific effect, f;, which is not specified as being either “fixed” or “random.” In order to
eliminate the individual effect, the model is converted to first differences. The resulting
equation is

m m m
ASi=h+ > BiASj+ > VAR, + > 8iAGi—j + i
- j=1 j=1 j=1
or

’
Yie =%; 0 +uy,,

where AS;; =S8, — Si;—1 and so on and u;, =¢;, — & ,_;. This removes the group ef-
fect and leaves the time effect. Since the time effect was unrestricted to begin with,
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Ac«; = A, remains an unrestricted time effect, which is treated as “fixed” and modeled
with a time-specific dummy variable. The maximum lag length is set at m = 3. With 9
years of data, this leaves useable observations from 1983 to 1987 for estimation, that is,
t=m+2,...,9. Similar equations were fit for R;, and G; ;.

The orthogonality conditions claimed by the authors are

E[Si,su,;,] = E[R,'!su[,[] = E[G,A,Su,‘,,] =0, s=1,...,t=2.

The orthogonality conditions are stated in terms of the levels of the financial variables
and the differences of the disturbances. The issue of this formulation as opposed to, for
example, F[AS;;A¢;,] = 0 (which is implied) is discussed by Ahn and Schmidt (1995).
As we shall see, this set of orthogonality conditions implies a total of 80 instrumental
variables. The authors use only the first of the three sets listed above, which produces a
total of 30. For the five observations, using the formulation developed in Section 13.6,
we have the following matrix of instrumental variables for the orthogonality conditions

[(Ssi70 dszs O 0 O 0 o 0 o 071983
0 0 Sp9 dg O 0 ¢ 0 O 0] 1984
Z,=| O 0 0O 0 Sga9 dgs O 0 0O 0 | 1985
‘ % 0 1% 0 (1% 0 Serg dyg O 0 | 1986
o o0 o0 o0 0 0 0 0 Sy dgy| 1987

where the notation Ej;;_, indicates the range of years for that variable. For example,
Sg3_79 denotes [S,‘_]c)83, Si.lggz, S,‘,1931, Si.19807 S,',1979] and dyear denotes the year speciﬁc
dummy variable. Counting columns in Z; we see that using only the lagged values of the
dependent variable and the time dummy variables, we have 3+ 1)+ 4+ 1)+ S+ 1D +
(6+ 1) + (74 1) =30 instrumental variables. Using the lagged values of the other two
variables in each equation would add 50 more, for a total of 80 if all the orthogonality
conditions suggested above were employed. Given the construction above, the orthog-
onality conditions are now

E[Z:ll,] = 0,

where w; = [1; 1087, Ui, 1986, Ui,1985, Ui 1984, Ui, 1983] - The empirical moment equation is

(1, -
plim [n ; Ziul} = plimm(4) = 0.

The parameters are vastly overidentified. Using only the lagged values of the depen-
dent variable in each of the three equations estimated, there are 30 moment conditions
and 14 parameters being estimated when m = 3, 11 whenm = 2,8 whenm = 1 and 5
when m = 0. (As we do our estimation of each of these, we will retain the same matrix
of instrumental variables in each case.) GMM estimation proceeds in two steps. In the
first step, basic, unweighted instrumental variables is computed using

-1

N N -1/ N N N -1/ N
= |(Sxa) (San) (Sax)| (Swe)(Sen) (S
i=1 i=1 i=1 i=1 i=1 i=1

[
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where
= (ASg3 ASy ASgs ASg ASg)

and

ASs; ASs1 ASss ARy ARyt ARy A Gsy AGg AGy
ASzz ASzy ASsi ARss ARgpy ARy AGgs AGgp AGyg
X;=|AS4 ASgs ASsy ARgs ARgzs ARy AGy AGg AGy
ASss ASgy ASzs ARgs ARga ARgs AGss AGsy AGss
L ASss ASss ASsy ARgs ARgs ARgy AGgs AGgs AGgs 0 0

(el e i
S O = O
S O = o O

O = O o O
_ o O O O

The second step begins with the computation of the new weighting matrix,
& = Est.Asy. Var[v/Nia] = Z Z4,0)Z

After multiplying and dividing by the implicit (1/N) in the outside matrices, we obtain
the estimator,

The estimator of the asymptotic covariance matrix for the estimator is the matrix in
square brackets in the first line of the result.

The primary focus of interest in the study was not the estimator itself, but the lag
length and whether certain lagged values of the independent variables appeared in
each equation. These restrictions would be tested by using the GMM criterion function,
which in this formulation would be (based on recomputing the residuals after GMM

estimation)
q= (Z ﬁ;Z,) w (Z z;m) .
i=1 i=1

Note that the weighting matrix is not (necessarily) recomputed. For purposes of testing
hypotheses, the same weighting matrix should be used.

At this point, we will consider the appropriate lag length, m. The specification can be
reduced simply by redefining X to change the lag length. In order to test the specification,
the weighting matrix must be kept constant for all restricted versions (m = 2 and m = 1)
of the model.

The Dahlberg and Johansson data may be downloaded from the Journal of Applied
Econometrics website—See Appendix Table F18.1. The authors provide the summary
statistics for the raw data that are given in Table 18.2. The data used in the study

-1
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Local Expenditure Data

Variable Mean

Std. Deviation Minimum Maximum
Spending 18478.51 3174.36 12225.68 33883.25
Revenues  13422.56 3004.16 6228.54 29141.62
Grants 5236.03 1260.97 1570.64 12589.14
: | Equation
Variable Estimate Standard Error t Ratio
Year 1983 -0.0036578 0.0002969 ~12.32
Year 1984 —0.00049670 0.0004128 -1.20
Year 1985 0.00038085 0.0003094 1.23
Year 1986 0.00031469 0.0003282 0.96
Year 1987 0.00086878 0.0001480 5.87
Spending (¢ — 1) 1.15493 0.34409 3.36
Revenues (t — 1) —1.23801 0.36171 -342
Grants (f — 1) 0.016310 0.82419 0.02
Spending (¢ — 2) —0.0376625 0.22676 —-0.17
Revenues (f — 2) 0.0770075 0.27179 0.28
Grants (t — 2) 1.55379 0.75841 2.05
Spending (¢ — 3) —0.56441 0.21796 -2.59
Revenues (1 — 3) 0.64978 0.26930 2.41
Grants (1 — 3) 1.78918 0.69297 2.58

and provided in the internet source are nominal values in Swedish Kroner, deflated
by a municipality specific price index then converted to per capita values. Descrip-
tive statistics for the raw and transformed data appear in Table 18.2.! Equations
were estimated for all three variables, with maximum lag lengths of m=1, 2, and 3.
(The authors did not provide the actual estimates.) Estimation is done using the meth-
ods developed by Ahn and Schmidt (1995), Arellano and Bover (1995) and Holtz-Eakin.
Newey, and Rosen (1988), as described above. The estimates of the first specification
given above are given in Table 18.3.

Table 18.4 contains estimates of the model parameters for each of the three equa-
tions, and for the three lag lengths, as well as the value of the GMM criterion function
for each model estimated. The base case for each model has m = 3. There are three
restrictions implied by each reduction in the lag length. The critical chi-squared value
for three degrees of freedom is 7.81 for 95 percent significance, so at this level, we find
that the two-level model is just barely accepted for the spending equation, but clearly
appropriate for the other two—the difference between the two criteria is 7.62. Condi-
tioned on m = 2, only the revenue model rejects the restriction of m = 1. As a final test.
we might ask whether the data suggest that perhaps no lag structure at all is necessary.
The GMM criterion value for the three equations with only the time dummy variables
are 45.840, 57.908, and 62.042, respectively. Therefore, all three zero lag models are
rejected.

12The data provided on the website and used in our computations were further transformed by dividing by
100,000.
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and Grants
Expenditure Model Revenue Model Grant Model
m=3 m=2 m=1 m=3 m=2 m=1 m=3 m=2 m=1

St-1 1.155 0.8742  0.5562 -0.1715 —0.3117 —0.1242 —-0.1675 —0.1461 —0.1958
S —0.0377  0.2493 — 0.1621 —0.0773 — —0.0303 -0.0304 —
S-3 —0.5644 — — —0.1772 — — —0.0955 — —
R_, —12380 —0.8745 —-0.5328 —0.0176 0.1863 -—0.0245 0.1578 0.1453  0.2343
R 0.0770 —0.2776 — —0.0309 0.1368 — 0.0485  0.0175 —
R_; 0.6497 — — 0.0034 — — 0.0319 — —
G-y 0.0163 —04203 0.1275 —0.3683  0.5425 —0.0808 —0.2381 —0.2066 —0.0559
G 1.5538  0.1866 — —2.7152  2.4621 — —0.0492 —0.0804 —
Gi_; 1.7892 — — 0.0948 — — 0.0598 — —

q 22.8287 30.4526 34.4986 30.5398 34.2590 53.2506 17.5810 20.5416 27.5927

Among the interests in this study were the appropriate critical values to use for the
specification test of the moment restriction. With 16 degrees of freedom, the critical chi-
squared value for 95 percent significance is 26.3, which would suggest that the revenues
equation is misspecified. Using a bootstrap technique, the authors find that a more
appropriate critical value leaves the specification intact. Finally, note that the three-
equation model in the m = 3 columns of Table 18.4 imply a vector autoregression of
the form

Y=y 1+Iy2+Iys3+w

wherey, = (AS,. AR,, AG;)". We will explore the properties and characteristics of equa-
tion systems such as this in our discussion of time series models in Chapter 20.

18.6 SUMMARY AND CONCLUSIONS

The generalized method of moments provides an estimation framework that includes
least squares, nonlinear least squares, instrumental variables, and maximum likelihood,
and a general class of estimators that extends beyond these. But it is more than just a
theoretical umbrella. The GMM provides a method of formulating models and implied
estimators without making strong distributional assumptions. Hall’s model of household
consumption is a useful example that shows how the optimization conditions of an
underlying economic theory produce a set of distribution free estimating equations. In
this chapter, we first examined the classical method of moments. GMM as an estimator
is an extension of this strategy that allows the analyst to use additional information
beyond that necessary to identify the model, in an optimal fashion. After defining and
establishing the properties of the estimator, we then turned to inference procedures.
It is convenient that the GMM procedure provides counterparts to the familiar trio of
test statistics, Wald, LM, and LR. In the final section, we developed an example that
appears at many points in the recent applied literature, the dynamic panel data model
with individual specific effects, and lagged values of the dependent variable.

This chapter concludes our survey of estimation techniques and methods in econo-
metrics. In the remaining chapters of the book, we will examine a variety of applications
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and modeling tools, first in time series and macroeconometrics in Chapters 19 and 20,
then in discrete choice models and limited dependent variables, the staples of microe-
conometrics, in Chapters 21 and 22. '

Key Terms and Concepts

¢ Analog estimation ¢ LR statistic ® Order condition

e Asymptotic properties ¢ Martingale difference » Orthogonality conditions

e Central limit theorem sequence ¢ Overidentifying restrictions

e Central moments ¢ Maximum likelihood ¢ Probability limit

¢ Consistent estimator estimator ¢ Random sample

¢ Dynamic panel data model ¢ Mean value theorem ¢ Rank condition

¢ Empirical moment equation e Method of moment ¢ Robust estimation

¢ Ergodic theorem generating functions o Slutsky Theorem

¢ Euler equation * Method of moments « Specification test statistic

» Exactly identified * Method of moments » Sufficient statistic

¢ Exponential family estimators ¢ Taylor series

® Generalized method of ¢ Minimum distance estimator e Uncentered moment
moments * Moment equation ¢ Wald statistic

¢ Identification ¢ Newey—West estimator * Weighted least squares

e Instrumental variables ¢ Nonlinear instrumental

o L M statistic variable estimator

Exercises
1. For the normal distribution o = 0?¥(2k)!/(k!2¥) and por1 =0,k =0,1,.... Use

this result to analyze the two estimators

m.

m 4
\/bj:g;i and bzz%.

where my, = % (- %)¥. The following result will be useful:

Asy.Cov[/nm;, Namg] = iy — pjpe~+ jRuatj—1 11 — jibj-1 i — Kibk—1 41

Use the delta method to obtain the asymptotic variances and covariance of these
two functions assuming the data are drawn from a normal distribution with mean
w and variance o2, (Hint: Under the assumptions, the sample mean is a consistent
estimator of i, so for purposes of deriving asymptotic results, the difference between
X and 1 may be ignored. As such, no generality is lost by assuming the mean is zero,
and proceeding from there. Obtain V, the 3 x 3 covariance matrix for the three
moments, then use the delta method to show that the covariance matrix for the two

estimators is
, |6 0
VI = [O 24}

where J is the 2 x 3 matrix of derivatives.

Using the results in Example 18.7, estimate the asymptotic covariance matrix of
the method of moments estimators of P and A based on m] and m) [Note: You will
need to use the data in Example C.1 to estimate V.]
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Exponential Families of Distributions. For each of the following distributions,
determine whether it is an exponential family by examining the log-likelihood func-
tion. Then, identify the sufficient statistics.

a. Normal distribution with mean w and variance 2.
b. The Weibull distribution in Exercise 4 in Chapter 17.

¢. The mixture distribution in Exercise 3 in Chapter 17.

In the classical regression model with heteroscedasticity, which is more efficient,
ordinary least squares or GMM? Obtain the two estimators and their respective
asymptotic covariance matrices, then prove your assertion.

Consider the probit model analyzed in Section 17.8. The model states that for given
vector of independent variables,

Prob[y; = 1|x;] = ®[x;B8]. Prob[y; =0|x;] =1 — Probly; = 1|x;].

We have considered maximum likelihood estimation of the parameters of this model
at several points. Consider, instead, a GMM estimator based on the result that

Elyi[x] = ®(x;B)
This suggests that we might base estimation on the orthogonality conditions
E[(yi — ®(x;8))xi] =0

Construct a GMM estimator based on these results. Note that this is not the non-
linear least squares estimator. Explain—what would the orthogonality conditions
be for nonlinear least squares estimation of this model?

Consider GMM estimation of a regression model as shown at the beginning of
Example 18.8. Let W; be the optimal weighting matrix based on the moment
equations. Let W, be some other positive definite matrix. Compare the asymp-
totic covariance matrices of the two proposed estimators. Show conclusively that
the asymptotic covariance matrix of the estimator based on Wj is not larger than
that based on W,.
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